StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
StackGenVis/run.py

780 lines
28 KiB

from flask import Flask, render_template, jsonify, request
from flask_pymongo import PyMongo
from flask_cors import CORS, cross_origin
import json
import collections
import numpy as np
import re
from numpy import array
import pandas as pd
import warnings
import copy
from joblib import Memory
from itertools import chain
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import make_pipeline
from sklearn import model_selection
from sklearn.model_selection import GridSearchCV
from sklearn.manifold import MDS
from sklearn.manifold import TSNE
from sklearn.metrics import classification_report
from sklearn.preprocessing import scale
from mlxtend.classifier import StackingCVClassifier
from mlxtend.feature_selection import ColumnSelector
# This block of code is for the connection between the server, the database, and the client (plus routing).
# Access MongoDB
app = Flask(__name__)
app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb"
mongo = PyMongo(app)
cors = CORS(app, resources={r"/data/*": {"origins": "*"}})
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/Reset', methods=["GET", "POST"])
def Reset():
global DataRawLength
global DataResultsRaw
global RANDOM_SEED
RANDOM_SEED = 42
global XData
XData = []
global yData
yData = []
global algorithmList
algorithmList = []
global ClassifierIDsList
ClassifierIDsList = ''
# Initializing models
global classifiersId
classifiersId = []
global classifiersIDwithFI
classifiersIDwithFI = []
global classifiersIDPlusParams
classifiersIDPlusParams = []
global classifierID
classifierID = 0
global resultsList
resultsList = []
global RetrieveModelsList
RetrieveModelsList = []
global allParametersPerformancePerModel
allParametersPerformancePerModel = []
global all_classifiers
all_classifiers = []
global crossValidation
crossValidation = 3
global scoring
#scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted', 'neg_log_loss': 'neg_log_loss', 'r2': 'r2', 'neg_mean_absolute_error': 'neg_mean_absolute_error', 'neg_mean_absolute_error': 'neg_mean_absolute_error'}
scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted'}
global yPredictProb
yPredictProb = []
global loopFeatures
loopFeatures = 2
global columns
columns = []
global results
results = []
global target_names
target_names = []
return 'The reset was done!'
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequest', methods=["GET", "POST"])
def RetrieveFileName():
fileName = request.get_data().decode('utf8').replace("'", '"')
global featureSelection
featureSelection = request.get_data().decode('utf8').replace("'", '"')
featureSelection = json.loads(featureSelection)
global DataRawLength
global DataResultsRaw
global RANDOM_SEED
RANDOM_SEED = 42
global XData
XData = []
global yData
yData = []
global ClassifierIDsList
ClassifierIDsList = ''
global algorithmList
algorithmList = []
# Initializing models
global classifiersId
classifiersId = []
global classifiersIDwithFI
classifiersIDwithFI = []
global classifiersIDPlusParams
classifiersIDPlusParams = []
global classifierID
classifierID = 0
global RetrieveModelsList
RetrieveModelsList = []
global resultsList
resultsList = []
global allParametersPerformancePerModel
allParametersPerformancePerModel = []
global all_classifiers
all_classifiers = []
global crossValidation
crossValidation = 3
global scoring
#scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted', 'neg_log_loss': 'neg_log_loss', 'r2': 'r2', 'neg_mean_absolute_error': 'neg_mean_absolute_error', 'neg_mean_absolute_error': 'neg_mean_absolute_error'}
scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted'}
