t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections https://doi.org/10.1109/TVCG.2020.2986996
t-viSNE/js/tsne_vis.js

3416 lines
120 KiB

// t-SNE Visualization and global variables
6 years ago
// This variable is used when a new file is upload by a user.
var new_file;
6 years ago
// The basic variables in order to execute t-SNE (opt is perplexity and learning rate).
var tsne; var opt; var step_counter; var max_counter; var runner;
6 years ago
// These variables are initialized here in order to store the final dataset, the points, the cost, the cost for each iteration, the beta values, the positions, the 2D points positions,
// In addition, there is an array which keeps the initial information of the points (i.e., initial state), the data features (with the label of the category plus the id of the point), the data features without the category (only numbers).
var final_dataset; var points = []; var cost = []; var cost_each; var beta_all = []; var x_position = []; var y_position = []; var points2d = []; var InitialStatePoints = [];
6 years ago
var ArrayContainsDataFeaturesCleared = []; var ArrayContainsDataFeaturesClearedwithoutNull = []; var ArrayContainsDataFeaturesClearedwithoutNullKeys = []; var flagAnalysis = false;
6 years ago
// The distances in the high dimensional space and in the 2D space. All the labels that were found in the selected data set.
var dists; var dists2d; var all_labels; var dist_list = []; var dist_list2d = []; var InitialFormDists = []; var InitialFormDists2D = []; var IterationsList = []; var ArrayWithCostsList = [];
// These are the dimensions for the Overview view and the Main view
var dim = document.getElementById('overviewRect').offsetWidth-2; var dimensions = document.getElementById('modtSNEcanvas').offsetWidth;
// Category = the name of the category if it exists. The user has to add an asterisk ("*") mark in order to let the program identify this feature as a label/category name.
// ColorsCategorical = the categorical colors (maximum value = 10).
var Category; var ColorsCategorical; var valCategExists = 0;
6 years ago
// This is for the removal of the distances cache.
var returnVal = false;
var ArrayWithCosts = []; var Iterations = [];
var VisiblePoints = [];
// This variable is for the kNN Bar Chart in order to store the first execution.
var inside = 0;
var format;
// Schema Investigation
// svgClick = Click a left mouse click in order to add a point.
// prevRightClick = When right click is pressed prevent any other action. Lock the current schema.
// if flagForSchema is false then send a message to the user that he/she has to: "Please, draw a schema first!");
var svgClick; var prevRightClick; var flagForSchema = false; var PreComputFlagCorrelation = true; var maxminTotal = [];
// Save the parameters for the current analysis, save the overallCost, and store in the "input" variable all the points and points2D.
var ParametersSet = []; var overallCost; var input;
// These parameters are initiated here for the annotations.
var ringNotes = []; var gAnnotationsAll = []; var AnnotationsAll = []; var draggable = [];
// These variables are set here in order to instatiate the very first Three.js scene.
var MainCanvas; var Child; var renderer; var fov = 21; var near = 10; var far = 7000; var camera; var scene;
// Initialize the Schema Investigation variables.
var Arrayx = []; var Arrayy = []; var XYDistId = []; var Arrayxy = []; var DistanceDrawing1D = []; var allTransformPoints = []; var p; var pFinal = []; var paths; var path; var ArrayLimit = [];
var minimum; var correlationResults = []; var correlationResultsFinal = []; var ArrayContainsDataFeaturesLimit = [];
// This function is executed when the factory button is pressed in order to bring the visualization in the initial state.
function FactoryReset(){
location.reload();
}
// Returns if a value is a string
function isString(value) {
return typeof value === 'string' || value instanceof String;
}
// Load a previously executed analysis function.
function loadAnalysis(){
document.getElementById('file-input').click();
document.getElementById("ExecuteBut").innerHTML = "Execute previous t-SNE analysis";
}
// This function is being used when the user selects to upload a new data set.
6 years ago
function getfile(file){
new_file = file; //uploaded data file
6 years ago
}
// Read the previous analysis, which the user wants to upload.
function fetchVal(callback) {
var file, fr;
file = input.files[0];
fr = new FileReader();
fr.onload = function (e) {
lines = e.target.result;
callback(lines);
};
fr.readAsText(file);
}
// Parse the analysis folder if requested or the csv file if we run a new execution.
6 years ago
var getData = function() {
PreComputFlagCorrelation = true;
let value;
if (typeof window.FileReader !== 'function') {
alert("The file API is not supported on this browser yet.");
}
// Check if the input already exists, which means if we loaded a previous analysis
input = document.getElementById("file-input");
if (!input) {
alert("Could not find the file input element.");
} else if (!input.files) {
alert("This browser does not seem to support the `files` property of file inputs.");
} else if (!input.files[0]) {
value = document.getElementById("param-dataset").value; // Get the value of the data set
format = value.split("."); //Get the format (e.g., [iris, csv])
if (format[value.split(".").length-1] == "csv") { // Parse the predefined files
parseData("./data/"+value);
} else{
parseData(new_file, init); // Parse new files
}
} else {
fetchVal(function(lines){
6 years ago
// Load an analysis and parse the previous points and parameters information.
AnalysisResults = JSON.parse(lines);
var length = (AnalysisResults.length - 9);
6 years ago
ParametersSet = AnalysisResults.slice(length+1, AnalysisResults.length+7)
value = ParametersSet[0];
if (!isNaN(parseInt(value))){
flagAnalysis = true;
length = (AnalysisResults.length - 11);
6 years ago
ParametersSet = AnalysisResults.slice(length+1, length+7);
6 years ago
value = ParametersSet[0];
} else {
flagAnalysis = false;
}
format = value.split("."); //Get the actual format
if (format[value.split(".").length-1] == "csv") {
// Check if the file is in the right folder, i.e., ./data/{file}
$.ajax({
type: 'HEAD',
url: './data/'+value,
complete: function (xhr){
if (xhr.status == 404){
alert(xhr.statusText); // Not found
alert("Please, place your new data set into the ./data folder of the implementation.");
}
}
});
parseData("./data/"+value);
}
});
}
6 years ago
}
// Parse the data set with the use of PapaParse.
6 years ago
function parseData(url) {
Papa.parse(url, {
download: true,
header: true,
dynamicTyping: true,
skipEmptyLines: true,
complete: function(results) {
results.data = results.data.filter(function (el) {
var counter = 0;
for(key in el) {
if(el.hasOwnProperty(key)) {
var value = el[key];
if(key === "id" || key === "Version" || typeof(value) !== 'number' || value === undefined){ // Add more limitations if needed in both areas. This is for the calculations so it needs more limitations!
delete el[key];
}else{
el[counter] = el[key];
delete el[key];
counter = counter + 1;
}
}
}
return el;
6 years ago
});
Papa.parse(url, {
6 years ago
download: true,
header: true,
dynamicTyping: true,
skipEmptyLines: true,
complete: function(data) {
doStuff(data.data.filter(function (el) {
var counter = 0;
for(key in el) {
if(el.hasOwnProperty(key)) {
var value = el[key];
if(key === "id" || key === "Version"){ // Add more limitations if needed in both areas. Key limitations here!
delete el[key];
}
}
}
return el;
}));
6 years ago
}
});
function doStuff(results_all){
// results_all variable is all the columns multiplied by all the rows.
// results.data variable is all the columns except strings, undefined values, or "Version" plus beta and cost values."
// results.meta.fields variable is all the features (columns) plus beta and cost strings.
init(results.data, results_all, results.meta.fields); // Call the init() function that starts everything!
6 years ago
}
}
});
6 years ago
}
function setContinue(){ // This function allows the continuation of the analysis because it decreases the layer value of the annotator.
d3v3.select("#SvgAnnotator").style("z-index", 1);
}
function setReset(){ // Reset only the filters which were applied into the data points.
6 years ago
VisiblePoints = [];
emptyPCP();
// Clear d3 SVGs
6 years ago
d3.selectAll("#correlation > *").remove();
d3.selectAll("#modtSNEcanvas_svg > *").remove();
d3.selectAll("#modtSNEcanvas_svg_Schema > *").remove();
d3.select("#PCP").selectAll('g').remove();
// Enable lasso interaction
lassoEnable();
// Disable Schema Investigation
flagForSchema = false;
// Empty all the arrays that are related to Schema Investigation
Arrayx = [];
Arrayy = [];
XYDistId = [];
Arrayxy = [];
DistanceDrawing1D = [];
allTransformPoints = [];
pFinal = [];
ArrayLimit = [];
correlationResults = [];
ArrayContainsDataFeaturesLimit = [];
prevRightClick = false;
//pcpInitialize();
// Reset the points into their initial state
for (var i=0; i < InitialStatePoints.length; i++){
InitialStatePoints[i].selected = true;
InitialStatePoints[i].pcp = false;
InitialStatePoints[i].schemaInv = false;
InitialStatePoints[i].DimON = null;
}
redraw(InitialStatePoints);
}
function setReInitialize(flag){
if(flag){
// Change between color-encoding and size-encoding mapped to 1/sigma and KLD.
if (document.getElementById('selectionLabel').innerHTML == 'Size-encoding'){
document.getElementById('selectionLabel').innerHTML = 'Color-encoding';
} else{
document.getElementById('selectionLabel').innerHTML = 'Size-encoding';
}
}
// Clear d3 SVGs
d3.selectAll("#correlation > *").remove();
d3.selectAll("#modtSNEcanvas_svg > *").remove();
d3.selectAll("#modtSNEcanvas_svg_Schema > *").remove();
d3.selectAll("#SvgAnnotator > *").remove();
// Clear d3 SVGs
d3.selectAll("#correlation > *").remove();
d3.selectAll("#modtSNEcanvas_svg > *").remove();
d3.selectAll("#modtSNEcanvas_svg_Schema > *").remove();
d3.selectAll("#SvgAnnotator > *").remove();
// Enable lasso interaction
lassoEnable();
// Disable Schema Investigation
flagForSchema = false;
// Empty all the arrays that are related to Schema Investigation
Arrayx = [];
Arrayy = [];
XYDistId = [];
Arrayxy = [];
DistanceDrawing1D = [];
allTransformPoints = [];
pFinal = [];
ArrayLimit = [];
correlationResults = [];
ArrayContainsDataFeaturesLimit = [];
prevRightClick = false;
// Reset the points into their initial state
6 years ago
for (var i=0; i < InitialStatePoints.length; i++){
InitialStatePoints[i].selected = true;
InitialStatePoints[i].pcp = false;
6 years ago
}
redraw(InitialStatePoints);
6 years ago
}
function setLayerProj(){ // The main Layer becomes the projection
VisiblePoints = [];
6 years ago
d3.select("#modtSNEcanvas").style("z-index", 2);
d3.select("#modtSNEcanvas_svg").style("z-index", 1);
d3.select("#modtSNEcanvas_svg_Schema").style("z-index", 1);
d3.select("#SvgAnnotator").style("z-index", 1);
6 years ago
}
function setLayerComp(){ // The main Layer becomes the comparison (pcp)
VisiblePoints = [];
d3.selectAll("#modtSNEcanvas_svg > *").remove();
d3.select("#modtSNEcanvas_svg").style("z-index", 2);
d3.select("#modtSNEcanvas_svg_Schema").style("z-index", 1);
d3.select("#modtSNEcanvas").style("z-index", 1);
d3.select("#SvgAnnotator").style("z-index", 1);
if (points.length){
lassoEnable();
}
redraw(points);
6 years ago
}
function setLayerSche(){ // The main Layer becomes the correlation (barchart)
VisiblePoints = [];
d3.select("#modtSNEcanvas_svg_Schema").style("z-index", 2);
d3.select("#modtSNEcanvas").style("z-index", 1);
d3.select("#modtSNEcanvas_svg").style("z-index", 1);
d3.select("#SvgAnnotator").style("z-index", 1);
for (var i=0; i < points.length; i++){
points[i].selected = true;
if (points[i].pcp == true){
points[i].pcp = false;
}
}
emptyPCP();
redraw(points);
click();
if (prevRightClick == true){
flagForSchema = true;
CalculateCorrel();
}
6 years ago
}
function lassoEnable(){ // The main Layer becomes the correlation (barchart)
6 years ago
var interactionSvg = d3.select("#modtSNEcanvas_svg")
.attr("width", dimensions)
.attr("height", dimensions)
.style('position', 'absolute')
.style('top', 0)
.style('left', 0);
var lassoInstance = lasso()
.on('end', handleLassoEnd) // Lasso ending point of the interaction
.on('start', handleLassoStart); // Lasso starting point of the interaction
interactionSvg.call(lassoInstance);
}
6 years ago
function deleteAnnotations(){
AnnotationsAll = [];
ringNotes = [];
d3.selectAll("#SvgAnnotator > *").remove();
}
function BringBackAnnotations(){
d3.select("#SvgAnnotator").style("z-index", 3);
}
function setAnnotator(){ // Set a new annotation on top of the main visualization.
6 years ago
6 years ago
vw2 = dimensions;
vh2 = dimensions;
var textarea = document.getElementById("comment").value;
6 years ago
d3.select("#SvgAnnotator").style("z-index", 3);
var annotations = [ // Initialize the draggable ringNote.
{
"cx": 232,
"cy": 123,
"r": 103,
"text": textarea,
"textOffset": [
114,
88
]
}
];
var ringNote = d3v3.ringNote() // Make it draggable.
.draggable(true);
var svgAnnotator = d3v3.select("#SvgAnnotator")
.attr("width", vw2)
.attr("height", vh2)
.style("z-index", 3);
var gAnnotations = svgAnnotator.append("g")
.attr("class", "annotations")
.call(ringNote, annotations);
// Styling individual annotations based on bound data
gAnnotations.selectAll(".annotation circle")
.classed("shaded", function(d) { return d.shaded; });
ringNotes.push(ringNote); // Push all the ringNote and annotations and enable draggable property.
6 years ago
gAnnotationsAll.push(gAnnotations);
AnnotationsAll.push(annotations);
draggable.push(true);
document.getElementById("comment").value = '';
$('#comment').removeAttr('placeholder');
6 years ago
}
// Hide or show the controls
6 years ago
d3.select("#controls")
.on("change", function() {
if(ringNotes[0]){ // If at least one ringNote exists, then enable or disable the draggable and radius changing controllers.
6 years ago
for (var i = 0; i < ringNotes.length; i++){
ringNotes[i].draggable(draggable[i] = !draggable[i]);
gAnnotationsAll[i]
.call(ringNotes[i], AnnotationsAll[i])
.selectAll(".annotation circle")
.classed("shaded", function(d) { return d.shaded; });
}
} else{
// Get the checkbox.
var checkBox = document.getElementById("controls");
// Unchecked!
checkBox.checked = false;
// Print a message to the user.
6 years ago
alert("Cannot hide the annotators' controls because, currently, there are no annotations into the visual representation.")
}
});
6 years ago
6 years ago
$(document).ready(function() {
//set initial state.
