Former-commit-id: b085ca19ee
master
parent 22f86cb431
commit 204476bfed
  1. 51
      README.md

@ -1,7 +1,4 @@
[![Build Status](https://travis-ci.org/lvdmaaten/bhtsne.svg)](https://travis-ci.org/lvdmaaten/bhtsne)
This software package contains a Barnes-Hut implementation of the t-SNE algorithm. The implementation is described in [this paper](http://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf).
This Git repository contains the code that accompanies a research publication so-called "t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections". The details are described in [this paper](https://arxiv.org/abs/2002.06910).
**Note:** This repository is a version of t-SNE modified to support ongoing research. It may be slightly slower than the original. If you're just trying to run t-SNE, check the original repository that we forked from.
@ -41,50 +38,16 @@ The executable will be called `windows\bh_tsne.exe`.
The code comes with wrappers for Matlab and Python. These wrappers write your data to a file called `data.dat`, run the `bh_tsne` binary, and read the result file `result.dat` that the binary produces. There are also external wrappers available for [Torch](https://github.com/clementfarabet/manifold), [R](https://github.com/jkrijthe/Rtsne), and [Julia](https://github.com/zhmz90/BHTsne.jl). Writing your own wrapper should be straightforward; please refer to one of the existing wrappers for the format of the data and result files.
Demonstration of usage in Matlab:
```matlab
filename = websave('mnist_train.mat', 'https://github.com/awni/cs224n-pa4/blob/master/Simple_tSNE/mnist_train.mat?raw=true');
load(filename);
numDims = 2; pcaDims = 50; perplexity = 50; theta = .5; alg = 'svd';
map = fast_tsne(digits', numDims, pcaDims, perplexity, theta, alg);
gscatter(map(:,1), map(:,2), labels');
```
Demonstration of usage in Python:
```python
import numpy as np
import bhtsne
data = np.loadtxt("mnist2500_X.txt", skiprows=1)
embedding_array = bhtsne.run_bh_tsne(data, initial_dims=data.shape[1])
```
# first terminal: hosting the visualization side (client)
python3 -m http.server # for Python3
#or
python -m SimpleHTTPServer 8000 # for Python2
### Python Wrapper
Usage:
```bash
python bhtsne.py [-h] [-d NO_DIMS] [-p PERPLEXITY] [-t THETA]
[-r RANDSEED] [-n INITIAL_DIMS] [-v] [-i INPUT]
[-o OUTPUT] [--use_pca] [--no_pca] [-m MAX_ITER]
# second terminal: hosting the computational side (server)
FLASK_APP=tsneGrid.py flask run
```
Below are the various options the wrapper program `bhtsne.py` expects:
- `-h, --help` show this help message and exit
- `-d NO_DIMS, --no_dims` NO_DIMS
- `-p PERPLEXITY, --perplexity` PERPLEXITY
- `-t THETA, --theta` THETA
- `-r RANDSEED, --randseed` RANDSEED
- `-n INITIAL_DIMS, --initial_dims` INITIAL_DIMS
- `-v, --verbose`
- `-i INPUT, --input` INPUT: the input file, expects a TSV with the first row as the header.
- `-o OUTPUT, --output` OUTPUT: A TSV file having each row as the `d` dimensional embedding.
- `--use_pca`
- `--no_pca`
- `-m MAX_ITER, --max_iter` MAX_ITER
# t-viSNE

Loading…
Cancel
Save