This Git repository contains the code that accompanies a research publication so-called "t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections". The details are described in [this paper](https://arxiv.org/abs/2002.06910).
This software package contains a Barnes-Hut implementation of the t-SNE algorithm. The implementation is described in [this paper](http://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf).
**Note:** This repository is a version of t-SNE modified to support ongoing research. It may be slightly slower than the original. If you're just trying to run t-SNE, check the original repository that we forked from.
**Note:** This repository is a version of t-SNE modified to support ongoing research. It may be slightly slower than the original. If you're just trying to run t-SNE, check the original repository that we forked from.
@ -41,50 +38,16 @@ The executable will be called `windows\bh_tsne.exe`.
The code comes with wrappers for Matlab and Python. These wrappers write your data to a file called `data.dat`, run the `bh_tsne` binary, and read the result file `result.dat` that the binary produces. There are also external wrappers available for [Torch](https://github.com/clementfarabet/manifold), [R](https://github.com/jkrijthe/Rtsne), and [Julia](https://github.com/zhmz90/BHTsne.jl). Writing your own wrapper should be straightforward; please refer to one of the existing wrappers for the format of the data and result files.
The code comes with wrappers for Matlab and Python. These wrappers write your data to a file called `data.dat`, run the `bh_tsne` binary, and read the result file `result.dat` that the binary produces. There are also external wrappers available for [Torch](https://github.com/clementfarabet/manifold), [R](https://github.com/jkrijthe/Rtsne), and [Julia](https://github.com/zhmz90/BHTsne.jl). Writing your own wrapper should be straightforward; please refer to one of the existing wrappers for the format of the data and result files.