$('#downloadDists').change(function() {
if(!this.checked) {
returnVal = confirm("Are you sure that you want to store the points and the parameters without the distances?");
$(this).prop("checked", !returnVal);
}
});
});
// Three.js render loop for the very first scene.
function animate() {
requestAnimationFrame(animate);
renderer.render(scene, camera);
}
6 years ago
function MainVisual(){
MainCanvas = document.getElementById('modtSNEcanvas');
Child = document.getElementById('modtSNEDiv');
// Add main canvas
renderer = new THREE.WebGLRenderer({ canvas: MainCanvas });
renderer.setSize(dimensions, dimensions);
Child.append(renderer.domElement);
// Add a new empty (white) scene.
scene = new THREE.Scene();
scene.background = new THREE.Color(0xffffff);
// Set up camera.
camera = new THREE.PerspectiveCamera(
fov,
dimensions / dimensions,
near,
far
);
// Animate the scene.
animate();
if (points.length > 0){
BetatSNE(points);
}
6 years ago
}
// The following function executes exactly after the data is successfully loaded. New EXECUTION!
// results_all variable is all the columns multiplied by all the rows.
// data variable is all the columns except strings, undefined values, or "Version" plus beta and cost values."
// fields variable is all the features (columns) plus beta and cost strings.
function init(data, results_all, fields) {
$('#comment').attr('placeholder', "Please, provide your comment.");
ArrayWithCosts = [];
Iterations = [];
VisiblePoints = [];
points = [];
// Remove all previously drawn SVGs
d3.selectAll("#correlation > *").remove();
d3.selectAll("#modtSNEcanvas_svg > *").remove();
d3.selectAll("#modtSNEcanvas_svg_Schema > *").remove();
d3.selectAll("#SvgAnnotator > *").remove();
d3.selectAll("#sheparheat > *").remove();
d3.selectAll("#overviewRect > *").remove();
d3.selectAll("#knnBarChart > *").remove();
d3.selectAll("#costHist > *").remove();
d3.select("#PCP").selectAll('g').remove();
MainVisual();
//pcpInitialize();
d3.select("#hider").style("z-index", 2);
d3.select("#knnBarChart").style("z-index", 1);
d3.select("#hider2").style("z-index", 2);
d3.select("#PlotCost").style("z-index", 1);
// Clear the previously drawn main visualization canvas.
scene = new THREE.Scene();
scene.background = new THREE.Color(0xffffff);
// Clear all the legends that were drawn.
d3.selectAll("#legend1 > *").remove();
d3.selectAll("#legend2 > *").remove();
d3.selectAll("#legend3 > *").remove();
d3.selectAll("#legend4 > *").remove();
$("#datasetDetails").html('(Unknown Number of Dimensions and Instances)');
$("#CategoryName").html('No Classification');
$("#knnBarChartDetails").html('(Number of Selected Points: 0/0)');
// Enable again the lasso interaction.
lassoEnable();
emptyPCP();
// Empty all the Schema Investigation arrays.
Arrayx = [];
Arrayy = [];
XYDistId = [];
Arrayxy = [];
DistanceDrawing1D = [];
allTransformPoints = [];
pFinal = [];
ArrayLimit = [];
correlationResults = [];
ArrayContainsDataFeaturesLimit = [];
prevRightClick = false;
// Step counter set to 0
6 years ago
step_counter = 0;
// Get the new parameters from the t-SNE parameters panel.
6 years ago
max_counter = document.getElementById("param-maxiter-value").value;
opt = {};
var fields;
fields.push("beta");
fields.push("cost");
opt.epsilon = document.getElementById("param-learningrate-value").value; // Epsilon is learning rate (10 = default)
opt.perplexity = document.getElementById("param-perplexity-value").value; // Roughly how many neighbors each point influences (30 = default)
6 years ago
// Put the input variables into more properly named variables and store them.
6 years ago
final_dataset = data;
dataFeatures = results_all;
6 years ago
if (flagAnalysis){
} else{
tsne = new tsnejs.tSNE(opt); // Set new t-SNE with specific perplexity.
dists = [];
dists = computeDistances(data, document.getElementById("param-distance").value, document.getElementById("param-transform").value); // Compute the distances in the high-dimensional space.
6 years ago
InitialFormDists.push(dists);
tsne.initDataDist(dists); // Init t-SNE with dists.
for(var i = 0; i < final_dataset.length; i++) {final_dataset[i].beta = tsne.beta[i]; beta_all[i] = tsne.beta[i];} // Calculate beta and bring it back from the t-SNE algorithm.
}
var object;
all_labels = [];
// Get the dimension that contains an asterisk mark ("*"). This is our classification label.
dataFeatures.filter(function(obj) {
var temp = [];
temp.push(Object.keys(obj));
for (var object in temp[0]){
if(temp[0][object].indexOf("*") != -1){
Category = temp[0][object];
return Category;
}
}
});
ArrayContainsDataFeaturesCleared = [];
ArrayContainsDataFeaturesClearedwithoutNull = [];
ArrayContainsDataFeaturesClearedwithoutNullKeys = [];
for (let k = 0; k < dataFeatures.length; k++){
object = [];
object2 = [];
object3 = [];
for (let j = 0; j < Object.keys(dataFeatures[k]).length; j++){
if(!isString((Object.values(dataFeatures[k])[j])) && (Object.keys(dataFeatures[k])[j] != Category)){ // Only numbers and not the classification labels.
object.push(Object.values(dataFeatures[k])[j]);
object2.push(Object.values(dataFeatures[k])[j]);
object3.push(Object.keys(dataFeatures[k])[j]);
} else {
object.push(null);
}
}
ArrayContainsDataFeaturesCleared.push(object.concat(k)); // The ArrayContainsDataFeaturesCleared contains only numbers without the categorization parameter even if it is a number.
ArrayContainsDataFeaturesClearedwithoutNull.push(object2);
ArrayContainsDataFeaturesClearedwithoutNullKeys.push(object3);
}
valCategExists = 0;
for (var i=0; i<Object.keys(dataFeatures[0]).length; i++){
if (Object.keys(dataFeatures[0])[i] == Category){
valCategExists = valCategExists + 1;
}
}
for(var i = 0; i < dataFeatures.length; i++) {
if (dataFeatures[i][Category] != "" || dataFeatures[i][Category] != "undefined"){ // If a categorization label exist then add it into all_labels variable.
if (format[0] == "diabetes"){
if (dataFeatures[i][Category] == 1){
all_labels[i] = "Positive";
} else{
all_labels[i] = "Negative";
}
} else{
all_labels[i] = dataFeatures[i][Category];
}
6 years ago
}
}
if (typeof window.FileReader !== 'function') {
alert("The file API isn't supported on this browser yet.");
}
// During the initialization check if we loaded a previous analysis.
input = document.getElementById("file-input");
if (!input) {
alert("Um, couldn't find the fileinput element.");
} else if (!input.files) {
alert("This browser doesn't seem to support the `files` property of file inputs.");
} else if (!input.files[0]) { // If we execute a new analysis continue running with a step = 0.
6 years ago
AnalysisResults = [];
runner = setInterval(step, 0);
} else {
fetchVal(function(lines){ // If we uploaded a previous analysis file then parse the .txt file with JSON.parse.
6 years ago
AnalysisResults = JSON.parse(lines);
updateEmbedding(AnalysisResults);
});
}
6 years ago
}
// Initialize distance matrix
6 years ago
function initDist(data) {
6 years ago
var dist = new Array(data.length);
for(var i = 0; i < data.length; i++) {
dist[i] = new Array(data.length);
}
for(var i = 0; i < data.length; i++) {
for(var j = 0; j < data.length; j++) {
dist[i][j] = 0;
}
}
return dist;
6 years ago
}
// Calculate euclidean distance
6 years ago
function euclideanDist(data) {
dist = initDist(data);
for(var i = 0; i < data.length; i++) {
for(var j = i + 1; j < data.length; j++) {
for(var d in data[0]) {
if(d != Category) {
dist[i][j] += Math.pow(data[i][d] - data[j][d], 2);
6 years ago
}
}
dist[i][j] = Math.sqrt(dist[i][j]);
dist[j][i] = dist[i][j];
6 years ago
}
}
return dist;
6 years ago
}
// Calculate jaccard dist
6 years ago
function jaccardDist(data) {
dist = initDist(data);
for(var i = 0; i < data.length; i++) {
for(var j = i + 1; j < data.length; j++) {
for(var d in data[0]) {
if(d != Category) {
x = data[i][d];
y = data[j][d];
if(x == y) {
dist[i][j] += 1;
}
6 years ago
}
}
dist[j][i] = dist[i][j];
6 years ago
}
}
return dist;
6 years ago
}
// Normalize distances to prevent numerical issues.
6 years ago
function normDist(data, dist) {
var max_dist = 0;
for(var i = 0; i < data.length; i++) {
for(var j = i + 1; j < data.length; j++) {
if(dist[i][j] > max_dist) max_dist = dist[i][j];
6 years ago
}
}
for(var i = 0; i < data.length; i++) {
for(var j = 0; j < data.length; j++) {
dist[i][j] /= max_dist;
6 years ago
}
}
return dist;
6 years ago
}
// No tranformation
6 years ago
function noTrans(data) {
return data;
6 years ago
}
// Log tranformation
6 years ago
function logTrans(data) {
for(var i = 0; i < data.length; i++) {
for(var d in data[0]) {
if(d != Category) {
X = data[i][d];
data[i][d] = Math.log10(X + 1);
6 years ago
}
}
}
return data;
6 years ago
}
// asinh tranformation
6 years ago
function asinhTrans(data) {
for(var i = 0; i < data.length; i++) {
for(var d in data[0]) {
if(d != Category) {
X = data[i][d];
data[i][d] = Math.log(X + Math.sqrt(X * X + 1));
6 years ago
}
}
}
return data;
6 years ago
}
// Binarize tranformation
6 years ago
function binTrans(data) {
for(var i = 0; i < data.length; i++) {
for(var d in data[0]) {
if(d != Category) {
X = data[i][d];
if(X > 0) data[i][d] = 1;
if(X < 0) data[i][d] = 0;
6 years ago
}
}
}
return data;
6 years ago
}
// Compute the distances by applying the chosen distance functions and transformation functions.
6 years ago
function computeDistances(data, distFunc, transFunc) {
dist = eval(distFunc)(eval(transFunc)(data));
dist = normDist(data, dist);
return dist;
6 years ago
}
function OverallCostLineChart(){
d3.select("#hider2").style("z-index", -1);
d3.select("#PlotCost").style("z-index", 2);
var trace1 = {
x: Iterations,
y: ArrayWithCosts,
mode: 'lines',
connectgaps: true,
marker: {
color: "rgb(0,128,0)",
line: {
color: "rgb(0, 0, 0)",
width: 0.5
}
}
}
var data = [trace1];
var layout = {
showlegend: false,
width: 215,
height: 80,
xaxis:{title: 'Iterations',
titlefont: {
size: 12,
color: 'black'
}},
yaxis:{title: 'Ov. Cost',
titlefont: {
size: 12,
color: 'black'
}},
margin: {
l: 40,
r: 15,
b: 26,
t: 5
},
};
Plotly.newPlot('PlotCost', data, layout,{displayModeBar:false}, {staticPlot: true});
}
// Function that updates embedding
6 years ago
function updateEmbedding(AnalysisResults) {
inside = 0;
points = [];
points2d = [];
6 years ago
if (AnalysisResults == ""){ // Check if the embedding does not need to load because we had a previous analysis uploaded.
var Y = tsne.getSolution(); // We receive the solution from the t-SNE
6 years ago
var xExt = d3.extent(Y, d => d[0]);
var yExt = d3.extent(Y, d => d[1]);
var maxExt = [Math.min(xExt[0], yExt[0]), Math.max(xExt[1], yExt[1])];
var x = d3.scaleLinear() // Scale the x points into the canvas width/height
6 years ago
.domain(maxExt)
.range([10, +dimensions-10]);
var y = d3.scaleLinear() // Scale the y points into the canvas width/height
6 years ago
.domain(maxExt)
.range([10, +dimensions-10]);
for(var i = 0; i < final_dataset.length; i++) {
x_position[i] = x(Y[i][0]); // x points position
y_position[i] = y(Y[i][1]); // y points position
points[i] = {id: i, x: x_position[i], y: y_position[i], beta: final_dataset[i].beta, cost: final_dataset[i].cost, selected: true, schemaInv: false, DimON: null, pcp: false}; // Create the points and points2D (2 dimensions)
points2d[i] = {x: x_position[i], y: y_position[i]}; // and add everything that we know about the points (e.g., selected = true, pcp = false in the beginning and so on)
points[i] = extend(points[i], ArrayContainsDataFeaturesCleared[i]);
points[i] = extend(points[i], dataFeatures[i]);
}
} else{
6 years ago
if (flagAnalysis){
var length = (AnalysisResults.length - dataFeatures.length*2 - 9 - 2);
6 years ago
points = AnalysisResults.slice(0, dataFeatures.length); // Load the points from the previous analysis
points2d = AnalysisResults.slice(dataFeatures.length, 2*dataFeatures.length); // Load the 2D points
dist_list = AnalysisResults.slice(2*dataFeatures.length, 2*dataFeatures.length+length/2); // Load the parameters and set the necessary values to the visualization of those parameters.
dist_list2d = AnalysisResults.slice(2*dataFeatures.length+length/2, 2*dataFeatures.length+length); // Load the parameters and set the necessary values to the visualization of those parameters.
overallCost = AnalysisResults.slice(2*dataFeatures.length+length, 2*dataFeatures.length+length+1); // Load the overall cost
ParametersSet = AnalysisResults.slice(2*dataFeatures.length+length+1, 2*dataFeatures.length+length+7); // Load the parameters and set the necessary values to the visualization of those parameters.
dists = AnalysisResults.slice(2*dataFeatures.length+length+7, 2*dataFeatures.length+length+8)[0]; // Load the parameters and set the necessary values to the visualization of those parameters.
dists2d = AnalysisResults.slice(2*dataFeatures.length+length+8, 2*dataFeatures.length+length+9)[0]; // Load the parameters and set the necessary values to the visualization of those parameters.
IterationsList = AnalysisResults.slice(2*dataFeatures.length+length+9, 2*dataFeatures.length+length+10);
ArrayWithCostsList = AnalysisResults.slice(2*dataFeatures.length+length+10, 2*dataFeatures.length+length+11);
Iterations = IterationsList[0];
ArrayWithCosts = ArrayWithCostsList[0];
$("#cost").html("(Number of Iteration: " + ParametersSet[3] + ", Overall Cost: " + overallCost + ")");
6 years ago
$('#param-perplexity-value').text(ParametersSet[1]);
$('#param-learningrate-value').text(ParametersSet[2]);
$('#param-maxiter-value').text(ParametersSet[3]);
document.getElementById("param-distance").value = ParametersSet[4];
document.getElementById("param-transform").value = ParametersSet[5];
} else{
var length = (AnalysisResults.length - 9) / 2;
6 years ago
points = AnalysisResults.slice(0, length); // Load the points from the previous analysis
points2d = AnalysisResults.slice(length, 2*length); // Load the 2D points
overallCost = AnalysisResults.slice(2*length, 2*length+1); // Load the overall cost
ParametersSet = AnalysisResults.slice(2*length+1, 2*length+7); // Load the parameters and set the necessary values to the visualization of those parameters.
