StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
StackGenVis/run.py

780 lines
28 KiB

6 years ago
from flask import Flask, render_template, jsonify, request
from flask_pymongo import PyMongo
from flask_cors import CORS, cross_origin
import json
import collections
import numpy as np
5 years ago
import re
from numpy import array
6 years ago
import pandas as pd
import warnings
import copy
from joblib import Memory
5 years ago
from itertools import chain
6 years ago
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
5 years ago
from sklearn.pipeline import make_pipeline
6 years ago
from sklearn import model_selection
from sklearn.model_selection import GridSearchCV
from sklearn.manifold import MDS
5 years ago
from sklearn.manifold import TSNE
from sklearn.metrics import classification_report
from sklearn.preprocessing import scale
6 years ago
5 years ago
from mlxtend.classifier import StackingCVClassifier
from mlxtend.feature_selection import ColumnSelector
6 years ago
# This block of code is for the connection between the server, the database, and the client (plus routing).
# Access MongoDB
app = Flask(__name__)
app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb"
mongo = PyMongo(app)
cors = CORS(app, resources={r"/data/*": {"origins": "*"}})
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/Reset', methods=["GET", "POST"])
def Reset():
global DataRawLength
global DataResultsRaw
global RANDOM_SEED
RANDOM_SEED = 42
global XData
XData = []
global yData
yData = []
global algorithmList
algorithmList = []
global ClassifierIDsList
ClassifierIDsList = ''
# Initializing models
global classifiersId
classifiersId = []
global classifiersIDwithFI
classifiersIDwithFI = []
global classifiersIDPlusParams
classifiersIDPlusParams = []
global classifierID
classifierID = 0
global resultsList
resultsList = []
global RetrieveModelsList
RetrieveModelsList = []
global allParametersPerformancePerModel
allParametersPerformancePerModel = []
global all_classifiers
all_classifiers = []
global crossValidation
crossValidation = 3
global scoring
#scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted', 'neg_log_loss': 'neg_log_loss', 'r2': 'r2', 'neg_mean_absolute_error': 'neg_mean_absolute_error', 'neg_mean_absolute_error': 'neg_mean_absolute_error'}
scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted'}
global yPredictProb
yPredictProb = []
global loopFeatures
loopFeatures = 2
global columns
columns = []
global results
results = []
global target_names
target_names = []
return 'The reset was done!'
6 years ago
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequest', methods=["GET", "POST"])
def RetrieveFileName():
fileName = request.get_data().decode('utf8').replace("'", '"')
global featureSelection
featureSelection = request.get_data().decode('utf8').replace("'", '"')
featureSelection = json.loads(featureSelection)
6 years ago
global DataRawLength
global DataResultsRaw
5 years ago
global RANDOM_SEED
RANDOM_SEED = 42
global XData
XData = []
global yData
yData = []
global ClassifierIDsList
ClassifierIDsList = ''
global algorithmList
algorithmList = []
5 years ago
# Initializing models
global classifiersId
classifiersId = []
global classifiersIDwithFI
classifiersIDwithFI = []
global classifiersIDPlusParams
classifiersIDPlusParams = []
global classifierID
classifierID = 0
global RetrieveModelsList
RetrieveModelsList = []
5 years ago
global resultsList
resultsList = []
global allParametersPerformancePerModel
allParametersPerformancePerModel = []
global all_classifiers
all_classifiers = []
global crossValidation
crossValidation = 3
global scoring
#scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted', 'neg_log_loss': 'neg_log_loss', 'r2': 'r2', 'neg_mean_absolute_error': 'neg_mean_absolute_error', 'neg_mean_absolute_error': 'neg_mean_absolute_error'}
scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted'}
global yPredictProb
yPredictProb = []