global yPredictProb
yPredictProb = []
global loopFeatures
loopFeatures = 2
global columns
columns = []
global results
results = []
global target_names
target_names = []
DataRawLength = -1
data = json.loads(fileName)
if data['fileName'] == 'BreastC':
CollectionDB = mongo.db.BreastC.find()
elif data['fileName'] == 'DiabetesC':
CollectionDB = mongo.db.DiabetesC.find()
else:
CollectionDB = mongo.db.IrisC.find()
DataResultsRaw = []
for index, item in enumerate(CollectionDB):
item['_id'] = str(item['_id'])
item['InstanceID'] = index
DataResultsRaw.append(item)
DataRawLength = len(DataResultsRaw)
DataSetSelection()
return 'Everything is okay'
# Sent data to client
@app.route('/data/ClientRequest', methods=["GET", "POST"])
def CollectionData():
json.dumps(DataResultsRaw)
response = {
'Collection': DataResultsRaw
}
return jsonify(response)
def DataSetSelection():
DataResults = copy.deepcopy(DataResultsRaw)
for dictionary in DataResultsRaw:
for key in dictionary.keys():
if (key.find('*') != -1):
target = key
continue
continue
DataResultsRaw.sort(key=lambda x: x[target], reverse=True)
DataResults.sort(key=lambda x: x[target], reverse=True)
for dictionary in DataResults:
del dictionary['_id']
del dictionary['InstanceID']
del dictionary[target]
AllTargets = [o[target] for o in DataResultsRaw]
AllTargetsFloatValues = []
previous = None
Class = 0
for i, value in enumerate(AllTargets):
if (i == 0):
previous = value
target_names.append(value)
if (value == previous):
AllTargetsFloatValues.append(Class)
else:
Class = Class + 1
target_names.append(value)
AllTargetsFloatValues.append(Class)
previous = value
ArrayDataResults = pd.DataFrame.from_dict(DataResults)
global XData, yData, RANDOM_SEED
XData, yData = ArrayDataResults, AllTargetsFloatValues
warnings.simplefilter('ignore')
return 'Everything is okay'
# Main function
if __name__ == '__main__':
app.run()
# Debugging and mirroring client
@app.route('/', defaults={'path': ''})
@app.route('/<path:path>')
def catch_all(path):
if app.debug:
return requests.get('http://localhost:8080/{}'.format(path)).text
return render_template("index.html")
# This block of code is for server computations
def column_index(df, query_cols):
cols = df.columns.values
sidx = np.argsort(cols)
return sidx[np.searchsorted(cols,query_cols,sorter=sidx)].tolist()
global mem
mem = Memory("./cache_dir")
def GridSearch(clf, params, FI):
global XData
global yData
global scoring
global target_names
grid = GridSearchCV(estimator=clf,
param_grid=params,
scoring=scoring,
cv=crossValidation,
refit='accuracy',
n_jobs = -1)
grid.fit(XData, yData)
cv_results = []
cv_results.append(grid.cv_results_)
df_cv_results = pd.DataFrame.from_dict(cv_results)
number_of_classifiers = len(df_cv_results.iloc[0][0])
number_of_columns = len(df_cv_results.iloc[0])
df_cv_results_per_item = []
df_cv_results_per_row = []
for i in range(number_of_classifiers):
df_cv_results_per_item = []
for column in df_cv_results.iloc[0]:
df_cv_results_per_item.append(column[i])
df_cv_results_per_row.append(df_cv_results_per_item)
df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns)
parameters = df_cv_results_classifiers['params']
PerClassMetrics = []
FeatureImp = []
PerFeatureAccuracy = []
global subset
global loopFeatures
global yPredictProb
global columns
columns = []
counter = 0
subset = XData
for i, eachClassifierParams in enumerate(grid.cv_results_['params']):
eachClassifierParamsDictList = {}
for key, value in eachClassifierParams.items():
Listvalue = []
Listvalue.append(value)
eachClassifierParamsDictList[key] = Listvalue
counter = counter + 1
grid = GridSearchCV(estimator=clf,
param_grid=eachClassifierParamsDictList,
scoring=scoring,