IterationsList = AnalysisResults.slice(2*length+7, 2*length+8);
ArrayWithCostsList = AnalysisResults.slice(2*length+8, 2*length+9);
Iterations = IterationsList[0];
ArrayWithCosts = ArrayWithCostsList[0];
$("#cost").html("(Number of Iteration: " + ParametersSet[3] + ", Overall Cost: " + overallCost + ")");
$('#param-perplexity-value').text(ParametersSet[1]);
$('#param-learningrate-value').text(ParametersSet[2]);
$('#param-maxiter-value').text(ParametersSet[3]);
document.getElementById("param-distance").value = ParametersSet[4];
document.getElementById("param-transform").value = ParametersSet[5];
6 years ago
}
$("#data").html(ParametersSet[0]); // Print on the screen the classification label.
$("#param-dataset").html('-');
}
OverallCostLineChart(); // Cost plot
InitialStatePoints = points; // Initial Points will not be modified!
function extend(obj, src) { // Call this function to add additional information to the points such as dataFeatures and Array which contains the data features without strings.
for (var key in src) {
if (src.hasOwnProperty(key)) obj[key] = src[key];
}
return obj; // Return the different forms of the same data that we eventually store on those points.
}
// Run all the main functions (Shepard Heatmap, Overview t-SNE, and Beta/Cost t-SNE) Beta = 1/sigma, Cost = KLD(Q||P).
OverviewtSNE(points);
6 years ago
ShepardHeatMap();
BetatSNE(points);
CostHistogram(points);
6 years ago
}
function ShepardHeatMap () {
// Remove any previous shepard heatmaps.
d3.selectAll("#sheparheat > *").remove();
// Set the margin of the shepard heatmap
6 years ago
var margin = { top: 35, right: 15, bottom: 15, left: 35 },
dim2 = Math.min(parseInt(d3.select("#sheparheat").style("width")), parseInt(d3.select("#sheparheat").style("height")))
width = dim2- margin.left - margin.right,
height = dim2 - margin.top - margin.bottom,
buckets = 10, // Set the number of buckets.
6 years ago
gridSize = width / buckets,
dim_1 = ["0.0", "0.2", "0.4", "0.6", "0.8", "1.0"], // Set the dimensions for the output and input distances.
dim_2 = ["0.0", "0.4", "0.6", "1.0"] //I.e., the axes.
// Create the svg for the shepard heatmap
var svg = d3.select("#sheparheat")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
6 years ago
if (flagAnalysis){
} else{
dists2d = [];
dist_list2d = []; // Distances lists empty
dist_list = [];
// Calculate the 2D distances.
dists2d = computeDistances(points2d, document.getElementById("param-distance").value, document.getElementById("param-transform").value);
InitialFormDists2D.push(dists2d);
for (var j=0; j<dists2d.length; j++){ // Fill them with the distances 2D and high-dimensional, respectively.
dists2d[j] = dists2d[j].slice(0,j);
dists[j] = dists[j].slice(0,j);
}
for (var i=0; i<dists2d.length; i++){
for (var j=0; j<dists2d.length; j++){
let singleObj = {};
singleObj = dists2d[i][j];
dist_list2d.push(singleObj);
let singleObj2 = {};
singleObj2 = dists[i][j];
dist_list.push(singleObj2);
}
}
6 years ago
dist_list2d = dist_list2d.sort(); // Sort the lists that contain the distances.
dist_list = dist_list.sort();
dist_list2d = dist_list2d.filter(function(val){ return val!==undefined; }); // Filter all undefined values
dist_list = dist_list.filter(function(val){ return val!==undefined; });
6 years ago
}
6 years ago
6 years ago
d3.tsv("./modules/heat.tsv").then(function(data) { // Run the heat.tsv file and get the data from there. This file contains and ordering of the dimensions 1 and dimensions 2.
// For example: dim1 = 1 and the dim 2 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10... and then dim2 = 2 and the dim2=... (same)
data.forEach(function(d) { // Get the data from the heat.tsv.
d.dim1 = +d.dim1;
d.dim2 = +d.dim2;
d.value = 0;
});
6 years ago
var counter = 0;
var counnum = [];
var temp_loop = 0;
for (var l=0; l<100; l++) {counnum[l] = 0};
var dist_list_all = [];
dist_list_all =[dist_list, dist_list2d]; // Combine the two lists.
for (var l=0; l<100; l++){ // Here we calculate the shepard diagram and then we add the colors! -> shepard heatmap
for (k=0; k<dist_list_all[0].length;k++){
if (l==0){
if (dist_list_all[0][k] <= data[l].dim1/10 && dist_list_all[1][k] <= data[l].dim2/10){
counnum[l] = counnum[l] + 1;
}
}else if (l <= 10){
if (dist_list_all[0][k] < data[l].dim1/10 && dist_list_all[1][k] < data[l].dim2/10 && dist_list_all[1][k] > data[l-1].dim2/10){
counnum[l] = counnum[l] + 1;
}
}else if (l % 10 == 1){
temp_loop = data[l].dim1-1;
if (dist_list_all[0][k] < data[l].dim1/10 && dist_list_all[1][k] < data[l].dim2/10 && dist_list_all[0][k] > temp_loop/10){
counnum[l] = counnum[l] + 1;
}
}else{
if (dist_list_all[0][k] <= data[l].dim1/10 && dist_list_all[1][k] <= data[l].dim2/10 && dist_list_all[1][k] >= data[l-1].dim2/10 && dist_list_all[0][k] > temp_loop/10){
counnum[l] = counnum[l] + 1;
}
6 years ago
}
}
counter = counter + counnum[l];
6 years ago
}
for (var m=0; m<data.length; m++)
{
data[m].value = counnum[m]; // Count the number of data values.
}
6 years ago
// Color scale for minimum and maximum values for the shepard heatmap.
var maxNum = Math.round(d3.max(data,function(d){ return d.value; }));
var minNum = Math.round(d3.min(data,function(d){ return d.value; }));
var colors = ["#f7fbff","#deebf7","#c6dbef","#9ecae1","#6baed6","#4292c6","#2171b5","#08519c","#08306b"];
let calcStep = (maxNum-minNum)/colors.length;
var colorScale = d3.scaleLinear()
.domain(d3.range(0, maxNum+calcStep,calcStep))
.range(colors);
var tip = d3.tip() // This is for the tooltip that is being visible when you hover over a square on the shepard heatmap.
.attr('class', 'd3-tip')
.style("visibility","visible")
.offset([-10, 36.5])
.html(function(d) {
return "Value: <span style='color:red'>" + Math.round(d.value);
});
tip(svg.append("g"));
var dim1Labels = svg.selectAll(".dim1Label") // Label
.data(dim_1)
.enter().append("text")
.text(function (d) { return d; })
.attr("x", 0)
.attr("y", function (d, i) { return i * gridSize * 2; })
.style("text-anchor", "end")
.style("font-size", "10px")
.attr("transform", "translate(-6," + gridSize / 4 + ")")
.attr("class","mono");
var tooltip2 = d3.select("body")
.append("div")
.style("position", "absolute")
.style("z-index", "12")
.style("text-align","center")
.style("width","300px")
.style("height","50px")
.style("padding","2px")
.style("background","lightsteelblue")
.style("border-radius","8px")
.style("border","0px")
.style("pointer-events","centnoneer")
.style("color","black")
.style("visibility", "hidden")
.text("Hint: if values are closer to N-Dim. distances, then the visualization is too compressed.");
var title = svg.append("text") // Title = Input Distance
.attr("class", "mono")
.attr("x", -(gridSize * 8))
.attr("y", -26)
.style("font-size", "12px")
.attr("transform", "rotate(-90)")
.on("mouseover", function(){return tooltip2.style("visibility", "visible");})
.on("mousemove", function(){return tooltip2.style("top", (event.pageY-10)+"px").style("left",(event.pageX+10)+"px");})
.on("mouseout", function(){return tooltip2.style("visibility", "hidden");})
.text("N-Dimensional Distances");
var tooltip1 = d3.select("body")
.append("div")
.style("position", "absolute")
.style("z-index", "12")
.style("text-align","center")
.style("width","300px")
.style("height","50px")
.style("padding","2px")
.style("background","lightsteelblue")
.style("border-radius","8px")
.style("border","0px")
.style("pointer-events","centnoneer")
.style("color","black")
.style("visibility", "hidden")
.text("Hint: if values are closer to 2-Dim. distances, then the visualization is too spread out.");
var title = svg.append("text") // Title = Output Distance
.attr("class", "mono")
.attr("x", gridSize * 2 )
.attr("y", -20)
.on("mouseover", function(){return tooltip1.style("visibility", "visible");})
.on("mousemove", function(){return tooltip1.style("top", (event.pageY-10)+"px").style("left",(event.pageX+10)+"px");})
.on("mouseout", function(){return tooltip1.style("visibility", "hidden");})
.style("font-size", "12px")
.text("2-Dimensional Distances");
var dim2Labels = svg.selectAll(".dim2Label") // Label
.data(dim_2)
.enter().append("text")
.text(function(d) { return d; })
.attr("x", function(d, i) { return i * gridSize * 3.2; })
.attr("y", 0)
.style("text-anchor", "middle")
.style("font-size", "10px")
.attr("transform", "translate(" + gridSize / 4 + ", -6)")
.attr("class","mono");
var heatMap = svg.selectAll(".dim2") // Combine the two dimensions and plot the shepard heatmap
.data(data)
.enter().append("rect")
.attr("x", function(d) { return (d.dim2 - 1) * gridSize; })
.attr("y", function(d) { return (d.dim1 - 1) * gridSize; })
.attr("rx", 0.4)
.attr("ry", 0.4)
.attr("class", "dim2 bordered")
.attr("width", gridSize-2)
.attr("height", gridSize-2)
.style("fill", colors[0])
.attr("class", "square")
.on('mouseover', tip.show)
.on('mouseout', tip.hide);
heatMap.transition()
.style("fill", function(d) { return colorScale(d.value); });
heatMap.append("title").text(function(d) { return d.value; });
var heatleg = d3.select("#legend3"); // Legend3 = the legend of the shepard heatmap
heatleg.append("g")
.attr("class", "legendLinear")
.attr("transform", "translate(0,14)");
var legend = d3.legendColor() // Legend color and title!
.labelFormat(d3.format(",.0f"))
.cells(9)
.title("Number of Points")
.scale(colorScale);
6 years ago
heatleg.select(".legendLinear")
.call(legend);
});
6 years ago
}
// perform single t-SNE iteration
function step() {
step_counter++;
if(step_counter <= max_counter) {
cost = tsne.step();
cost_each = cost[1];
for(var i = 0; i < final_dataset.length; i++) final_dataset[i].cost = cost_each[i];
$("#cost").html("(Number of Iteration: " + tsne.iter + ", Overall Cost: " + cost[0].toFixed(3) + ")");
ArrayWithCosts.push(cost[0].toFixed(3));
Iterations.push(step_counter);
}
else {
clearInterval(runner);
}
if (step_counter == max_counter){
ArrayWithCostsList.push(ArrayWithCosts);
IterationsList.push(Iterations);
6 years ago
updateEmbedding(AnalysisResults);
}
6 years ago
}
function resize(canvas) { // This is being used in the WebGL t-SNE for the overview canvas
6 years ago
// Lookup the size the browser is displaying the canvas.
var displayWidth = canvas.clientWidth;
var displayHeight = canvas.clientHeight;
// Check if the canvas is not the same size.
if (canvas.width != displayWidth || canvas.height != displayHeight) {
6 years ago
// Make the canvas the same size
canvas.width = displayWidth;
canvas.height = displayHeight;
}
6 years ago
}
function OverviewtSNE(points){ // The overview t-SNE function
if (format[0] == "diabetes"){
for(var i = 0; i < dataFeatures.length; i++) {
if (dataFeatures[i][Category] != "" || dataFeatures[i][Category] != "undefined"){ // If a categorization label exist then add it into all_labels variable.
if (dataFeatures[i][Category] == 1){
all_labels[i] = "Positive";
} else{
all_labels[i] = "Negative";
}
}
}
}
$("#datasetDetails").html("(Number of Dimensions: " + (Object.keys(dataFeatures[0]).length - valCategExists) + ", Number of Instances: " + final_dataset.length + ")"); // Print on the screen the number of features and instances of the data set, which is being analyzed.
if (Category == undefined){
$("#CategoryName").html("Classification label: No category"); // Print on the screen the classification label.
} else {
$("#CategoryName").html("Classification label: "+Category.replace('*','')); // Print on the screen the classification label.
}
//Make an SVG Container
d3.selectAll("#overviewRect > *").remove();
if (format[0] == "diabetes"){
ColorsCategorical = ['#fb9a99','#a6cee3','#b2df8a','#33a02c','#1f78b4','#e31a1c','#fdbf6f','#ff7f00','#cab2d6','#6a3d9a']; // Colors for the labels/categories if there are some!
} else{
ColorsCategorical = ['#a6cee3','#fb9a99','#b2df8a','#33a02c','#1f78b4','#e31a1c','#fdbf6f','#ff7f00','#cab2d6','#6a3d9a']; // Colors for the labels/categories if there are some!
}
6 years ago
if (all_labels[0] == undefined){
var colorScale = d3.scaleOrdinal().domain(["No Category"]).range(["#00000"]); // If no category then grascale.
$("#CategoryName").html('');
} else{
var colorScale = d3.scaleOrdinal().domain(all_labels).range(ColorsCategorical); // We use the color scale here!