5 years ago
global loopFeatures
loopFeatures = 2
global columns
columns = []
5 years ago
global results
results = []
global target_names
target_names = []
6 years ago
DataRawLength = -1
data = json.loads(fileName)
if data['fileName'] == 'BreastC':
CollectionDB = mongo.db.BreastC.find()
elif data['fileName'] == 'DiabetesC':
CollectionDB = mongo.db.DiabetesC.find()
else:
CollectionDB = mongo.db.IrisC.find()
DataResultsRaw = []
for index, item in enumerate(CollectionDB):
item['_id'] = str(item['_id'])
item['InstanceID'] = index
DataResultsRaw.append(item)
DataRawLength = len(DataResultsRaw)
5 years ago
DataSetSelection()
return 'Everything is okay'
# Sent data to client
@app.route('/data/ClientRequest', methods=["GET", "POST"])
def CollectionData():
json.dumps(DataResultsRaw)
response = {
6 years ago
'Collection': DataResultsRaw
}
return jsonify(response)
5 years ago
def DataSetSelection():
DataResults = copy.deepcopy(DataResultsRaw)
for dictionary in DataResultsRaw:
for key in dictionary.keys():
if (key.find('*') != -1):
target = key
continue
continue
DataResultsRaw.sort(key=lambda x: x[target], reverse=True)
DataResults.sort(key=lambda x: x[target], reverse=True)
for dictionary in DataResults:
del dictionary['_id']
del dictionary['InstanceID']
del dictionary[target]
AllTargets = [o[target] for o in DataResultsRaw]
AllTargetsFloatValues = []
previous = None
Class = 0
for i, value in enumerate(AllTargets):
if (i == 0):
previous = value
target_names.append(value)
if (value == previous):
AllTargetsFloatValues.append(Class)
else:
Class = Class + 1
target_names.append(value)
AllTargetsFloatValues.append(Class)
previous = value
ArrayDataResults = pd.DataFrame.from_dict(DataResults)
6 years ago
5 years ago
global XData, yData, RANDOM_SEED
XData, yData = ArrayDataResults, AllTargetsFloatValues
warnings.simplefilter('ignore')
return 'Everything is okay'
6 years ago
# Main function
if __name__ == '__main__':
app.run()
# Debugging and mirroring client
@app.route('/', defaults={'path': ''})
@app.route('/<path:path>')
def catch_all(path):
if app.debug:
return requests.get('http://localhost:8080/{}'.format(path)).text
return render_template("index.html")
6 years ago
# This block of code is for server computations
5 years ago
def column_index(df, query_cols):
cols = df.columns.values
sidx = np.argsort(cols)
return sidx[np.searchsorted(cols,query_cols,sorter=sidx)].tolist()
6 years ago
global mem
mem = Memory("./cache_dir")
5 years ago
def GridSearch(clf, params, FI):
global XData
global yData
global scoring
global target_names
6 years ago
grid = GridSearchCV(estimator=clf,
param_grid=params,
scoring=scoring,
5 years ago
cv=crossValidation,
6 years ago
refit='accuracy',
n_jobs = -1)
grid.fit(XData, yData)
6 years ago
cv_results = []
cv_results.append(grid.cv_results_)
df_cv_results = pd.DataFrame.from_dict(cv_results)
number_of_classifiers = len(df_cv_results.iloc[0][0])
number_of_columns = len(df_cv_results.iloc[0])
df_cv_results_per_item = []
df_cv_results_per_row = []
for i in range(number_of_classifiers):
df_cv_results_per_item = []
for column in df_cv_results.iloc[0]:
df_cv_results_per_item.append(column[i])
df_cv_results_per_row.append(df_cv_results_per_item)
df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns)
parameters = df_cv_results_classifiers['params']
PerClassMetrics = []
6 years ago
FeatureImp = []
5 years ago
PerFeatureAccuracy = []
global subset
5 years ago
global loopFeatures
global yPredictProb
global columns
columns = []
5 years ago
counter = 0
subset = XData
for i, eachClassifierParams in enumerate(grid.cv_results_['params']):
eachClassifierParamsDictList = {}
for key, value in eachClassifierParams.items():
Listvalue = []
Listvalue.append(value)
eachClassifierParamsDictList[key] = Listvalue
5 years ago
counter = counter + 1
grid = GridSearchCV(estimator=clf,
param_grid=eachClassifierParamsDictList,
scoring=scoring,
5 years ago