cv=crossValidation,
refit='accuracy',
n_jobs = -1)
if (featureSelection['featureSelection'] == ''):
subset = XData
else:
featureSelected = []
for indices, each in enumerate(XData.columns):
if (int(''.join(x for x in featureSelection['featureSelection'][loopFeatures] if x.isdigit())) == 1):
featureSelected.append(each)
loopFeatures = loopFeatures + 3
subset = XData[featureSelected]
element = (column_index(XData, featureSelected))
columns.append(element)
grid.fit(subset, yData)
if (FI == 0):
n_feats = XData.shape[1]
for i in range(n_feats):
scores = model_selection.cross_val_score(grid.best_estimator_, XData.values[:, i].reshape(-1, 1), yData, cv=crossValidation)
PerFeatureAccuracy.append(scores.mean())
yPredict = grid.predict(subset)
yPredictProb.append(grid.predict_proba(subset))
PerClassMetrics.append(classification_report(yData, yPredict, target_names=target_names, digits=2, output_dict=True))
if (FI == 1):
X = subset.values
Y = array(yData)
FeatureImp.append(class_feature_importance(X, Y, grid.best_estimator_.feature_importances_))
FeatureImpPandas = pd.DataFrame(FeatureImp)
PerClassMetricsPandas = pd.DataFrame(PerClassMetrics)
PerFeatureAccuracyPandas = pd.DataFrame(PerFeatureAccuracy)
return df_cv_results_classifiers, parameters, FeatureImpPandas, PerClassMetricsPandas, PerFeatureAccuracyPandas
def class_feature_importance(X, Y, feature_importances):
N, M = X.shape
X = scale(X)
out = {}
for c in set(Y):
out[c] = dict(
zip(range(N), np.mean(X[Y==c, :], axis=0)*feature_importances)
)
return out
#GridSearch = mem.cache(GridSearch)
def Preprocessing():
global resultsList
df_cv_results_classifiersList = []
parametersList = []
FeatureImportanceList = []
PerClassMetricsList = []
FeatureAccuracyList = []
for j, result in enumerate(resultsList):
df_cv_results_classifiersList.append(resultsList[j][0])
parametersList.append(resultsList[j][1])
FeatureImportanceList.append(resultsList[j][2])
PerClassMetricsList.append(resultsList[j][3])
FeatureAccuracyList.append(resultsList[j][4])
df_cv_results_classifiers = pd.concat(df_cv_results_classifiersList, ignore_index=True, sort=False)
parameters = pd.concat(parametersList, ignore_index=True, sort=False)
FeatureImportance = pd.concat(FeatureImportanceList, ignore_index=True, sort=False)
PerClassMetrics = pd.concat(PerClassMetricsList, ignore_index=True, sort=False)
FeatureAccuracy = pd.concat(FeatureAccuracyList, ignore_index=True, sort=False)
global factors
factors = [1,1,1,1,1,1]
global scoring
NumberofscoringMetrics = len(scoring)
global df_cv_results_classifiers_metrics
del df_cv_results_classifiers['params']
df_cv_results_classifiers_metrics = df_cv_results_classifiers.copy()
del df_cv_results_classifiers_metrics['mean_fit_time']
del df_cv_results_classifiers_metrics['mean_score_time']
df_cv_results_classifiers_metrics = df_cv_results_classifiers_metrics.ix[:, 0:NumberofscoringMetrics]
return [parameters,FeatureImportance,PerClassMetrics,FeatureAccuracy,df_cv_results_classifiers_metrics]
def sumPerMetric(factors):
sumPerClassifier = []
global df_cv_results_classifiers_metrics
for index, row in df_cv_results_classifiers_metrics.iterrows():
rowSum = 0
global scoring
lengthFactors = len(scoring)
for loop,elements in enumerate(row):
lengthFactors = lengthFactors - 1 + factors[loop]
rowSum = elements*factors[loop] + rowSum
sumPerClassifier.append(rowSum/lengthFactors)
return sumPerClassifier
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/factors', methods=["GET", "POST"])
def RetrieveFactors():
Factors = request.get_data().decode('utf8').replace("'", '"')
FactorsInt = json.loads(Factors)
global sumPerClassifierSel
global ModelSpaceMDSNew
global ModelSpaceTSNENew