6 years ago
}
d3.select("#legend2").select("svg").remove(); // Create the legend2 which is for the overview panel.
var svg = d3.select("#legend2").append("svg");
6 years ago
svg.append("g")
.attr("class", "legendOrdinal")
.attr("transform", "translate(8,5)");
6 years ago
var legendOrdinal = d3.legendColor()
.shape("path", d3.legendSize(100))
.shapePadding(15)
.scale(colorScale);
6 years ago
svg.select(".legendOrdinal")
.call(legendOrdinal);
// CREATE THE SVG
var svg = d3.select('#overviewRect').append('svg')
.attr('width', dim)
.attr('height', dim)
.append('g');
// CREATE THE GROUP
var theGroup = svg.append('g')
.attr('class', 'the-group');
// CREATE ITS BOUNDING RECT
var theRect = theGroup.append('rect')
.attr('class', 'bounding-rect');
function updateRect() {
// SELECT ALL CHILD NODES EXCEPT THE BOUNDING RECT
var AllSelectedChildNodes = [];
var allChildNodes = svg.selectAll(':not(.bounding-rect)')._groups[0]
for (var i = 0; i<VisiblePoints.length; i++){
for (var j = 1; j<allChildNodes.length; j++){
if (VisiblePoints[i] == allChildNodes[j].id){
AllSelectedChildNodes.push(allChildNodes[j])
}
}
6 years ago
}
// `x` AND `y` ARE SIMPLY THE MIN VALUES OF ALL CHILD BBOXES
var x = d3.min(AllSelectedChildNodes, function(d) {return d.getBBox().x;}),
y = d3.min(AllSelectedChildNodes, function(d) {return d.getBBox().y;}),
// WIDTH AND HEIGHT REQUIRE A BIT OF CALCULATION
width = d3.max(AllSelectedChildNodes, function(d) {
var bb = d.getBBox();
return (bb.x + bb.width) - x;
}),
height = d3.max(AllSelectedChildNodes, function(d) {
var bb = d.getBBox();
return (bb.y + bb.height) - y;
});
// UPDATE THE ATTRS FOR THE RECT
theRect.transition().duration(1000)
.attr('x', x)
.attr('y', y)
.attr('width', width)
.attr('height', height);
6 years ago
}
for (var i = 0; i < points.length; i++) {
svg.selectAll("circle")
.data(points)
.enter().append("circle")
.attr("fill",function(d){
if (!d.selected){
return "#D3D3D3";
} else{
if (all_labels[0] != undefined){
if (format[0] == "diabetes"){
if (d[Category] == 1){
return colorScale("Positive");
} else{
return colorScale("Negative");
}
} else{
return colorScale(d[Category]); // Normal color for the points that are selected
}
} else {
return "#00000";
}
}
})
.attr("id", function(d){return d.id;})
.attr("r", 2)
.attr("cx", function(d){return ((d.x/dimensions)*dim);})
.attr("cy", function(d){return ((d.y/dimensions)*dim);});
}
updateRect();
6 years ago
}
6 years ago
function redraw(repoints){ // On redraw manipulate the points of the main and overview visualizations.
OverviewtSNE(repoints);
BetatSNE(repoints); // Redraw the points!
6 years ago
}
function CostHistogram(points){
var frequency = [];
var frequency2 = [];
points = points.sort(function(a, b) { // Sort them according to importance (darker color!)
return a.id - b.id;
})
var max2 = (d3.max(points,function(d){ return d.beta; }));
var min2 = (d3.min(points,function(d){ return d.beta; }));
for (var i=0; i<points.length; i++){
frequency2.push((points[i].beta-min2)/(max2-min2));
}
var trace1 = {
x: frequency2,
name: 'Density',
autobinx: false,
marker: {
color: "rgb(0,128,0)",
line: {
color: "rgb(0, 0, 0)",
width: 1
}
},
opacity: 0.5,
type: "histogram",
xbins: {
end: 1.01,
size: 0.01,
start: 0
}
};
var max = (d3.max(points,function(d){ return d.cost; }));
var min = (d3.min(points,function(d){ return d.cost; }));
for (var i=0; i<points.length; i++){
frequency.push((points[i].cost-min)/(max-min));
}
var trace2 = {
x: frequency,
name: 'Remaining Cost',
autobinx: false,
histnorm: "count",
marker: {
color: "rgb(128,0,0)",
line: {
color: "rgb(0, 0, 0)",
width: 1
}
},
opacity: 0.5,
type: "histogram",
xbins: {
end: 1.01,
size: 0.01,
start: 0
}
};
var data = [trace1, trace2];
var layout = {
barmode: "overlay",
bargroupgap: points.length,
autosize: false,
width: 560,
height: 250,
margin: {
l: 50,
r: 20,
b: 40,
t: 10,
pad: 4
},
xaxis:{range: [0,1.01],title: 'Normalized bins from min to max values.',
titlefont: {
size: 14,
color: 'black'
}},
yaxis:{title: 'Number of Points (log)',
type: "log",
titlefont: {
size: 14,
color: 'black'
}}
};
Plotly.newPlot('costHist', data, layout, {displayModeBar:false}, {staticPlot: true});
}
function handleLassoEnd(lassoPolygon) { // This is for the lasso interaction
var countLassoFalse = 0;
KNNEnabled = true;
for (var i = 0 ; i < points.length ; i ++) {
x = points[i].x;
y = points[i].y;
if (d3.polygonContains(lassoPolygon, [x, y])){
points[i].selected = true;
} else{
countLassoFalse = countLassoFalse + 1;
points[i].selected = false;
}
6 years ago
}
if (countLassoFalse == points.length){
for (var i = 0 ; i < points.length ; i ++) {
points[i].selected = true;
}
}
if (points.length - countLassoFalse <= 10 && points.length - countLassoFalse != 0){
6 years ago
for (var i = 0 ; i < points.length ; i ++) {
if (points[i].selected == true){
points[i].pcp = true;
6 years ago
}
}
} else{
for (var i = 0 ; i < points.length ; i ++) {
points[i].pcp = false;
6 years ago
}
}
redraw(points);
6 years ago
}
function emptyPCP(){
wrapData=[];
IDS=[];
//////////////////////////////////////////////////////////////
//////////////////// Draw the Chart //////////////////////////
//////////////////////////////////////////////////////////////
var colors = ['#a6cee3','#1f78b4','#b2df8a','#33a02c','#fb9a99','#e31a1c','#fdbf6f','#ff7f00','#cab2d6','#6a3d9a']; // Colorscale for the pcp
var colorScl = d3v3.scale.ordinal()
.domain(IDS)
.range(colors);
var color = function(d) { return colors(d.group); };
var parcoords = d3v3.parcoords()("#PCP")
.data(wrapData)
.composite("darken")
.margin({ top: 20, left: 0, bottom: 10, right: 0 })
.mode("queue")
.color(function(d, i) { return colorScl(IDS[i]); })
.render()
.brushMode("1D-axes") // enable brushing
.reorderable();
parcoords.svg.selectAll("text")
.style("font", "14px");
}
function handleLassoStart(lassoPolygon) { // Empty we do not need to reset anything.
/*emptyPCP();
KNNEnabled = false;
for (var i = 0 ; i < points.length ; i ++) {
points[i].selected = true;
points[i].pcp = false;
}
redraw(points);*/
6 years ago
}
// Initialize the horizontal (correlations) barchart's variables
var svg, defs, gBrush, brush, main_xScale, mini_xScale, main_yScale, mini_yScale, main_xAxis, main_yAxis, mini_width, textScale;
// Added only for the mouse wheel
var zoomer = d3v3.behavior.zoom()
.on("zoom", null);
// Margin of the main barchart
var main_margin = {top: 8, right: 10, bottom: 30, left: 100},
main_width = 500 - main_margin.left - main_margin.right,
main_height = 350 - main_margin.top - main_margin.bottom;
// Margin of the mini barchart
var mini_margin = {top: 8, right: 10, bottom: 30, left: 10},
mini_height = 350 - mini_margin.top - mini_margin.bottom;
mini_width = 100 - mini_margin.left - mini_margin.right;
// Create the svg correlation component
svg = d3v3.select("#correlation").attr("class", "svgWrapper")
.attr("width", main_width + main_margin.left + main_margin.right + mini_width + mini_margin.left + mini_margin.right)
.attr("height", main_height + main_margin.top + main_margin.bottom)
.call(zoomer)
.on("wheel.zoom", scroll)
.on("mousedown.zoom", null)
.on("touchstart.zoom", null)
.on("touchmove.zoom", null)
.on("touchend.zoom", null);
function click(){ // This is the click of the Schema Investigation scenario
svgClick = d3.select('#modtSNEcanvas_svg_Schema'); // Selecte the svg element
function drawCircle(x, y, size) {
svgClick.append("circle")
.attr('class', 'click-circle') // Draw a small black circle
.attr("cx", x)
.attr("cy", y)
.attr("r", size);
Arrayx.push(x); // Get coordinates
Arrayy.push(y);
}
svgClick.on('click', function() {
if (prevRightClick == false){ // Check the right click if it should be prevented or not.
var coords = d3.mouse(this);
drawCircle(coords[0], coords[1], 3);
}
for (var k = 0; k < Arrayx.length ; k++){
Arrayxy[k] = [Arrayx[k], Arrayy[k]]; // Combine the coordinates into one array -> Arrayxy.
}
6 years ago
for (var k = 0; k < Arrayxy.length - 1 ; k++){ // Draw the line which connects two circles
d3.select('#modtSNEcanvas_svg_Schema').append('line')
.attr("x1", Arrayxy[k][0])
.attr("y1", Arrayxy[k][1])
.attr("x2", Arrayxy[k+1][0])
.attr("y2", Arrayxy[k+1][1])
.style("stroke","black")
.style("stroke-width",1);
}
6 years ago
});
6 years ago
svgClick.on("contextmenu", function (d) {
if (prevRightClick == true){ // Do not do anything because the right click should be prevented
} else {
var line = d3.line().curve(d3.curveCardinal);
6 years ago
for (var k = 0; k < Arrayxy.length - 1; k++){ // Define a path and check the schema.
path = svgClick.append("path")
.datum(Arrayxy.slice(k, k+2))
.attr("class", "SchemaCheck")
.attr("d", line);
}
// Prevent the default mouse action. Allow right click to be used for the confirmation of our schema.
d3.event.preventDefault();
6 years ago
flagForSchema = true; // Schema is activated.
CalculateCorrel(flagForSchema); // Calculate the correlations
}
});
}
6 years ago
function CalculateCorrel(flagForSchema){ // Calculate the correlation is a function which has all the computations for the schema ordering (investigation).
if (flagForSchema == false){
alert("Please, draw a schema first!"); // If no Schema is drawn then ask the user!
} else{
var correlLimit = document.getElementById("param-corr-value").value; // Get the threshold value with which the user set's the boundaries of the schema investigation
correlLimit = parseInt(correlLimit);
6 years ago
allTransformPoints = [];
for (var loop = 0; loop < points.length ; loop++){
allTransformPoints[loop] = [points[loop].x, points[loop].y, points[loop].id, points[loop].beta, points[loop].cost, points[loop].selected];
}
6 years ago
var line = svgClick.append("line");
6 years ago
paths = svgClick.selectAll("path").filter(".SchemaCheck");
XYDistId = [];
if (paths.nodes().length == 0){ // We need more than 1 points
alert("Please, provide one more point in order to create a line (i.e., path)!")
} else{
for (var m = 0; m < paths.nodes().length; m++) {
for (var j = 0; j < allTransformPoints.length; j++){
p = closestPoint(paths.nodes()[m], allTransformPoints[j]); // Closest of each point to the paths that we have.
XYDistId.push(p); // Take the XY coordinates, Distance, and ID
}
}
6 years ago
for (var j = 0; j < allTransformPoints.length; j++){
for (var m = 0; m < paths.nodes().length; m++) { // Find the minimum path distance for each point
if (m == 0){
minimum = XYDistId[j].distance;
}
else if (minimum > XYDistId[(m * allTransformPoints.length) + j].distance) {
minimum = XYDistId[(m * allTransformPoints.length) + j].distance;
}
}
6 years ago
for (var l = 0; l < paths.nodes().length ; l++) {
if (XYDistId[(l * allTransformPoints.length) + j].distance == minimum){
allTransformPoints[j].bucketID = l; // Bucket ID in which each point belongs to...
}
}
}
6 years ago
var arrays = [], size = allTransformPoints.length;
while (XYDistId.length > 0) { // For each path I have all the necessary information (all the IDs of the points etc..)
arrays.push(XYDistId.splice(0, size));
}
var arraysCleared = [];
for (var j = 0; j < allTransformPoints.length; j++){ // Now we have the XY coordinates values of the points, the IDs of the points, the xy coordinates on the line, the number of the path that they belong two times.
for (var m=0; m < arrays.length; m++) {
if (allTransformPoints[j].bucketID == m){
arraysCleared.push(arrays[m][j].concat(allTransformPoints[j].bucketID, Arrayxy[m], arrays[m][j].distance, arrays[m][j].id));
}
}
}
ArrayLimit = [];
for (var i=0; i<arraysCleared.length; i++) {
if (arraysCleared[i][5] < correlLimit) { // Now we add a limit to the distance that we search according to the thresholder which the user changes through a slider.
ArrayLimit.push(arraysCleared[i]);
}
}
6 years ago
var temparray = [];
var count = new Array(paths.nodes().length).fill(0);
for (var m=0; m < paths.nodes().length; m++) { // Sort the arrays from the smaller distance to the highest distance
for (var i=0; i<ArrayLimit.length; i++) {
if (ArrayLimit[i][2] == m){ // Match the bucket IDs
count[m] = count[m] + 1;
temparray.push(ArrayLimit[i]);
}
}
}
var arraysSplitted = [];
for (var m=0; m < paths.nodes().length; m++) {
arraysSplitted.push(temparray.splice(0, count[m])); // Separate the combined array according to the number of points in each path.
}
for (var m=0; m < paths.nodes().length; m++) { // Compare the distances and find the minimum values. Connect the paths afterwards.
arraysSplitted[m] = arraysSplitted[m].sort(function(a, b){
var dist = (a[0]-a[3]) * (a[0]-a[3]) + (a[1]-a[4]) * (a[1]-a[4]);
var distAgain = (b[0]-b[3]) * (b[0]-b[3]) + (b[1]-b[4]) * (b[1]-b[4]);
// Compare the 2 dates
if(dist < distAgain) return -1;
if(distAgain > dist) return 1;
return 0;
});
}
// This is how we gain the order.
var arraysConnected = [];
if (paths.nodes().length == 1) {
arraysConnected = arraysSplitted[0];
} else {
for (var m=0; m < paths.nodes().length - 1; m++) {
arraysConnected = arraysSplitted[m].concat(arraysSplitted[m+1]);
}
}
var Order = [];
for (var temp = 0; temp < arraysConnected.length; temp++) {
Order.push(arraysConnected[temp][6]); // We have the order now for the entire path.
}
for (var i = 0; i < points.length; i++){
points[i].selected = false;
6 years ago
points[i].schemaInv = false;
for (var j = 0; j < ArrayLimit.length; j++){
if (ArrayLimit[j][ArrayLimit[0].length-1] == points[i].id){
points[i].selected = true;
points[i].schemaInv = true;
}
}
}
redraw(points); // Redraw the points and leave only the selected points with a color (else gray color)
ArrayContainsDataFeaturesCleared = []; // Recalculate that because we want dimensions + 1 (the id) elements in columns.
for (let k = 0; k < dataFeatures.length; k++){
object = [];
for (let j = 0; j < Object.keys(dataFeatures[k]).length; j++){
if(!isString(Object.values(dataFeatures[k])[j]) && Object.keys(dataFeatures[k])[j] != Category){ // Only numbers and not the classification labels.
object.push(Object.values(dataFeatures[k])[j]);
} else{
object.push(null);
}
}
ArrayContainsDataFeaturesCleared.push(object.concat(k)); // The ArrayContainsDataFeaturesCleared contains only numbers without the categorization parameter even if it is a number.
}
ArrayContainsDataFeaturesCleared = mapOrder(ArrayContainsDataFeaturesCleared, Order, ArrayContainsDataFeaturesCleared[0].length-1); // Order the features according to the order.