cv=crossValidation,
refit='accuracy',
n_jobs = -1)
5 years ago
if (featureSelection['featureSelection'] == ''):
subset = XData
else:
featureSelected = []
for indices, each in enumerate(XData.columns):
if (int(''.join(x for x in featureSelection['featureSelection'][loopFeatures] if x.isdigit())) == 1):
featureSelected.append(each)
loopFeatures = loopFeatures + 3
5 years ago
subset = XData[featureSelected]
element = (column_index(XData, featureSelected))
columns.append(element)
5 years ago
grid.fit(subset, yData)
if (FI == 0):
n_feats = XData.shape[1]
for i in range(n_feats):
scores = model_selection.cross_val_score(grid.best_estimator_, XData.values[:, i].reshape(-1, 1), yData, cv=crossValidation)
PerFeatureAccuracy.append(scores.mean())
yPredict = grid.predict(subset)
5 years ago
yPredictProb.append(grid.predict_proba(subset))
PerClassMetrics.append(classification_report(yData, yPredict, target_names=target_names, digits=2, output_dict=True))
if (FI == 1):
X = subset.values
Y = array(yData)
FeatureImp.append(class_feature_importance(X, Y, grid.best_estimator_.feature_importances_))
FeatureImpPandas = pd.DataFrame(FeatureImp)
PerClassMetricsPandas = pd.DataFrame(PerClassMetrics)
5 years ago
PerFeatureAccuracyPandas = pd.DataFrame(PerFeatureAccuracy)
return df_cv_results_classifiers, parameters, FeatureImpPandas, PerClassMetricsPandas, PerFeatureAccuracyPandas
def class_feature_importance(X, Y, feature_importances):
N, M = X.shape
X = scale(X)
out = {}
for c in set(Y):
out[c] = dict(
zip(range(N), np.mean(X[Y==c, :], axis=0)*feature_importances)
)
return out
#GridSearch = mem.cache(GridSearch)
6 years ago
5 years ago
def Preprocessing():
5 years ago
global resultsList
df_cv_results_classifiersList = []
parametersList = []
FeatureImportanceList = []
PerClassMetricsList = []
FeatureAccuracyList = []
for j, result in enumerate(resultsList):
df_cv_results_classifiersList.append(resultsList[j][0])
parametersList.append(resultsList[j][1])
FeatureImportanceList.append(resultsList[j][2])
PerClassMetricsList.append(resultsList[j][3])
FeatureAccuracyList.append(resultsList[j][4])
df_cv_results_classifiers = pd.concat(df_cv_results_classifiersList, ignore_index=True, sort=False)
parameters = pd.concat(parametersList, ignore_index=True, sort=False)
FeatureImportance = pd.concat(FeatureImportanceList, ignore_index=True, sort=False)
PerClassMetrics = pd.concat(PerClassMetricsList, ignore_index=True, sort=False)
FeatureAccuracy = pd.concat(FeatureAccuracyList, ignore_index=True, sort=False)
5 years ago
global factors
factors = [1,1,1,1,1,1]
5 years ago
global scoring
6 years ago
NumberofscoringMetrics = len(scoring)
5 years ago
global df_cv_results_classifiers_metrics
6 years ago
del df_cv_results_classifiers['params']
df_cv_results_classifiers_metrics = df_cv_results_classifiers.copy()
del df_cv_results_classifiers_metrics['mean_fit_time']
del df_cv_results_classifiers_metrics['mean_score_time']
5 years ago
df_cv_results_classifiers_metrics = df_cv_results_classifiers_metrics.ix[:, 0:NumberofscoringMetrics]
return [parameters,FeatureImportance,PerClassMetrics,FeatureAccuracy,df_cv_results_classifiers_metrics]
6 years ago
5 years ago
def sumPerMetric(factors):
6 years ago
sumPerClassifier = []
5 years ago
global df_cv_results_classifiers_metrics
6 years ago
for index, row in df_cv_results_classifiers_metrics.iterrows():
rowSum = 0
5 years ago
global scoring
lengthFactors = len(scoring)
for loop,elements in enumerate(row):
lengthFactors = lengthFactors - 1 + factors[loop]
rowSum = elements*factors[loop] + rowSum
sumPerClassifier.append(rowSum/lengthFactors)
return sumPerClassifier
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/factors', methods=["GET", "POST"])
def RetrieveFactors():
Factors = request.get_data().decode('utf8').replace("'", '"')
FactorsInt = json.loads(Factors)
global sumPerClassifierSel
global ModelSpaceMDSNew
global ModelSpaceTSNENew
