From 204476bfedfb5e2ce00651050c92b0b3c124427f Mon Sep 17 00:00:00 2001 From: Angelos Chatzimparmpas Date: Fri, 3 Apr 2020 17:19:52 +0200 Subject: [PATCH] new readme Former-commit-id: b085ca19ee4c79bde00bafb9ca31036473e852eb --- README.md | 51 +++++++-------------------------------------------- 1 file changed, 7 insertions(+), 44 deletions(-) diff --git a/README.md b/README.md index e4cd571..babc139 100755 --- a/README.md +++ b/README.md @@ -1,7 +1,4 @@ - -[![Build Status](https://travis-ci.org/lvdmaaten/bhtsne.svg)](https://travis-ci.org/lvdmaaten/bhtsne) - -This software package contains a Barnes-Hut implementation of the t-SNE algorithm. The implementation is described in [this paper](http://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf). +This Git repository contains the code that accompanies a research publication so-called "t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections". The details are described in [this paper](https://arxiv.org/abs/2002.06910). **Note:** This repository is a version of t-SNE modified to support ongoing research. It may be slightly slower than the original. If you're just trying to run t-SNE, check the original repository that we forked from. @@ -41,50 +38,16 @@ The executable will be called `windows\bh_tsne.exe`. The code comes with wrappers for Matlab and Python. These wrappers write your data to a file called `data.dat`, run the `bh_tsne` binary, and read the result file `result.dat` that the binary produces. There are also external wrappers available for [Torch](https://github.com/clementfarabet/manifold), [R](https://github.com/jkrijthe/Rtsne), and [Julia](https://github.com/zhmz90/BHTsne.jl). Writing your own wrapper should be straightforward; please refer to one of the existing wrappers for the format of the data and result files. -Demonstration of usage in Matlab: - -```matlab -filename = websave('mnist_train.mat', 'https://github.com/awni/cs224n-pa4/blob/master/Simple_tSNE/mnist_train.mat?raw=true'); -load(filename); -numDims = 2; pcaDims = 50; perplexity = 50; theta = .5; alg = 'svd'; -map = fast_tsne(digits', numDims, pcaDims, perplexity, theta, alg); -gscatter(map(:,1), map(:,2), labels'); -``` - Demonstration of usage in Python: -```python -import numpy as np -import bhtsne - -data = np.loadtxt("mnist2500_X.txt", skiprows=1) - -embedding_array = bhtsne.run_bh_tsne(data, initial_dims=data.shape[1]) ``` +# first terminal: hosting the visualization side (client) +python3 -m http.server # for Python3 +#or +python -m SimpleHTTPServer 8000 # for Python2 -### Python Wrapper - -Usage: - -```bash -python bhtsne.py [-h] [-d NO_DIMS] [-p PERPLEXITY] [-t THETA] - [-r RANDSEED] [-n INITIAL_DIMS] [-v] [-i INPUT] - [-o OUTPUT] [--use_pca] [--no_pca] [-m MAX_ITER] +# second terminal: hosting the computational side (server) +FLASK_APP=tsneGrid.py flask run ``` -Below are the various options the wrapper program `bhtsne.py` expects: - -- `-h, --help` show this help message and exit -- `-d NO_DIMS, --no_dims` NO_DIMS -- `-p PERPLEXITY, --perplexity` PERPLEXITY -- `-t THETA, --theta` THETA -- `-r RANDSEED, --randseed` RANDSEED -- `-n INITIAL_DIMS, --initial_dims` INITIAL_DIMS -- `-v, --verbose` -- `-i INPUT, --input` INPUT: the input file, expects a TSV with the first row as the header. -- `-o OUTPUT, --output` OUTPUT: A TSV file having each row as the `d` dimensional embedding. -- `--use_pca` -- `--no_pca` -- `-m MAX_ITER, --max_iter` MAX_ITER - # t-viSNE