ArrayContainsDataFeaturesLimit = [];
for (var i = 0; i < ArrayContainsDataFeaturesCleared.length; i++){
for (var j = 0; j < arraysConnected.length; j++){
if (ArrayContainsDataFeaturesCleared[i][ArrayContainsDataFeaturesCleared[0].length-1] == arraysConnected[j][6]){
ArrayContainsDataFeaturesLimit.push(ArrayContainsDataFeaturesCleared[i]); // These are the selected points in an order from the higher id (the previous local id) to the lower.
}
}
}
if (ArrayContainsDataFeaturesLimit.length == 0){ // If no points were selected then send a message to the user! And set everything again to the initial state.
d3.selectAll("#correlation > *").remove();
d3.selectAll("#modtSNEcanvas_svg > *").remove();
d3.selectAll("#modtSNEcanvas_svg_Schema > *").remove();
flagForSchema = false;
Arrayx = [];
Arrayy = [];
XYDistId = [];
Arrayxy = [];
DistanceDrawing1D = [];
allTransformPoints = [];
pFinal = [];
ArrayLimit = [];
correlationResults = [];
ArrayContainsDataFeaturesLimit = [];
prevRightClick = false;
for (var i=0; i < InitialStatePoints.length; i++){
InitialStatePoints[i].selected = true;
InitialStatePoints[i].pcp = false;
}
redraw(InitialStatePoints);
alert("No points selected! Please, try to increase the correlation threshold.");
} else {
for (var loop = 0; loop < ArrayContainsDataFeaturesLimit.length; loop++) {
ArrayContainsDataFeaturesLimit[loop].push(loop);
}
var SignStore = [];
correlationResults = [];
const arrayColumn = (arr, n) => arr.map(x => x[n]);
for (var temp = 0; temp < ArrayContainsDataFeaturesLimit[0].length - 2; temp++) {
if (ArrayContainsDataFeaturesLimit[0][temp] == null){ // Match the data features with every dimension, which is a number!
} else {
var tempData = new Array(
arrayColumn(ArrayContainsDataFeaturesLimit, temp),
arrayColumn(ArrayContainsDataFeaturesLimit, ArrayContainsDataFeaturesLimit[0].length - 1)
);
if (isNaN(pearsonCorrelation(tempData, 0, 1))) {
} else{
SignStore.push([temp, pearsonCorrelation(tempData, 0, 1)]); // Keep the sign
//correlationResults.push([Object.keys(dataFeatures[0])[temp], Math.abs(pearsonCorrelation(tempData, 0, 1)),temp]); // Find the pearson correlations
correlationResults.push([Object.keys(dataFeatures[0])[temp] + " (" + temp + ")", Math.pow(pearsonCorrelation(tempData, 0, 1),2),temp]); // Find the pearson correlations (MAYBE!)
}
}
}
function getMinMaxOf2DIndex (arr, idx) {
return {
min: Math.min.apply(null, arr.map(function (e) { return e[idx]})),
max: Math.max.apply(null, arr.map(function (e) { return e[idx]}))
}
}
var maxminArea = [];
for (var i=0; i<ArrayContainsDataFeaturesLimit[0].length; i++){
maxminArea.push(getMinMaxOf2DIndex(ArrayContainsDataFeaturesLimit, i));
}
if (PreComputFlagCorrelation){
maxminTotal = [];
for (var i=0; i<ArrayContainsDataFeaturesCleared[0].length; i++){
maxminTotal.push(getMinMaxOf2DIndex(ArrayContainsDataFeaturesCleared, i));
}
PreComputFlagCorrelation = false;
}
correlationResultsFinal = [];
for (var i=0; i<correlationResults.length; i++){
if (parseFloat(document.getElementById("param-corlim-value").value) < Math.abs((maxminArea[correlationResults[i][2]].max - maxminArea[correlationResults[i][2]].min) / (maxminTotal[correlationResults[i][2]].max - maxminTotal[correlationResults[i][2]].min) * correlationResults[i][1])){
correlationResultsFinal.push([correlationResults[i][0],Math.abs((maxminArea[correlationResults[i][2]].max - maxminArea[correlationResults[i][2]].min) / (maxminTotal[correlationResults[i][2]].max - maxminTotal[correlationResults[i][2]].min) * correlationResults[i][1]),correlationResults[i][2]]);
}
}
correlationResultsFinal = correlationResultsFinal.sort( // Sort the correlations from the biggest to the lowest value (absolute values)
function(a,b) {
if (a[1] == b[1])
return a[0] < b[0] ? -1 : 1;
return a[1] < b[1] ? 1 : -1;
}
);
correlationResults = correlationResults.sort( // Sort the correlations from the biggest to the lowest value (absolute values)
function(a,b) {
if (a[1] == b[1])
return a[0] < b[0] ? -1 : 1;
return a[1] < b[1] ? 1 : -1;
}
);
for (var j = 0; j < correlationResultsFinal.length; j++) {
for (var i = 0; i < SignStore.length; i++) {
if (SignStore[i][1]*(-1) == correlationResults[j][1]) {
correlationResultsFinal[j][1] = parseFloat((correlationResultsFinal[j][1])).toFixed(2) * (-1); // Give the negative sign if needed and multiply by 100
}
if (SignStore[i][1] == correlationResults[j][1]) {
correlationResultsFinal[j][1] = parseFloat((correlationResultsFinal[j][1])).toFixed(2); // Give a positive sign and multiply by 100
}
}
}
}
drawBarChart(); // Draw the horizontal barchart with the correlations.
}
}
}
function drawBarChart(){ // Draw the horizontal barchart with the correlations.
// Remove any previous barchart.
d3.selectAll("#correlation > *").remove();
6 years ago
/////////////////////////////////////////////////////////////
///////////////// Set-up SVG and wrappers ///////////////////
/////////////////////////////////////////////////////////////
var mainGroup = svg.append("g")
.attr("class","mainGroupWrapper")
.attr("transform","translate(" + main_margin.left + "," + main_margin.top + ")")
.append("g") //another one for the clip path - due to not wanting to clip the labels
.attr("clip-path", "url(#clip)")
.style("clip-path", "url(#clip)")
.attr("class","mainGroup");
var miniGroup = svg.append("g")
.attr("class","miniGroup")
.attr("transform","translate(" + (main_margin.left + main_width + main_margin.right + mini_margin.left) + "," + mini_margin.top + ")");
var brushGroup = svg.append("g")
.attr("class","brushGroup")
.attr("transform","translate(" + (main_margin.left + main_width + main_margin.right + mini_margin.left) + "," + mini_margin.top + ")");
/////////////////////////////////////////////////////////////
////////////////////// Initiate scales //////////////////////
/////////////////////////////////////////////////////////////
main_xScale = d3v3.scale.linear().range([0, main_width]);
mini_xScale = d3v3.scale.linear().range([0, mini_width]);
main_yScale = d3v3.scale.ordinal().rangeBands([0, main_height], 0.4, 0);
mini_yScale = d3v3.scale.ordinal().rangeBands([0, mini_height], 0.4, 0);
//Based on the idea from: http://stackoverflow.com/questions/21485339/d3-brushing-on-grouped-bar-chart
main_yZoom = d3v3.scale.linear()
.range([0, main_height])
.domain([0, main_height]);
//Create x axis object
main_xAxis = d3v3.svg.axis()
.scale(main_xScale)
.orient("bottom")
.ticks(8)
.outerTickSize(0);
//Add group for the x axis
d3v3.select(".mainGroupWrapper").append("g")
.attr("class", "x axis")
.attr("transform", "translate(" + 0 + "," + (main_height + 5) + ")");
//Create y axis object
main_yAxis = d3v3.svg.axis()
.scale(main_yScale)
.orient("left")
.tickSize(0)
.outerTickSize(0);
//Add group for the y axis
mainGroup.append("g")
.attr("class", "y axis")
.attr("transform", "translate(-5,0)");
/////////////////////////////////////////////////////////////
/////////////////////// Update scales ///////////////////////
/////////////////////////////////////////////////////////////
//Update the scales
main_xScale.domain([-1, 1]);
mini_xScale.domain([-1, 1]);
main_yScale.domain(correlationResultsFinal.map(function(d) { return d[0]; }));
mini_yScale.domain(correlationResultsFinal.map(function(d) { return d[0]; }));
//Create the visual part of the y axis
d3v3.select(".mainGroup").select(".y.axis").call(main_yAxis);
d3v3.select(".mainGroupWrapper").select(".x.axis").call(main_xAxis);
/////////////////////////////////////////////////////////////
///////////////////// Label axis scales /////////////////////
/////////////////////////////////////////////////////////////
textScale = d3v3.scale.linear()
.domain([15,50])
.range([12,6])
.clamp(true);
/////////////////////////////////////////////////////////////
///////////////////////// Create brush //////////////////////
/////////////////////////////////////////////////////////////
//What should the first extent of the brush become - a bit arbitrary this
brush = d3v3.svg.brush()
.y(mini_yScale)
.extent([mini_yScale(correlationResultsFinal[0][0]), main_height])
.on("brush", brushmove)
//Set up the visual part of the brush
gBrush = d3v3.select(".brushGroup").append("g")
.attr("class", "brush")
.call(brush);
gBrush.selectAll(".resize")
.append("line")
.attr("x2", mini_width);
gBrush.selectAll(".resize")
.append("path")
.attr("d", d3v3.svg.symbol().type("triangle-up").size(20))
.attr("transform", function(d,i) {
return i ? "translate(" + (mini_width/2) + "," + 4 + ") rotate(180)" : "translate(" + (mini_width/2) + "," + -4 + ") rotate(0)";
});
gBrush.selectAll("rect")
.attr("width", mini_width);
//On a click recenter the brush window
gBrush.select(".background")
.on("mousedown.brush", brushcenter)
.on("touchstart.brush", brushcenter);
///////////////////////////////////////////////////////////////////////////
/////////////////// Create a rainbow gradient - for fun ///////////////////
///////////////////////////////////////////////////////////////////////////
defs = svg.append("defs")
//Create two separate gradients for the main and mini bar - just because it looks fun
createGradient("gradient-main", "60%");
createGradient("gradient-mini", "13%");
//Add the clip path for the main bar chart
defs.append("clipPath")
.attr("id", "clip")
.append("rect")
.attr("x", -main_margin.left)
.attr("width", main_width + main_margin.left)
.attr("height", main_height);
/////////////////////////////////////////////////////////////
/////////////// Set-up the mini bar chart ///////////////////
/////////////////////////////////////////////////////////////
//The mini brushable bar
//DATA JOIN
var mini_bar = d3v3.select(".miniGroup").selectAll(".bar")
.data(correlationResultsFinal, function(d) { return +d[2]; });
//UDPATE
mini_bar
.attr("width", function(d) { return Math.abs(mini_xScale(d[1]) - mini_xScale(0)); })
.attr("y", function(d,i) { return mini_yScale(d[0]); })
.attr("height", mini_yScale.rangeBand())
//ENTER
mini_bar.enter().append("rect")
.attr("class", "bar")
.attr("x", function (d) { return mini_xScale(Math.min(0, d[1])); })
.attr("width", function(d) { return Math.abs(mini_xScale(d[1]) - mini_xScale(0)); })
.attr("y", function(d,i) { return mini_yScale(d[0]); })
.attr("height", mini_yScale.rangeBand())
.style("fill", "url(#gradient-mini)");
//EXIT
mini_bar.exit()
.remove();
//Start the brush
//gBrush.call(brush.event);
gBrush.call(brush.event);
prevRightClick = true;
}
6 years ago
//Function runs on a brush move - to update the big bar chart
function updateBarChart() {
/////////////////////////////////////////////////////////////
////////// Update the bars of the main bar chart ////////////
/////////////////////////////////////////////////////////////
var bar = d3v3.select(".mainGroup").selectAll(".bar")
.data(correlationResultsFinal, function(d) { return +d[2]; })
6 years ago
//, function(d) { return d.key; });
bar
.attr("x", function (d) { return main_xScale(Math.min(0, d[1])); })
.attr("width", function(d) { return Math.abs(main_xScale(d[1]) - main_xScale(0)); })
.attr("y", function(d,i) { return main_yScale(d[0]); })
.attr("height", main_yScale.rangeBand());
6 years ago
//ENTER
bar.enter().append("rect")
.attr("class", "bar")
.style("fill", "url(#gradient-main)")
.attr("x", function (d) { return main_xScale(Math.min(0, d[1])); })
.attr("width", function(d) { return Math.abs(main_xScale(d[1]) - main_xScale(0)); })
.attr("y", function(d,i) { return main_yScale(d[0]); })
.attr("height", main_yScale.rangeBand())
.on("mouseover", () => {
svg.select('.tooltip').style('display', 'none');
})
.on("click", function(d) {
var flag = false;
points.forEach(function (p) {
if (p.DimON == d[0])
{
flag = true;
}
});
if (flag == false){
correlationResultsFinal.forEach(function(corr){
var str2 = corr[0];
var elements2 = $("*:contains('"+ str2 +"')").filter(
function(){
return $(this).find("*:contains('"+ str2 +"')").length == 0
}
);
elements2[0].style.fontWeight = 'normal';
if (typeof elements2[1] != "undefined"){
elements2[1].style.fontWeight = 'normal';
}
});
points.forEach(function (p) {
if (p.schemaInv == true) {
p.DimON = d[0];
var str = p.DimON;
var elements = $("*:contains('"+ str +"')").filter(
function(){
return $(this).find("*:contains('"+ str +"')").length == 0
}
);
elements[0].style.fontWeight = 'bold';
}
})
} else{
correlationResultsFinal.forEach(function(corr){
var str2 = corr[0];
var elements2 = $("*:contains('"+ str2 +"')").filter(
function(){
return $(this).find("*:contains('"+ str2 +"')").length == 0
}
);
elements2[0].style.fontWeight = 'normal';
if (typeof elements2[1] != "undefined"){
elements2[1].style.fontWeight = 'normal';
}
});
points.forEach(function (p) {
p.DimON = null;
});
}
BetatSNE(points);
});
6 years ago
//EXIT
bar.exit()
.remove();
}//update
/////////////////////////////////////////////////////////////
////////////////////// Brush functions //////////////////////
/////////////////////////////////////////////////////////////
//First function that runs on a brush move
function brushmove() {
var extent = brush.extent();
//Reset the part that is visible on the big chart
var originalRange = main_yZoom.range();
main_yZoom.domain( extent );
//Update the domain of the x & y scale of the big bar chart
main_yScale.domain(correlationResultsFinal.map(function(d) { return d[0]; }));
6 years ago
main_yScale.rangeBands( [ main_yZoom(originalRange[0]), main_yZoom(originalRange[1]) ], 0.4, 0);
//Update the y axis of the big chart
d3v3.select(".mainGroup")
.select(".y.axis")
.select("textLength","10")
6 years ago
.call(main_yAxis);
//Which bars are still "selected"
var selected = mini_yScale.domain()
.filter(function(d) { return (extent[0] - mini_yScale.rangeBand () + 1e-2 <= mini_yScale(d)) && (mini_yScale(d) <= extent[1] - 1e-2); });
//Update the colors of the mini chart - Make everything outside the brush grey
d3.select(".miniGroup").selectAll(".bar")
.style("fill", function(d, i) { return selected.indexOf(d[0]) > -1 ? "url(#gradient-mini)" : "#e0e0e0"; });
//Update the label size
d3v3.selectAll(".y.axis text")
.style("font-size", textScale(selected.length));
6 years ago
//Update the big bar chart
updateBarChart();
}//brushmove
/////////////////////////////////////////////////////////////
////////////////////// Click functions //////////////////////
/////////////////////////////////////////////////////////////
//Based on http://bl.ocks.org/mbostock/6498000
//What to do when the user clicks on another location along the brushable bar chart
function brushcenter() {
var target = d3v3.event.target,
extent = brush.extent(),
size = extent[1] - extent[0],
range = mini_yScale.range(),
y0 = d3v3.min(range) + size / 2,
y1 = d3.max(range) + mini_yScale.rangeBand() - size / 2,
center = Math.max( y0, Math.min( y1, d3.mouse(target)[1] ) );
d3v3.event.stopPropagation();
gBrush
.call(brush.extent([center - size / 2, center + size / 2]))
.call(brush.event);
}//brushcenter
function scroll() {
//Mouse scroll on the mini chart
var extent = brush.extent(),
size = extent[1] - extent[0],
range = mini_yScale.range(),
y0 = d3v3.min(range),
y1 = d3v3.max(range) + mini_yScale.rangeBand(),
dy = d3v3.event.deltaY,
topSection;
if ( extent[0] - dy < y0 ) { topSection = y0; }
else if ( extent[1] - dy > y1 ) { topSection = y1 - size; }
else { topSection = extent[0] - dy; }
//Make sure the page doesn't scroll as well
d3v3.event.stopPropagation();
d3v3.event.preventDefault();
gBrush
.call(brush.extent([ topSection, topSection + size ]))
.call(brush.event);
}//scroll
/////////////////////////////////////////////////////////////
///////////////////// Helper functions //////////////////////
/////////////////////////////////////////////////////////////
//Create a gradient
function createGradient(idName, endPerc) {
var colorsBarChart = ['#919191'];
6 years ago
colorsBarChart.reverse();
defs.append("linearGradient")
.attr("id", idName)
.attr("gradientUnits", "userSpaceOnUse")
.attr("x1", "0%").attr("y1", "0%")
.attr("x2", endPerc).attr("y2", "0%")
.selectAll("stop")
.data(colorsBarChart)
.enter().append("stop")
.attr("offset", function(d,i) { return i/(colorsBarChart.length-1); })
.attr("stop-color", function(d) { return d; });
}//createGradient
function mapOrder(array, order, key) { // Order an array according to a key.