sumPerClassifierSel = []
ModelSpaceMDSNew = []
ModelSpaceTSNENew = []
preProcessResults = []
preProcessResults = Preprocessing()
XClassifiers = preProcessResults[4]
flagLocal = 0
countRemovals = 0
for l,el in enumerate(FactorsInt['Factors']):
if el is 0:
XClassifiers.drop(XClassifiers.columns[[l-countRemovals]], axis=1, inplace=True)
counter = countRemovals + 1
flagLocal = 1
if flagLocal is 1:
ModelSpaceMDSNew = FunMDS(XClassifiers)
ModelSpaceTSNENew = FunTsne(XClassifiers)
ModelSpaceTSNENew = ModelSpaceTSNENew.tolist()
sumPerClassifierSel = sumPerMetric(FactorsInt['Factors'])
return 'Everything Okay'
@app.route('/data/UpdateOverv', methods=["GET", "POST"])
def UpdateOverview():
global sumPerClassifierSel
global ModelSpaceMDSNew
global ModelSpaceTSNENew
ResultsUpdateOverview = []
ResultsUpdateOverview.append(sumPerClassifierSel)
ResultsUpdateOverview.append(ModelSpaceMDSNew)
ResultsUpdateOverview.append(ModelSpaceTSNENew)
response = {
'Results': ResultsUpdateOverview
}
return jsonify(response)
def InitializeEnsemble():
preProcessResults = []
preProcessResults = Preprocessing()
sumPerClassifier = sumPerMetric(factors)
mergedPredList = zip(*yPredictProb)
mergedPredListListForm = []
for el in mergedPredList:
mergedPredListListForm.append(list(chain(*el)))
XClassifiers = preProcessResults[4]
PredictionSpace = FunTsne(mergedPredListListForm)
DataSpace = FunTsne(XData)
ModelSpaceMDS = FunMDS(XClassifiers)
ModelSpaceTSNE = FunTsne(XClassifiers)
ModelSpaceTSNE = ModelSpaceTSNE.tolist()
global ClassifierIDsList
key = 0
EnsembleModel(ClassifierIDsList, key)
PredictionSpaceList = PredictionSpace.tolist()
DataSpaceList = DataSpace.tolist()
ReturnResults(sumPerClassifier,ModelSpaceMDS,ModelSpaceTSNE,preProcessResults,DataSpaceList,PredictionSpaceList)
def ReturnResults(sumPerClassifier,ModelSpaceMDS,ModelSpaceTSNE,preProcessResults,DataSpaceList,PredictionSpaceList):
global Results
Results = []
FeatureImportance = preProcessResults[1]
PerClassMetrics = preProcessResults[2]
FeatureAccuracy = preProcessResults[3]
FeatureImportance = FeatureImportance.to_json(orient='records')
PerClassMetrics = PerClassMetrics.to_json(orient='records')
FeatureAccuracy = FeatureAccuracy.to_json(orient='records')
XDataJSON = XData.columns.tolist()
Results.append(json.dumps(sumPerClassifier)) # Position: 0
Results.append(json.dumps(ModelSpaceMDS)) # Position: 1
Results.append(json.dumps(classifiersIDPlusParams)) # Position: 2
Results.append(FeatureImportance) # Position: 3
Results.append(PerClassMetrics) # Position: 4
Results.append(json.dumps(target_names)) # Position: 5
Results.append(FeatureAccuracy) # Position: 6
Results.append(json.dumps(XDataJSON)) # Position: 7
Results.append(json.dumps(classifiersId)) # Position: 8
Results.append(json.dumps(classifiersIDwithFI)) # Position: 9
Results.append(json.dumps(DataSpaceList)) # Position: 10
Results.append(json.dumps(PredictionSpaceList)) # Position: 11
Results.append(json.dumps(ModelSpaceTSNE)) # Position: 12
return Results
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequestSelPoin', methods=["GET", "POST"])
def RetrieveSelClassifiersID():
global ClassifierIDsList
ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"')
key = 1
EnsembleModel(ClassifierIDsList, key)
return 'Everything Okay'
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/FeaturesSelection', methods=["GET", "POST"])
def FeatureSelPerModel():
global featureSelection
global loopFeatures
global ClassifierIDsList
RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"')
RetrieveModelsPar = json.loads(RetrieveModelsPar)
RetrieveModelsParRed = []
print(RetrieveModelsPar['brushedAll']) # FIX THIS THING!!!!!