sumPerClassifierSel = []
ModelSpaceMDSNew = []
ModelSpaceTSNENew = []
preProcessResults = []
preProcessResults = Preprocessing()
XClassifiers = preProcessResults[4]
flagLocal = 0
countRemovals = 0
for l,el in enumerate(FactorsInt['Factors']):
if el is 0:
XClassifiers.drop(XClassifiers.columns[[l-countRemovals]], axis=1, inplace=True)
counter = countRemovals + 1
flagLocal = 1
if flagLocal is 1:
ModelSpaceMDSNew = FunMDS(XClassifiers)
ModelSpaceTSNENew = FunTsne(XClassifiers)
ModelSpaceTSNENew = ModelSpaceTSNENew.tolist()
sumPerClassifierSel = sumPerMetric(FactorsInt['Factors'])
return 'Everything Okay'
@app.route('/data/UpdateOverv', methods=["GET", "POST"])
def UpdateOverview():
global sumPerClassifierSel
global ModelSpaceMDSNew
global ModelSpaceTSNENew
ResultsUpdateOverview = []
ResultsUpdateOverview.append(sumPerClassifierSel)
ResultsUpdateOverview.append(ModelSpaceMDSNew)
ResultsUpdateOverview.append(ModelSpaceTSNENew)
response = {
'Results': ResultsUpdateOverview
}
return jsonify(response)
5 years ago
5 years ago
def InitializeEnsemble():
preProcessResults = []
preProcessResults = Preprocessing()
sumPerClassifier = sumPerMetric(factors)
5 years ago
mergedPredList = zip(*yPredictProb)
mergedPredListListForm = []
for el in mergedPredList:
mergedPredListListForm.append(list(chain(*el)))
5 years ago
XClassifiers = preProcessResults[4]
5 years ago
PredictionSpace = FunTsne(mergedPredListListForm)
DataSpace = FunTsne(XData)
5 years ago
ModelSpaceMDS = FunMDS(XClassifiers)
ModelSpaceTSNE = FunTsne(XClassifiers)
ModelSpaceTSNE = ModelSpaceTSNE.tolist()
5 years ago
global ClassifierIDsList
key = 0
6 years ago
EnsembleModel(ClassifierIDsList, key)
5 years ago
PredictionSpaceList = PredictionSpace.tolist()
5 years ago
DataSpaceList = DataSpace.tolist()
ReturnResults(sumPerClassifier,ModelSpaceMDS,ModelSpaceTSNE,preProcessResults,DataSpaceList,PredictionSpaceList)
6 years ago
5 years ago
def ReturnResults(sumPerClassifier,ModelSpaceMDS,ModelSpaceTSNE,preProcessResults,DataSpaceList,PredictionSpaceList):
5 years ago
global Results
Results = []
5 years ago
FeatureImportance = preProcessResults[1]
PerClassMetrics = preProcessResults[2]
FeatureAccuracy = preProcessResults[3]
FeatureImportance = FeatureImportance.to_json(orient='records')
PerClassMetrics = PerClassMetrics.to_json(orient='records')
5 years ago
FeatureAccuracy = FeatureAccuracy.to_json(orient='records')
XDataJSON = XData.columns.tolist()
Results.append(json.dumps(sumPerClassifier)) # Position: 0
5 years ago
Results.append(json.dumps(ModelSpaceMDS)) # Position: 1
5 years ago
Results.append(json.dumps(classifiersIDPlusParams)) # Position: 2
Results.append(FeatureImportance) # Position: 3
Results.append(PerClassMetrics) # Position: 4
Results.append(json.dumps(target_names)) # Position: 5
Results.append(FeatureAccuracy) # Position: 6
Results.append(json.dumps(XDataJSON)) # Position: 7
Results.append(json.dumps(classifiersId)) # Position: 8
Results.append(json.dumps(classifiersIDwithFI)) # Position: 9
Results.append(json.dumps(DataSpaceList)) # Position: 10
Results.append(json.dumps(PredictionSpaceList)) # Position: 11
5 years ago
Results.append(json.dumps(ModelSpaceTSNE)) # Position: 12
5 years ago
return Results
6 years ago
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequestSelPoin', methods=["GET", "POST"])
def RetrieveSelClassifiersID():
5 years ago
global ClassifierIDsList
6 years ago
ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"')
key = 1
EnsembleModel(ClassifierIDsList, key)
return 'Everything Okay'
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/FeaturesSelection', methods=["GET", "POST"])
def FeatureSelPerModel():
global featureSelection
global loopFeatures
global ClassifierIDsList
RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"')
RetrieveModelsPar = json.loads(RetrieveModelsPar)
RetrieveModelsParRed = []
print(RetrieveModelsPar['brushedAll']) # FIX THIS THING!!!!!