6 years ago
array.sort( function (a, b) {
var A = a[key], B = b[key];
if (order.indexOf(A) > order.indexOf(B)) {
return 1;
} else {
return -1;
}
});
return array;
6 years ago
};
/**
* Calculate the person correlation score between two items in a dataset.
*
* @param {object} prefs The dataset containing data about both items that
* are being compared.
* @param {string} p1 Item one for comparison.
* @param {string} p2 Item two for comparison.
* @return {float} The pearson correlation score.
*/
function pearsonCorrelation(prefs, p1, p2) {
var si = [];
for (var key in prefs[p1]) {
if (prefs[p2][key]) si.push(key);
}
var n = si.length;
if (n == 0) return 0;
var sum1 = 0;
for (var i = 0; i < si.length; i++) sum1 += prefs[p1][si[i]];
var sum2 = 0;
for (var i = 0; i < si.length; i++) sum2 += prefs[p2][si[i]];
var sum1Sq = 0;
for (var i = 0; i < si.length; i++) {
sum1Sq += Math.pow(prefs[p1][si[i]], 2);
}
var sum2Sq = 0;
for (var i = 0; i < si.length; i++) {
sum2Sq += Math.pow(prefs[p2][si[i]], 2);
}
var pSum = 0;
for (var i = 0; i < si.length; i++) {
pSum += prefs[p1][si[i]] * prefs[p2][si[i]];
}
var num = pSum - (sum1 * sum2 / n);
var den = Math.sqrt((sum1Sq - Math.pow(sum1, 2) / n) *
(sum2Sq - Math.pow(sum2, 2) / n));
if (den == 0) return 0;
return num / den;
}
function closestPoint(pathNode, point) {
var pathLength = pathNode.getTotalLength(),
precision = 8,
best,
bestLength,
bestDistance = Infinity;
// linear scan for coarse approximation
for (var scan, scanLength = 0, scanDistance; scanLength <= pathLength; scanLength += precision) {
if ((scanDistance = distance2(scan = pathNode.getPointAtLength(scanLength))) < bestDistance) {
best = scan, bestLength = scanLength, bestDistance = scanDistance;
}
}
// binary search for precise estimate
precision /= 2;
while (precision > 0.5) {
var before,
after,
beforeLength,
afterLength,
beforeDistance,
afterDistance;
if ((beforeLength = bestLength - precision) >= 0 && (beforeDistance = distance2(before = pathNode.getPointAtLength(beforeLength))) < bestDistance) {
best = before, bestLength = beforeLength, bestDistance = beforeDistance;
} else if ((afterLength = bestLength + precision) <= pathLength && (afterDistance = distance2(after = pathNode.getPointAtLength(afterLength))) < bestDistance) {
best = after, bestLength = afterLength, bestDistance = afterDistance;
} else {
precision /= 2;
}
}
best = [best.x, best.y];
best.distance = Math.sqrt(bestDistance);
best.id = point[2];
return best;
function distance2(p) {
var dx = p.x - point[0],
dy = p.y - point[1];
return dx * dx + dy * dy;
}
}
function abbreviateNumber(value) { // Abbreviate the numbers for the main visualization legend!
var newValue = value;
if (value >= 1000) {
var suffixes = ["", "k", "m", "b","t"];
var suffixNum = Math.floor( (""+value).length/3 );
var shortValue = '';
for (var precision = 2; precision >= 1; precision--) {
shortValue = parseFloat( (suffixNum != 0 ? (value / Math.pow(1000,suffixNum) ) : value).toPrecision(precision));
var dotLessShortValue = (shortValue + '').replace(/[^a-zA-Z 0-9]+/g,'');
if (dotLessShortValue.length <= 2) { break; }
}
if (shortValue % 1 != 0) shortNum = shortValue.toFixed(1);
newValue = shortValue+suffixes[suffixNum];
}
return newValue;
}
function clearThree(obj){ // Clear three.js object!
6 years ago
while(obj.children.length > 0){
clearThree(obj.children[0])
obj.remove(obj.children[0]);
6 years ago
}
6 years ago
if(obj.geometry) obj.geometry.dispose()
if(obj.material) obj.material.dispose()
if(obj.texture) obj.texture.dispose()
6 years ago
}
6 years ago
var viewport3 = getViewport(); // Get the width and height of the main visualization
var vw3 = viewport3[0] * 0.2;
var margin = {top: 40, right: 100, bottom: 40, left: 190}, // Set the margins for the pcp
6 years ago
width = Math.min(vw3, window.innerWidth - 10) - margin.left - margin.right,
height = Math.min(width, window.innerHeight - margin.top - margin.bottom);
function BetatSNE(points){ // Run the main visualization
inside = inside + 1;
if (points.length) { // If points exist (at least 1 point)
selectedPoints = [];
var findNearestTable = [];
var howManyPoints = 0;
for (let m=0; m<points.length; m++){
//if (points[m].id == 257){
if (points[m].selected == true){
howManyPoints = howManyPoints + 1;
selectedPoints.push(points[m]); // Add the selected points in to a new variable
}
}
var indexOrder = [];
var indexOrder2d = [];
var indices = new Array(selectedPoints.length);
var indices2d = new Array(selectedPoints.length);
6 years ago
var findNearest;
6 years ago
var viewport = getViewport(); // Get the main viewport width height
var vw = viewport[0] * 0.5;
var vh = viewport[1] * 0.042;
var maxKNN = Math.round(document.getElementById("param-perplexity-value").value*1.25); // Specify the amount of k neighborhoods that we are going to calculate. According to "perplexity."
//var maxKNN = 1;
selectedPoints.sort(function(a, b) { // Sort the points according to ID.
return parseFloat(a.id) - parseFloat(b.id);
});
for (k=maxKNN; k>0; k--){ // Start from the maximum k value and go to the minimum (k=2).
6 years ago
var findNearest = [];
var indexOrderSliced = [];
var indexOrderSliced2d = [];
var count = [];
var findNearestAVG = 0;
var sumIntersection = [];
var sumUnion = [];
for (var i=0; i<selectedPoints.length;i++){
count[i] = 0;
var id = selectedPoints[i].id;
// Temporary array holds objects with position and sort-value
indices[i] = dists[id].map(function(el, j) {
return [ j, el ];
})
indices2d[i] = dists2d[id].map(function(el, j) {
return [ j, el ];
})
if (k == maxKNN){
for (var j = id+1; j<points.length; j++){ // For the selected points check the purity of the cluster.
indices[i].push([j,dists[j][id]]);
indices2d[i].push([j,dists2d[j][id]]);
}
// Sorting the mapped array containing the reduced values
indices[i].sort(function(a, b) {
if (a[1] > b[1]) {
return 1;
}
if (a[1] < b[1]) {
return -1;
}
return 0;
});
indexOrder[i] = indices[i].map(function(value) { return value[0]; });
// Sorting the mapped array containing the reduced values
indices2d[i].sort(function(a, b) {
if (a[1] > b[1]) {
return 1;
}
if (a[1] < b[1]) {
return -1;
}
return 0;
});
indexOrder2d[i] = indices2d[i].map(function(value) { return value[0]; });
}
indexOrderSliced[i] = indexOrder[i].slice(0,k);
indexOrderSliced2d[i] = indexOrder2d[i].slice(0,k);
for (var m=0; m < indexOrderSliced2d[i].length; m++){
if (indexOrderSliced[i].includes(indexOrderSliced2d[i][m])){ // Union
count[i] = count[i] + 1;
}
}
sumIntersection.push(count[i]);
sumUnion.push((k*2 - sumIntersection[i]));
}
6 years ago
for (var i=0; i<selectedPoints.length;i++){
findNearest[i] = sumIntersection[i] / sumUnion[i];
findNearestAVG = findNearestAVG + findNearest[i];
}
findNearestAVG = findNearestAVG / selectedPoints.length; // Nearest neighbor!
if (isNaN(findNearestAVG)){
findNearestAVG = 0; // If kNN is fully uncorrelated then we say that the value is 0.
}
findNearestTable.push(findNearestAVG.toFixed(2)); // These values are multiplied by the height of the viewport because we need to draw the bins of the barchart representation
}
findNearestTable.reverse();
d3.select("#hider").style("z-index", 1);
d3.select("#knnBarChart").style("z-index", 2);
var data = [];
var layout = [];
var kValuesLegend = [];
for (var i=1; i<=maxKNN; i++){
kValuesLegend.push(i);
}
if (inside == 1){
StoreInitialFindNearestTable = findNearestTable;
}
var trace1 = {
x: kValuesLegend,
y: StoreInitialFindNearestTable,
name: 'Projection average',
type: 'bar',
marker: {
color: 'rgb(0,0,0)'
}
};
var trace2 = {
x: kValuesLegend,
y: findNearestTable,
name: 'Selected points',
type: 'bar',
marker: {
color: 'rgb(0, 187, 187)'
}
};
var LimitXaxis = Number(maxKNN) + 1;
data = [trace1, trace2];
layout = {
barmode: 'group',autosize: false,
width: dimensions*0.97,
height: vh * 1.38,
margin: {
l: 50,
r: 30,
b: 30,
t: 5,
pad: 4
},
xaxis: {range: [0, LimitXaxis],
title: 'Number of neighbors',
titlefont: {
size: 12,
color: 'black'
}},
yaxis: {
title: 'Pres., %',
titlefont: {
size: 12,
color: 'black'
}}};
$("#knnBarChartDetails").html("(Number of Selected Points: "+howManyPoints+"/"+dataFeatures.length+")");
Plotly.newPlot('knnBarChart', data, layout, {displayModeBar:false}, {staticPlot: true});
// Here we have the code for the pcp
d3.select("#PCP").selectAll('g').remove(); // Remove the pcp if there was one before
var coun = 0;
for (var i=0; i < selectedPoints.length; i++){
if (selectedPoints[i].pcp == true){ // Count the selected points
coun = coun + 1;
}
}
var FeatureWise = [];
for (var j=0; j<Object.values(dataFeatures[0]).length; j++){ // Get the features of the data set.
for (var i=0;i<dataFeatures.length;i++){
if (!isNaN(Object.values(dataFeatures[i])[j])){
FeatureWise.push(Object.values(dataFeatures[i])[j]);
}
}
}
var max = [];
var min = [];
var vectors = [];
var FeatureWiseSlicedArray = [];
for (var j=0; j<Object.values(dataFeatures[0]).length; j++){
var FeatureWiseSliced = FeatureWise.slice(0+(j*dataFeatures.length),dataFeatures.length+j*dataFeatures.length);
if (FeatureWiseSliced != ""){
FeatureWiseSlicedArray.push(FeatureWiseSliced);
}
max[j] = FeatureWiseSliced[0];
min[j] = FeatureWiseSliced[0];
for (var i=0; i<FeatureWiseSliced.length; i++){
if (max[j] < FeatureWiseSliced[i]){
max[j] = FeatureWiseSliced[i];
}
if (min[j] > FeatureWiseSliced[i]){
min[j] = FeatureWiseSliced[i];
}
}
}
var FeaturesSelectedPoints = [];
for (var i=0; i< selectedPoints.length; i++){
FeaturesSelectedPoints.push(ArrayContainsDataFeaturesClearedwithoutNull[selectedPoints[i].id]);
}
var vectors = PCA.getEigenVectors(FeaturesSelectedPoints); // Run a local PCA!
var PCAResults = PCA.computeAdjustedData(FeaturesSelectedPoints,vectors[0]); // Get the results for individual dimension.
var PCASelVec = [];
PCASelVec = PCAResults.selectedVectors[0];
var len = PCASelVec.length;
var indices = new Array(len);
for (var i = 0; i < len; ++i) indices[i] = i;
indices = indices.sort(function (a, b) { return PCASelVec[a] < PCASelVec[b] ? -1 : PCASelVec[a] > PCASelVec[b] ? 1 : 0; }); // Get the most important features first! Clockwise ordering
if (len > 8){
indices = indices.slice(0,8);
}
emptyPCP();
var parcoords = d3v3.parcoords()("#PCP");
// Remove or add that if you want to achieve a different effect when you have less than 10 points.