#for j, i in enumerate(RetrieveModelsPar['brushedAll']):
# print(j)
#RetrieveModelsParRed = [for j, i in enumerate(RetrieveModelsPar['brushedAll']) if j not in ClassifierIDsList]
#RetrieveModelsParPandas = pd.DataFrame(RetrieveModelsParRed)
RetrieveModelsParPandas = pd.DataFrame(RetrieveModelsPar)
RetrieveModelsParPandas = RetrieveModelsParPandas.drop(columns=['performance'])
RetrieveModelsParPandas = RetrieveModelsParPandas.to_dict(orient='list')
print(RetrieveModelsParPandas)
RetrieveModels = {}
for key, value in RetrieveModelsParPandas.items():
withoutDuplicates = Remove(value)
RetrieveModels[key] = withoutDuplicates
global RetrieveModelsListNew
RetrieveModelsListNew.append(RetrieveModels)
loopFeatures = 2
featureSelection = request.get_data().decode('utf8').replace("'", '"')
featureSelection = json.loads(featureSelection)
global algorithmList
results = []
for index, eachalgor in enumerate(algorithmList):
if (eachalgor == 'KNN'):
clf = KNeighborsClassifier()
params = RetrieveModelsListNew[index]
IF = 0
results.append(GridSearch(clf, params, IF))
resultsList.append(results[0])
else:
clf = RandomForestClassifier()
params = RetrieveModelsListNew[index]
IF = 1
results.append(GridSearch(clf, params, IF))
resultsList.append(results[0])
key = 2
EnsembleModel(ClassifierIDsList, key)
return 'Everything Okay'
def FunMDS (data):
mds = MDS(n_components=2, random_state=RANDOM_SEED)
XTransformed = mds.fit_transform(data).T
XTransformed = XTransformed.tolist()
return XTransformed
def FunTsne (data):
tsne = TSNE(n_components=2).fit_transform(data)
tsne.shape
return tsne
def EnsembleModel (ClassifierIDsList, keyRetrieved):
global scores
scores = []
global all_classifiersSelection
all_classifiersSelection = []
global columns
global all_classifiers
if (keyRetrieved == 0):
columnsInit = []
all_classifiers = []
columnsInit = [XData.columns.get_loc(c) for c in XData.columns if c in XData]
for index, eachelem in enumerate(algorithmList):
if (eachelem == 'KNN'):
for each in resultsList[index][1]:
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), KNeighborsClassifier().set_params(**each)))
else:
for each in resultsList[index][1]:
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), RandomForestClassifier().set_params(**each)))
lr = LogisticRegression()
sclf = StackingCVClassifier(classifiers=all_classifiers,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
elif (keyRetrieved == 1):
ClassifierIDsList = json.loads(ClassifierIDsList)
for loop in ClassifierIDsList['ClassifiersList']:
temp = [int(s) for s in re.findall(r'\b\d+\b', loop)]
all_classifiersSelection.append(all_classifiers[temp[0]])
lr = LogisticRegression()
sclf = StackingCVClassifier(classifiers=all_classifiersSelection,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
else:
columnsReduce = columns.copy()
lr = LogisticRegression()
if (len(all_classifiersSelection) == 0):
all_classifiers = []
for index, eachelem in enumerate(algorithmList):
if (eachelem == 'KNN'):
for j, each in enumerate(resultsList[index][1]):
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), KNeighborsClassifier().set_params(**each)))
del columnsReduce[0:len(resultsList[index][1])]
else:
for j, each in enumerate(resultsList[index][1]):
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), RandomForestClassifier().set_params(**each)))
del columnsReduce[0:len(resultsList[index][1])]
sclf = StackingCVClassifier(classifiers=all_classifiers,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
else:
for index, eachelem in enumerate(algorithmList):
if (eachelem == 'KNN'):
for j, each in enumerate(resultsList[index][1]):
all_classifiersSelection.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), KNeighborsClassifier().set_params(**each)))
del columnsReduce[0:len(resultsList[index][1])]
else:
for j, each in enumerate(resultsList[index][1]):
all_classifiersSelection.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), RandomForestClassifier().set_params(**each)))
del columnsReduce[0:len(resultsList[index][1])]
sclf = StackingCVClassifier(classifiers=all_classifiersSelection,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
for clf, label in zip([sclf],
['StackingClassifier']):
scores = model_selection.cross_val_score(clf, XData, yData,
cv=crossValidation, scoring='accuracy')