5 years ago
#for j, i in enumerate(RetrieveModelsPar['brushedAll']):
# print(j)
#RetrieveModelsParRed = [for j, i in enumerate(RetrieveModelsPar['brushedAll']) if j not in ClassifierIDsList]
5 years ago
#RetrieveModelsParPandas = pd.DataFrame(RetrieveModelsParRed)
RetrieveModelsParPandas = pd.DataFrame(RetrieveModelsPar)
RetrieveModelsParPandas = RetrieveModelsParPandas.drop(columns=['performance'])
RetrieveModelsParPandas = RetrieveModelsParPandas.to_dict(orient='list')
print(RetrieveModelsParPandas)
RetrieveModels = {}
for key, value in RetrieveModelsParPandas.items():
withoutDuplicates = Remove(value)
RetrieveModels[key] = withoutDuplicates
global RetrieveModelsListNew
RetrieveModelsListNew.append(RetrieveModels)
loopFeatures = 2
featureSelection = request.get_data().decode('utf8').replace("'", '"')
featureSelection = json.loads(featureSelection)
global algorithmList
results = []
for index, eachalgor in enumerate(algorithmList):
if (eachalgor == 'KNN'):
clf = KNeighborsClassifier()
params = RetrieveModelsListNew[index]
IF = 0
results.append(GridSearch(clf, params, IF))
resultsList.append(results[0])
else:
clf = RandomForestClassifier()
params = RetrieveModelsListNew[index]
IF = 1
results.append(GridSearch(clf, params, IF))
resultsList.append(results[0])
key = 2
EnsembleModel(ClassifierIDsList, key)
return 'Everything Okay'
5 years ago
def FunMDS (data):
mds = MDS(n_components=2, random_state=RANDOM_SEED)
XTransformed = mds.fit_transform(data).T
XTransformed = XTransformed.tolist()
return XTransformed
def FunTsne (data):
tsne = TSNE(n_components=2).fit_transform(data)
tsne.shape
return tsne
6 years ago
def EnsembleModel (ClassifierIDsList, keyRetrieved):
5 years ago
global scores
scores = []
global all_classifiersSelection
all_classifiersSelection = []
global columns
5 years ago
global all_classifiers
6 years ago
if (keyRetrieved == 0):
columnsInit = []
5 years ago
all_classifiers = []
columnsInit = [XData.columns.get_loc(c) for c in XData.columns if c in XData]
5 years ago
for index, eachelem in enumerate(algorithmList):
if (eachelem == 'KNN'):
for each in resultsList[index][1]:
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), KNeighborsClassifier().set_params(**each)))
5 years ago
else:
for each in resultsList[index][1]:
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), RandomForestClassifier().set_params(**each)))
6 years ago
5 years ago
lr = LogisticRegression()
6 years ago
sclf = StackingCVClassifier(classifiers=all_classifiers,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
elif (keyRetrieved == 1):
5 years ago
ClassifierIDsList = json.loads(ClassifierIDsList)
for loop in ClassifierIDsList['ClassifiersList']:
temp = [int(s) for s in re.findall(r'\b\d+\b', loop)]
all_classifiersSelection.append(all_classifiers[temp[0]])
6 years ago
5 years ago
lr = LogisticRegression()
sclf = StackingCVClassifier(classifiers=all_classifiersSelection,
6 years ago
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
else:
columnsReduce = columns.copy()
lr = LogisticRegression()
if (len(all_classifiersSelection) == 0):
all_classifiers = []
for index, eachelem in enumerate(algorithmList):
if (eachelem == 'KNN'):
for j, each in enumerate(resultsList[index][1]):
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), KNeighborsClassifier().set_params(**each)))
del columnsReduce[0:len(resultsList[index][1])]
else:
for j, each in enumerate(resultsList[index][1]):
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), RandomForestClassifier().set_params(**each)))
del columnsReduce[0:len(resultsList[index][1])]
sclf = StackingCVClassifier(classifiers=all_classifiers,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
else:
for index, eachelem in enumerate(algorithmList):
if (eachelem == 'KNN'):
for j, each in enumerate(resultsList[index][1]):
all_classifiersSelection.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), KNeighborsClassifier().set_params(**each)))
del columnsReduce[0:len(resultsList[index][1])]
else:
for j, each in enumerate(resultsList[index][1]):
all_classifiersSelection.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), RandomForestClassifier().set_params(**each)))
del columnsReduce[0:len(resultsList[index][1])]
sclf = StackingCVClassifier(classifiers=all_classifiersSelection,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
for clf, label in zip([sclf],
['StackingClassifier']):
scores = model_selection.cross_val_score(clf, XData, yData,
cv=crossValidation, scoring='accuracy')