var wrapData2 = [];
for (var i=0; i<selectedPoints.length; i++){
var data = [];
for (var j=0; j< Object.keys(dataFeatures[selectedPoints[i].id]).length; j++){
for (m=0; m < len; m++){
if (j == Object.keys(dataFeatures[selectedPoints[i].id]).length -1){
if(format[0] == "diabetes"){
if (Object.values(dataFeatures[selectedPoints[i].id])[j] == 1){
Object.assign(data,{[Object.keys(dataFeatures[selectedPoints[i].id])[j]]:"Positive"}); // Push the values into the pcp
} else{
Object.assign(data,{[Object.keys(dataFeatures[selectedPoints[i].id])[j]]:"Negative"}); // Push the values into the pcp
}
} else{
Object.assign(data,{[Object.keys(dataFeatures[selectedPoints[i].id])[j]]:(Object.values(dataFeatures[selectedPoints[i].id])[j])}); // Push the values into the pcp
}
} else{
if (indices[m] == j){
Object.assign(data,{[Object.keys(dataFeatures[selectedPoints[i].id])[m]]:parseFloat(Object.values(dataFeatures[selectedPoints[i].id])[m]).toFixed(1)}); // Push the values into the pcp
}
}
}
}
wrapData2.push(data);
}
var CategoryReplaced = Category;
wrapData2.sort(function(a, b){
if(a[CategoryReplaced] < b[CategoryReplaced]) { return -1; }
if(a[CategoryReplaced] > b[CategoryReplaced]) { return 1; }
return 0;
})
function sortByFrequency(array) {
var frequency = {};
var CategoryReplaced = Category;
array.forEach(function(value) { frequency[value[CategoryReplaced]] = 0; });
var uniques = array.filter(function(value) {
return ++frequency[value[CategoryReplaced]] == 1;
});
var result = uniques.map(function(value) {
return frequency[value[CategoryReplaced]];
});
return result;
}
var lessmore = sortByFrequency(wrapData2);
if (lessmore[0] < lessmore[1]){
wrapData2.reverse();
}
var AllPointsWrapData2 = [];
for (var i=0; i<points.length; i++){
var data = [];
for (var j=0; j< Object.keys(dataFeatures[points[i].id]).length; j++){
for (m=0; m < len; m++){
if (j == Object.keys(dataFeatures[points[i].id]).length -1){
if(format[0] == "diabetes"){
if (Object.values(dataFeatures[points[i].id])[j] == 1){
Object.assign(data,{[Object.keys(dataFeatures[points[i].id])[j]]:"Positive"}); // Push the values into the pcp
} else{
Object.assign(data,{[Object.keys(dataFeatures[points[i].id])[j]]:"Negative"}); // Push the values into the pcp
}
} else{
Object.assign(data,{[Object.keys(dataFeatures[points[i].id])[j]]:(Object.values(dataFeatures[points[i].id])[j])}); // Push the values into the pcp
}
} else{
if (indices[m] == j){
Object.assign(data,{[Object.keys(dataFeatures[points[i].id])[m]]:parseFloat(Object.values(dataFeatures[points[i].id])[m]).toFixed(1)}); // Push the values into the pcp
}
}
}
}
AllPointsWrapData2.push(data);
}
AllPointsWrapData2.sort(function(a, b){
if(a[CategoryReplaced] < b[CategoryReplaced]) { return -1; }
if(a[CategoryReplaced] > b[CategoryReplaced]) { return 1; }
return 0;
})
if (all_labels[0] == undefined){
var colorScaleCat = d3.scaleOrdinal().domain(["No Category"]).range(["#C0C0C0"]);
}
else{
if(format[0] == "diabetes"){
for (var i=0; i<all_labels.length; i++){
if (all_labels[i] == 1){
all_labels[i] = "Positive";
} else{
all_labels[i] = "Negative";
}
}
}
var colorScaleCat = d3.scaleOrdinal().domain(all_labels).range(ColorsCategorical);
}
if (AllPointsWrapData2.length == wrapData2.length){
parcoords
.data(AllPointsWrapData2)
.alpha(0.35)
.composite("darken")
.hideAxis([Category])
.margin({ top: 20, left: 0, bottom: 10, right: -8 })
.mode("default")
.color(function(d){if(format[0] == "diabetes"){if(d[Category] == "Negative"){return colorScaleCat("Positive");}else{return colorScaleCat("Negative");}} else{return colorScaleCat(d[Category]);}})
.render()
.createAxes();
parcoords.svg.selectAll("text")
.style("font", "14px");
} else{
parcoords
.data(AllPointsWrapData2)
.composite("darken")
.hideAxis([Category])
.margin({ top: 20, left: 0, bottom: 10, right: -8 })
.mode("default")
.color(function(d){if(format[0] == "diabetes"){if(d[Category] == "Negative"){return colorScaleCat("Positive");}else{return colorScaleCat("Negative");}} else{return colorScaleCat(d[Category]);}})
.render()
.highlight(wrapData2)
.createAxes();
}
//}
var ColSizeSelector = document.getElementById("param-neighborHood").value; // This is the mapping of the color/size in beta/KLD
6 years ago
d3.selectAll("#legend4 > *").remove();
if (ColSizeSelector == "color") { // If we have beta into color then calculate the color scales
var max = (d3.max(points,function(d){ return d.beta; }));
var min = (d3.min(points,function(d){ return d.beta; }));
var calcStep = (max)/8;
var costLimiter = document.getElementById("param-costlim").value;
var maxSize1 = (d3.max(points,function(d){ return d.cost; }));
points = points.sort(function(a, b) { // Sort them according to importance (darker color!)
return a.cost - b.cost;
})
var temp = parseInt((1-costLimiter)*points.length);
var minSize1 = points[temp].cost;
for (var i=temp+1; i<points.length; i++){
if (minSize1 > points[i].cost){
minSize1 = points[i].cost;
}
}
var rscale1 = d3.scaleLinear()
.domain([minSize1, maxSize1])
.range([5,parseInt(12-(1-document.getElementById("param-costlim").value)*7)]);
var calcStepSize1 = (maxSize1-minSize1);
var limitdist = document.getElementById("param-lim-value").value;
limitdist = parseFloat(limitdist).toFixed(1);
var legendScale1 = d3.scaleLinear()
.domain(d3.range(minSize1, maxSize1+calcStepSize1, calcStepSize1))
.range([5*limitdist/2,(parseInt(12-(1-document.getElementById("param-costlim").value)*7))*limitdist/2]);
var colorScale = d3.scaleSequential()
.domain([0, max+calcStep])
.interpolator(d => d3.interpolateViridis(1-d));
points = points.sort(function(a, b) { // Sort them according to importance (darker color!)
return a.beta - b.beta;
})
var labels_beta = [];
var abbr_labels_beta = [];
var calcStep = (max)/8;
labels_beta = d3.range(0, max+calcStep, calcStep);
for (var i=0; i<9; i++){
labels_beta[i] = parseInt(labels_beta[i]);
abbr_labels_beta[i] = abbreviateNumber(labels_beta[i]);
}
var svg = d3.select("#legend1");
svg.append("g")
.attr("class", "legendLinear")
.attr("transform", "translate(10,20)");
var legend = d3.legendColor()
.labelFormat(d3.format(",.0f"))
.cells(9)
.labels([abbr_labels_beta[0],abbr_labels_beta[1],abbr_labels_beta[2],abbr_labels_beta[3],abbr_labels_beta[4],abbr_labels_beta[5],abbr_labels_beta[6],abbr_labels_beta[7],abbr_labels_beta[8]])
.title("Density")
.scale(colorScale);
svg.select(".legendLinear")
.call(legend);
var svg = d3.select("#legend4");
svg.append("g")
.attr("class", "legendSize")
.attr("transform", "translate(10,20)");
var SizeRange1 = [];
SizeRange1.push((minSize1).toFixed(4));
SizeRange1.push(((maxSize1-minSize1)/2).toFixed(4));
SizeRange1.push((maxSize1).toFixed(4));
var legendSize1 = d3.legendSize()
.scale(legendScale1)
.cells(3)
.shape('circle')
.labels([SizeRange1[0],SizeRange1[1],SizeRange1[2]])
.shapePadding(10)
.labelOffset(5)
.title("Remaining Cost")
.orient('vertical');
svg.select(".legendSize")
.call(legendSize1);
var circles = document.getElementsByClassName("swatch");
for (var i=0; i<circles.length; i++){
if(circles[i].localName == "circle"){
circles[i].style.fill = "rgb(128,0,0)";
}
}
} else { // If we have cost into color then calculate the color scales
var costLimiter = document.getElementById("param-costlim").value;
points = points.sort(function(a, b) { // Sort them according to importance (darker color!)
return a.cost - b.cost;
})
var temp = parseInt((1-costLimiter)*points.length);
var min = points[temp].cost;
for (var i=temp+1; i<points.length; i++){
if (min > points[i].cost){
min = points[i].cost;
}
}
var max = (d3.max(points,function(d){ return d.cost; }));
var min = (d3.min(points,function(d){ return d.cost; }));
var maxSize2 = (d3.max(points,function(d){ return d.beta; }));
var minSize2 = (d3.min(points,function(d){ return d.beta; }));
var rscale2 = d3.scaleLinear()
.domain([0, maxSize2])
.range([5,12]);
d3.selectAll("#legend1 > *").remove();
6 years ago
var calcStep = ((max-min)/8);
var colorScale = d3.scaleSequential()
.domain([min, max])
.interpolator(d => d3.interpolateMagma(1-d));
var labels_cost = [];
var abbr_labels_cost = [];
labels_cost = d3.range(min, max+calcStep, calcStep);
for (var i=0; i<9; i++){
labels_cost[i] = labels_cost[i].toFixed(5);
abbr_labels_cost[i] = abbreviateNumber(labels_cost[i]);
}
6 years ago
var svg = d3.select("#legend1"); // Add the legend for the beta/cost
svg.append("g")
.attr("class", "legendLinear")
.attr("transform", "translate(10,15)");
6 years ago
var legend = d3.legendColor()
.labelFormat(d3.format(",.5f"))
.cells(9)
.labels([abbr_labels_cost[0],abbr_labels_cost[1],abbr_labels_cost[2],abbr_labels_cost[3],abbr_labels_cost[4],abbr_labels_cost[5],abbr_labels_cost[6],abbr_labels_cost[7],abbr_labels_cost[8]])
.title("Remaining Cost")
.scale(colorScale);
svg.select(".legendLinear")
.call(legend);
var calcStepSize2 = parseInt(maxSize2/2);
var limitdist = document.getElementById("param-lim-value").value;
limitdist = parseFloat(limitdist).toFixed(1);
var legendScale2 = d3.scaleLinear()
.domain(d3.range(0, parseInt(maxSize2), calcStepSize2))
.range([5*limitdist/2,12*limitdist/2]);
var svg = d3.select("#legend4");
svg.append("g")
.attr("class", "legendSize")
.attr("transform", "translate(45,20)");
var SizeRange2 = [];
SizeRange2.push(0);
var temporalvalue = parseInt(maxSize2/2);
SizeRange2.push(abbreviateNumber(temporalvalue));
SizeRange2.push(abbreviateNumber(parseInt(maxSize2)));
var legendSize2 = d3.legendSize()
.scale(legendScale2)
.labelFormat(d3.format(",.0f"))
.cells(3)
.shape('circle')
.labels([SizeRange2[0],SizeRange2[1],SizeRange2[2]])
.shapePadding(10)
.labelOffset(5)
.title("Density")
.orient('vertical');
svg.select(".legendSize")
.call(legendSize2);
var circles = document.getElementsByClassName("swatch");
for (var i=0; i<circles.length; i++){
if(circles[i].localName == "circle"){
circles[i].style.fill = "rgb(0,128,0)";
}
}
6 years ago
}
let tempSort = -1;
for (var i=0; i<points.length; i++){ // Sort according to dimension on hover on top of a dimension of the correlation barchart.