# Sending the final results to be visualized as a line plot
@app.route('/data/SendFinalResultsBacktoVisualize', methods=["GET", "POST"])
def SendToPlotFinalResults():
FinalResults = []
FinalResults.append(scores.mean())
FinalResults.append(scores.std())
response = {
'FinalResults': FinalResults
}
return jsonify(response)
# Sending the overview classifiers' results to be visualized as a scatterplot
@app.route('/data/PlotClassifiers', methods=["GET", "POST"])
def SendToPlot():
while (len(DataResultsRaw) != DataRawLength):
pass
InitializeEnsemble()
response = {
'OverviewResults': Results
}
return jsonify(response)
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"])
def RetrieveModel():
global RetrievedModel
RetrievedModel = request.get_data().decode('utf8').replace("'", '"')
RetrievedModel = json.loads(RetrievedModel)
global parametersPerformancePerModel
parametersPerformancePerModel = []
global algorithms
algorithms = RetrievedModel['Algorithms']
for eachAlgor in algorithms:
if (eachAlgor) == 'KNN':
clf = KNeighborsClassifier()
params = {'n_neighbors': list(range(1, 25)), 'weights': ['uniform', 'distance'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski']}
else:
clf = RandomForestClassifier()
params = {'n_estimators': list(range(80, 120)), 'criterion': ['gini', 'entropy']}
GridSearchForParameters(clf, params)
SendEachClassifiersPerformanceToVisualize()
return 'Everything Okay'
def GridSearchForParameters(clf, params):
grid = GridSearchCV(estimator=clf,
param_grid=params,
scoring='accuracy',
cv=crossValidation,
n_jobs = -1)
grid.fit(XData, yData)
cv_results = []
cv_results.append(grid.cv_results_)
df_cv_results = pd.DataFrame.from_dict(cv_results)
number_of_classifiers = len(df_cv_results.iloc[0][0])
number_of_columns = len(df_cv_results.iloc[0])
df_cv_results_per_item = []
df_cv_results_per_row = []
for i in range(number_of_classifiers):
df_cv_results_per_item = []
for column in df_cv_results.iloc[0]:
df_cv_results_per_item.append(column[i])
df_cv_results_per_row.append(df_cv_results_per_item)
df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns)
global allParametersPerformancePerModel
parametersPerformancePerModel = df_cv_results_classifiers[['mean_test_score','params']]
parametersPerformancePerModel = parametersPerformancePerModel.to_json()
allParametersPerformancePerModel.append(parametersPerformancePerModel)
return 'Everything is okay'
#GridSearchForParameters = mem.cache(GridSearchForParameters)
# Sending each model's results
@app.route('/data/PerformanceForEachModel', methods=["GET", "POST"])
def SendEachClassifiersPerformanceToVisualize ():
response = {
'PerformancePerModel': allParametersPerformancePerModel
}
return jsonify(response)
def Remove(duplicate):
final_list = []
for num in duplicate:
if num not in final_list:
final_list.append(num)
return final_list
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/SendBrushedParam', methods=["GET", "POST"])
def RetrieveModelsParam():
RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"')
RetrieveModelsPar = json.loads(RetrieveModelsPar)
algorithm = RetrieveModelsPar['algorithm']
RetrieveModelsParPandas = pd.DataFrame(RetrieveModelsPar['brushed'])
RetrieveModelsParPandas = RetrieveModelsParPandas.drop(columns=['performance'])
RetrieveModelsParPandas = RetrieveModelsParPandas.drop(columns=['model'])
RetrieveModelsParPandas = RetrieveModelsParPandas.to_dict(orient='list')
RetrieveModels = {}
for key, value in RetrieveModelsParPandas.items():
withoutDuplicates = Remove(value)
RetrieveModels[key] = withoutDuplicates
global RetrieveModelsList
RetrieveModelsList.append(RetrieveModels)
global classifierID
global algorithmList
results = []
algorithmList.append(algorithm)
if (algorithm == 'KNN'):
clf = KNeighborsClassifier()
params = RetrieveModels
IF = 0
results.append(GridSearch(clf, params, IF))
resultsList.append(results[0])
for j, oneClassifier in enumerate(results[0][1]):
classifiersId.append(classifierID)
classifiersIDPlusParams.append(classifierID)
classifierID = classifierID + 1
else:
clf = RandomForestClassifier()
params = RetrieveModels
IF = 1
results.append(GridSearch(clf, params, IF))
resultsList.append(results[0])
for oneClassifier, j in enumerate(results[0][1]):
classifiersIDPlusParams.append(classifierID)
classifiersIDwithFI.append(classifierID)
classifierID = classifierID + 1
return 'Everything Okay'