5 years ago
6 years ago
5 years ago
# Sending the final results to be visualized as a line plot
@app.route('/data/SendFinalResultsBacktoVisualize', methods=["GET", "POST"])
def SendToPlotFinalResults():
FinalResults = []
FinalResults.append(scores.mean())
FinalResults.append(scores.std())
response = {
'FinalResults': FinalResults
}
return jsonify(response)
6 years ago
# Sending the overview classifiers' results to be visualized as a scatterplot
@app.route('/data/PlotClassifiers', methods=["GET", "POST"])
def SendToPlot():
while (len(DataResultsRaw) != DataRawLength):
pass
InitializeEnsemble()
response = {
5 years ago
'OverviewResults': Results
6 years ago
}
5 years ago
return jsonify(response)
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"])
def RetrieveModel():
global RetrievedModel
RetrievedModel = request.get_data().decode('utf8').replace("'", '"')
RetrievedModel = json.loads(RetrievedModel)
global parametersPerformancePerModel
parametersPerformancePerModel = []
global algorithms
algorithms = RetrievedModel['Algorithms']
for eachAlgor in algorithms:
if (eachAlgor) == 'KNN':
clf = KNeighborsClassifier()
params = {'n_neighbors': list(range(1, 25)), 'weights': ['uniform', 'distance'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski']}
else:
clf = RandomForestClassifier()
params = {'n_estimators': list(range(80, 120)), 'criterion': ['gini', 'entropy']}
GridSearchForParameters(clf, params)
SendEachClassifiersPerformanceToVisualize()
return 'Everything Okay'
def GridSearchForParameters(clf, params):
grid = GridSearchCV(estimator=clf,
param_grid=params,
scoring='accuracy',
cv=crossValidation,
n_jobs = -1)
grid.fit(XData, yData)
cv_results = []
cv_results.append(grid.cv_results_)
df_cv_results = pd.DataFrame.from_dict(cv_results)
number_of_classifiers = len(df_cv_results.iloc[0][0])
number_of_columns = len(df_cv_results.iloc[0])
df_cv_results_per_item = []
df_cv_results_per_row = []
for i in range(number_of_classifiers):
df_cv_results_per_item = []
for column in df_cv_results.iloc[0]:
df_cv_results_per_item.append(column[i])
df_cv_results_per_row.append(df_cv_results_per_item)
df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns)
global allParametersPerformancePerModel
parametersPerformancePerModel = df_cv_results_classifiers[['mean_test_score','params']]
parametersPerformancePerModel = parametersPerformancePerModel.to_json()
allParametersPerformancePerModel.append(parametersPerformancePerModel)
return 'Everything is okay'
#GridSearchForParameters = mem.cache(GridSearchForParameters)
# Sending each model's results
@app.route('/data/PerformanceForEachModel', methods=["GET", "POST"])
def SendEachClassifiersPerformanceToVisualize ():
response = {
'PerformancePerModel': allParametersPerformancePerModel
}
return jsonify(response)
def Remove(duplicate):
final_list = []
for num in duplicate:
if num not in final_list:
final_list.append(num)
return final_list
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/SendBrushedParam', methods=["GET", "POST"])
def RetrieveModelsParam():
RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"')
RetrieveModelsPar = json.loads(RetrieveModelsPar)
algorithm = RetrieveModelsPar['algorithm']
RetrieveModelsParPandas = pd.DataFrame(RetrieveModelsPar['brushed'])
RetrieveModelsParPandas = RetrieveModelsParPandas.drop(columns=['performance'])
5 years ago
RetrieveModelsParPandas = RetrieveModelsParPandas.drop(columns=['model'])
5 years ago
RetrieveModelsParPandas = RetrieveModelsParPandas.to_dict(orient='list')
RetrieveModels = {}
for key, value in RetrieveModelsParPandas.items():
withoutDuplicates = Remove(value)
RetrieveModels[key] = withoutDuplicates
global RetrieveModelsList
RetrieveModelsList.append(RetrieveModels)
5 years ago
global classifierID
global algorithmList
results = []
algorithmList.append(algorithm)
if (algorithm == 'KNN'):
clf = KNeighborsClassifier()
params = RetrieveModels
IF = 0
results.append(GridSearch(clf, params, IF))
resultsList.append(results[0])
for j, oneClassifier in enumerate(results[0][1]):
classifiersId.append(classifierID)
classifiersIDPlusParams.append(classifierID)
classifierID = classifierID + 1
else:
clf = RandomForestClassifier()
params = RetrieveModels
IF = 1
results.append(GridSearch(clf, params, IF))
resultsList.append(results[0])
for oneClassifier, j in enumerate(results[0][1]):
classifiersIDPlusParams.append(classifierID)
classifiersIDwithFI.append(classifierID)
classifierID = classifierID + 1
return 'Everything Okay'