if (points[i].DimON != null) {
tempSort = points[i].DimON.match(/\d+/)[0];
}
}
if (tempSort != -1){
points = points.sort(function(a, b) {
return a[tempSort] - b[tempSort];
})
}
var temp = 0;
let zoom = d3.zoom()
.scaleExtent([getScaleFromZ(far), getScaleFromZ(near)])
.on('zoom', () => {
temp = temp + 1;
let d3_transform = d3.event.transform;
zoomHandler(d3_transform);
if (temp > 2){
var frustum = new THREE.Frustum();
var cameraViewProjectionMatrix = new THREE.Matrix4();
// every time the camera or objects change position (or every frame)
camera.updateMatrixWorld(); // make sure the camera matrix is updated
camera.matrixWorldInverse.getInverse( camera.matrixWorld );
cameraViewProjectionMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
frustum.setFromMatrix( cameraViewProjectionMatrix );
// frustum is now ready to check all the objects you need
VisiblePoints = [];
for (var l = 0; l<scene.children.length-1; l++){
if (frustum.intersectsObject(scene.children[l])){
VisiblePoints.push(scene.children[l].geometry.name);
}
}
OverviewtSNE(points);
}
});
6 years ago
view = d3.select(renderer.domElement);
6 years ago
function setUpZoom() {
view.call(zoom);
let initial_scale = getScaleFromZ(far);
var initial_transform = d3.zoomIdentity.translate(dimensions/2, dimensions/2).scale(initial_scale);
zoom.transform(view, initial_transform);
camera.position.set(0, 0, far);
}
6 years ago
setUpZoom();
var circle_sprite= new THREE.TextureLoader().load( // Add the circle effect
"./textures/circle-sprite.png"
)
clearThree(scene); // Clear previous scenes
// Increase/reduce size factor selected by the user
var limitdist = document.getElementById("param-lim-value").value;
limitdist = parseFloat(limitdist).toFixed(1);
6 years ago
let pointsMaterial;
let factorPlusSize;
let geometry = new THREE.Geometry();
for (var i=0; i<points.length; i++) {
let pointsGeometry = new THREE.Geometry();
let vertex = new THREE.Vector3((((points[i].x/dimensions)*2) - 1)*dimensions, (((points[i].y/dimensions)*2) - 1)*dimensions*-1, 0);
pointsGeometry.vertices.push(vertex);
pointsGeometry.name = points[i].id;
geometry.vertices.push(vertex);
if (points[i].DimON != null) {
let temp = points[i].DimON.match(/\d+/)[0];
var maxDim = (d3.max(points,function(d){ if(d.schemaInv == true){return d[temp]}; }));
var minDim = (d3.min(points,function(d){ if(d.schemaInv == true){return d[temp]}; }));
6 years ago
let colorsBarChart = ['#dadaeb','#bcbddc','#9e9ac8','#807dba','#6a51a3','#54278f','#3f007d'];
var calcStepDim = (maxDim-minDim)/6;
var colorScale = d3.scaleLinear()
.domain(d3.range(minDim, maxDim+calcStepDim, calcStepDim))
.range(colorsBarChart);
var color = new THREE.Color(colorScale(points[i][temp]));
} else if (points[i].selected == false && points[i].schemaInv == false){
var color = new THREE.Color("rgb(211, 211, 211)");
} else if (points[i].selected == false && points[i].schemaInv == true){
var color = new THREE.Color("rgb(145, 145, 145)");
} else if (ColSizeSelector == "color") {
var color = new THREE.Color(colorScale(points[i].beta));
//var color = new THREE.Color("rgb(125, 125, 125)");
}
else{
if (points[i].cost < min){
var color = new THREE.Color("rgb(240,240,240)");
} else{
var color = new THREE.Color(colorScale(points[i].cost));
}
}
if (ColSizeSelector == "color") {
if (points[i].cost < minSize1){
var sizePoint = 1;
} else{
var sizePoint = rscale1(points[i].cost);
}
factorPlusSize = limitdist * sizePoint;
pointsGeometry.colors.push(color);
pointsMaterial = new THREE.PointsMaterial({
sizeAttenuation: false,
size: Number(factorPlusSize.toFixed(1)),
vertexColors: THREE.VertexColors,
map: circle_sprite,
transparent: true
});
} else{
let sizePoint = rscale2(points[i].beta);
factorPlusSize = limitdist * sizePoint;
pointsGeometry.colors.push(color);
pointsMaterial = new THREE.PointsMaterial({
sizeAttenuation: false,
size: Number(factorPlusSize.toFixed(1)),
vertexColors: THREE.VertexColors,
map: circle_sprite,
transparent: true
});
}
var particlesDuplic = new THREE.Points(geometry, pointsMaterial);
var particles = new THREE.Points(pointsGeometry, pointsMaterial);
scene.add(particles);
}
// This is for the legend
var temporal = 0;
for (var j=0; j < points.length; j++){
if(points[j].DimON != null) {
temporal = temporal + 1;
var labels_dim = [];
var abbr_labels_dim = [];
labels_dim = d3.range(minDim, maxDim+calcStepDim, calcStepDim);
for (var i=0; i<7; i++){
labels_dim[i] = labels_dim[i].toFixed(2);
abbr_labels_dim[i] = abbreviateNumber(labels_dim[i]);
}
d3.select("#legend1").selectAll('*').remove();
var svg = d3.select("#legend1");
svg.append("g")
.attr("class", "legendLinear")
.attr("transform", "translate(10,15)");
var legend = d3.legendColor()
.labelFormat(d3.format(",.0f"))
.cells(7)
.labels([abbr_labels_dim[0],abbr_labels_dim[1],abbr_labels_dim[2],abbr_labels_dim[3],abbr_labels_dim[4],abbr_labels_dim[5],abbr_labels_dim[6]])
.title(points[j].DimON)
.scale(colorScale);
svg.select(".legendLinear")
.call(legend);
break;
}
}
for (var j=0; j < points.length; j++){
if(temporal == 0 && points[j].DimON == null){
if (ColSizeSelector == "color"){
d3.select("#legend1").selectAll('*').remove();
var svg = d3.select("#legend1");
svg.append("g")
.attr("class", "legendLinear")
.attr("transform", "translate(10,15)");
var legend = d3.legendColor()
.labelFormat(d3.format(",.0f"))
.cells(9)
.labels([abbr_labels_beta[0],abbr_labels_beta[1],abbr_labels_beta[2],abbr_labels_beta[3],abbr_labels_beta[4],abbr_labels_beta[5],abbr_labels_beta[6],abbr_labels_beta[7],abbr_labels_beta[8]])
.title("Density")
.scale(colorScale);
svg.select(".legendLinear")
.call(legend);
break;
} else {
var max = (d3.max(points,function(d){ return d.cost; }));
var costLimiter = document.getElementById("param-costlim").value;
points = points.sort(function(a, b) { // Sort them according to importance (darker color!)
return a.cost - b.cost;
})
var temp = parseInt((1-costLimiter)*points.length);
var min = points[temp].cost;
for (var i=temp+1; i<points.length; i++){
if (min > points[i].cost){
min = points[i].cost;
}
}
var maxSize2 = (d3.max(points,function(d){ return d.beta; }));
d3.selectAll("#legend1 > *").remove();
var calcStep = (max-min)/6;
var colorScale = d3.scaleSequential()
.domain([min, max])
.interpolator(d => d3.interpolateMagma(1-d));
points = points.sort(function(a, b) { // Sort them according to importance (darker color!)
return a.cost - b.cost;
})
var labels_cost = [];
var abbr_labels_cost = [];
labels_cost = d3.range(min, max+calcStep, calcStep);
for (var i=0; i<7; i++){
labels_cost[i] = labels_cost[i].toFixed(5);
abbr_labels_cost[i] = abbreviateNumber(labels_cost[i]);
}
var svg = d3.select("#legend1"); // Add the legend for the beta/cost
svg.append("g")
.attr("class", "legendLinear")
.attr("transform", "translate(10,15)");
var legend = d3.legendColor()
.labelFormat(d3.format(",.5f"))
.cells(7)
.labels([abbr_labels_cost[0],abbr_labels_cost[1],abbr_labels_cost[2],abbr_labels_cost[3],abbr_labels_cost[4],abbr_labels_cost[5],abbr_labels_cost[6]])
.title("Remaining Cost")
.scale(colorScale);
svg.select(".legendLinear")
.call(legend);
6 years ago
}
}
}
6 years ago
function zoomHandler(d3_transform) {
let scale = d3_transform.k;
let x = -(d3_transform.x - dimensions/2) / scale;
let y = (d3_transform.y - dimensions/2) / scale;
let z = getZFromScale(scale);
camera.position.set(x, y, z);
}
6 years ago
function getScaleFromZ (camera_z_position) {
let half_fov = fov/2;
let half_fov_radians = toRadians(half_fov);
let half_fov_height = Math.tan(half_fov_radians) * camera_z_position;
let fov_height = half_fov_height * 2;
let scale = dimensions / fov_height; // Divide visualization height by height derived from field of view
return scale;
}
6 years ago
function getZFromScale(scale) {
let half_fov = fov/2;
let half_fov_radians = toRadians(half_fov);
let scale_height = dimensions / scale;
let camera_z_position = scale_height / (2 * Math.tan(half_fov_radians));
return camera_z_position;
}
6 years ago
function toRadians (angle) {
return angle * (Math.PI / 180);
}
6 years ago
// Hover and tooltip interaction
6 years ago
raycaster = new THREE.Raycaster();
raycaster.params.Points.threshold = 10;
6 years ago
view.on("mousemove", () => {
let [mouseX, mouseY] = d3.mouse(view.node());
let mouse_position = [mouseX, mouseY];
checkIntersects(mouse_position);
});
6 years ago
function mouseToThree(mouseX, mouseY) {
return new THREE.Vector3(
mouseX / dimensions * 2 - 1,
-(mouseY / dimensions) * 2 + 1,
1
);
}
function checkIntersects(mouse_position) {
let mouse_vector = mouseToThree(...mouse_position);
raycaster.setFromCamera(mouse_vector, camera);
let intersects = raycaster.intersectObject(particlesDuplic);
if (intersects[0]) {
if (ColSizeSelector == "color"){
points = points.sort(function(a, b) {
return a.beta - b.beta;
})
} else{
points = points.sort(function(a, b) {
return a.cost - b.cost;
})
}
let sorted_intersects = sortIntersectsByDistanceToRay(intersects);
let intersect = sorted_intersects[0];
let index = intersect.index;
let datum = points[index];
highlightPoint(datum);
showTooltip(mouse_position, datum);
} else {
removeHighlights();
hideTooltip();
6 years ago
}
}
function sortIntersectsByDistanceToRay(intersects) {
return _.sortBy(intersects, "distanceToRay");
}
hoverContainer = new THREE.Object3D()
scene.add(hoverContainer);
function highlightPoint(datum) {
removeHighlights();
let geometry = new THREE.Geometry();
6 years ago
geometry.vertices.push(
new THREE.Vector3(
(((datum.x/dimensions)*2) - 1)*dimensions,
(((datum.y/dimensions)*2) - 1)*dimensions*-1,
0
)
);
if (all_labels[0] == undefined){
var colorScaleCat = d3.scaleOrdinal().domain(["No Category"]).range(["#C0C0C0"]);
}
else{
if(format[0] == "diabetes"){
for (var i=0; i<all_labels.length; i++){
if (all_labels[i] == "Positive"){
all_labels[i] = 0;
} else{
all_labels[i] = 1;
}
}
}
var colorScaleCat = d3.scaleOrdinal().domain(all_labels).range(ColorsCategorical);
6 years ago
}
geometry.colors = [ new THREE.Color(colorScaleCat(datum[Category])) ];
6 years ago
let material = new THREE.PointsMaterial({
size: 35,
sizeAttenuation: false,
vertexColors: THREE.VertexColors,
map: circle_sprite,
transparent: true
});
let point = new THREE.Points(geometry, material);
hoverContainer.add(point);
}
function removeHighlights() {
hoverContainer.remove(...hoverContainer.children);
}
view.on("mouseleave", () => {
removeHighlights()
});
// Initial tooltip state
let tooltip_state = { display: "none" }
let tooltip_dimensions;
let tooltip_template = document.createRange().createContextualFragment(`<div id="tooltip" style="display: none; z-index: 2; position: absolute; pointer-events: none; font-size: 13px; width: 240px; text-align: center; line-height: 1; padding: 6px; background: white; font-family: sans-serif;">
<div id="point_tip" style="padding: 4px; margin-bottom: 4px;"></div>
<div id="group_tip" style="padding: 4px;"></div>
</div>`);
document.body.append(tooltip_template);
let $tooltip = document.querySelector('#tooltip');
let $point_tip = document.querySelector('#point_tip');
let $group_tip = document.querySelector('#group_tip');
function updateTooltip() {
if (all_labels[0] == undefined){
var colorScaleCat = d3.scaleOrdinal().domain(["No Category"]).range(["#C0C0C0"]);
}
else{
var colorScaleCat = d3.scaleOrdinal().domain(all_labels).range(ColorsCategorical);
}
$tooltip.style.display = tooltip_state.display;
$tooltip.style.left = tooltip_state.left + 'px';
$tooltip.style.top = tooltip_state.top + 'px';
$point_tip.innerText = tooltip_state[Category];
$point_tip.style.background = colorScaleCat(tooltip_state.color);
var tooltipComb = [];
tooltipComb = "Data set's dimensions: " + "\n";
if (tooltip_dimensions){
for (var i=0; i<tooltip_dimensions[0].length; i++){
if (tooltip_dimensions[0][i][0] == Category){
} else{
tooltipComb = tooltipComb + tooltip_dimensions[0][i];
tooltipComb = tooltipComb + "\n";
}
}
} else{
tooltipComb = "-";
}
$group_tip.innerText = tooltipComb;
}
6 years ago
function showTooltip(mouse_position, datum) {
let tooltip_width = 240;
let x_offset = tooltip_width + tooltip_width;
let y_offset = 30;
tooltip_state.display = "block";
tooltip_state.left = mouse_position[0] + x_offset;
tooltip_state.top = mouse_position[1] + y_offset;
if (all_labels[0] == undefined){
tooltip_state[Category] = "Point ID: " + datum.id;
tooltip_state.color = datum.id;
} else{
if (format[0] == "diabetes"){
if (datum[Category] == "1"){
tooltip_state[Category] = "Positive" + "(Point ID: " + datum.id + ")";
} else{
tooltip_state[Category] = "Negative" + " (Point ID: " + datum.id + ")";
}
} else{
tooltip_state[Category] = datum[Category] + " (Point ID: " + datum.id + ")";
}
tooltip_state.color = datum[Category];
6 years ago
}
tooltip_dimensions = [];
for (var i=0; i < dataFeatures.length - 1; i++){
if (datum.id == i){
tooltip_dimensions.push(Object.entries(dataFeatures[i]));
}
}
updateTooltip();
}
function hideTooltip() {
tooltip_state.display = "none";
updateTooltip();
}
}
6 years ago
6 years ago
}
function getViewport() { // Return the width and height of the main visualization
var viewPortWidth;
var viewPortHeight;
// the more standards compliant browsers (mozilla/netscape/opera/IE7) use window.innerWidth and window.innerHeight
if (typeof window.innerWidth != 'undefined') {
viewPortWidth = window.innerWidth,
viewPortHeight = window.innerHeight
}
// IE6 in standards compliant mode (i.e. with a valid doctype as the first line in the document)
else if (typeof document.documentElement != 'undefined'
&& typeof document.documentElement.clientWidth !=
'undefined' && document.documentElement.clientWidth != 0) {
viewPortWidth = document.documentElement.clientWidth,
viewPortHeight = document.documentElement.clientHeight
}
// older versions of IE
else {
viewPortWidth = document.getElementsByTagName('body')[0].clientWidth,
viewPortHeight = document.getElementsByTagName('body')[0].clientHeight
}
return [viewPortWidth, viewPortHeight];
}
6 years ago
function download(contentP, fileName, contentType) { // Download the file into the local disk.
var a = document.createElement("a");
var file = new Blob([contentP], {type: contentType});
a.href = URL.createObjectURL(file);
a.download = fileName;
a.click();
}
var measureSaves = 0; // Discrete id for each file
function SaveAnalysis(){ // Save the analysis into a .txt file
// Put their the points, the 2D points, and the parameters (plus the overall cost).
measureSaves = measureSaves + 1;
let dataset = document.getElementById("param-dataset").value;
let perplexity = document.getElementById("param-perplexity-value").value;
let learningRate = document.getElementById("param-learningrate-value").value;
let IterValue = document.getElementById("param-maxiter-value").value;
let parDist = document.getElementById("param-distance").value;
let parTrans = document.getElementById("param-transform").value;
let Parameters = [];
if (dataset == "empty"){
Parameters.push(new_file.name);
} else{
Parameters.push(dataset);
}
Parameters.push(perplexity);
Parameters.push(learningRate);
Parameters.push(IterValue);
Parameters.push(parDist);
Parameters.push(parTrans);
AllData = [];
if (cost[0] != undefined){
if (!returnVal){ // Add here if you want to save more parameters from a previous execution.
AllData = points.concat(points2d).concat(dist_list).concat(dist_list2d).concat(cost[0].toFixed(3)).concat(Parameters).concat(InitialFormDists).concat(InitialFormDists2D).concat(IterationsList).concat(ArrayWithCostsList);
6 years ago
} else {
AllData = points.concat(points2d).concat(cost[0].toFixed(3)).concat(Parameters).concat(IterationsList).concat(ArrayWithCostsList);
6 years ago
}
} else{
6 years ago
if (!returnVal){
AllData = points.concat(points2d).concat(dist_list).concat(dist_list2d).concat(overallCost).concat(Parameters).concat(InitialFormDists).concat(InitialFormDists2D).concat(IterationsList).concat(ArrayWithCostsList);
6 years ago
} else {
AllData = points.concat(points2d).concat(overallCost).concat(Parameters).concat(IterationsList).concat(ArrayWithCostsList);
6 years ago
}
}
6 years ago
download(JSON.stringify(AllData),'Analysis'+measureSaves+'.txt', 'text/plain');
}