from flask import Flask, render_template, jsonify, request from flask_pymongo import PyMongo from flask_cors import CORS, cross_origin import json import collections import numpy as np import re from numpy import array import pandas as pd import warnings import copy from joblib import Memory from itertools import chain from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.pipeline import make_pipeline from sklearn import model_selection from sklearn.model_selection import GridSearchCV from sklearn.manifold import MDS from sklearn.manifold import TSNE from sklearn.metrics import classification_report from sklearn.preprocessing import scale from mlxtend.classifier import StackingCVClassifier from mlxtend.feature_selection import ColumnSelector # This block of code is for the connection between the server, the database, and the client (plus routing). # Access MongoDB app = Flask(__name__) app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb" mongo = PyMongo(app) cors = CORS(app, resources={r"/data/*": {"origins": "*"}}) # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/Reset', methods=["GET", "POST"]) def Reset(): global DataRawLength global DataResultsRaw global RANDOM_SEED RANDOM_SEED = 42 global XData XData = [] global yData yData = [] global algorithmList algorithmList = [] global ClassifierIDsList ClassifierIDsList = '' # Initializing models global classifiersId classifiersId = [] global classifiersIDwithFI classifiersIDwithFI = [] global classifiersIDPlusParams classifiersIDPlusParams = [] global classifierID classifierID = 0 global resultsList resultsList = [] global RetrieveModelsList RetrieveModelsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global crossValidation crossValidation = 3 global scoring #scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted', 'neg_log_loss': 'neg_log_loss', 'r2': 'r2', 'neg_mean_absolute_error': 'neg_mean_absolute_error', 'neg_mean_absolute_error': 'neg_mean_absolute_error'} scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted'} global yPredictProb yPredictProb = [] global loopFeatures loopFeatures = 2 global columns columns = [] global results results = [] global target_names target_names = [] return 'The reset was done!' # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequest', methods=["GET", "POST"]) def RetrieveFileName(): fileName = request.get_data().decode('utf8').replace("'", '"') global featureSelection featureSelection = request.get_data().decode('utf8').replace("'", '"') featureSelection = json.loads(featureSelection) global DataRawLength global DataResultsRaw global RANDOM_SEED RANDOM_SEED = 42 global XData XData = [] global yData yData = [] global ClassifierIDsList ClassifierIDsList = '' global algorithmList algorithmList = [] # Initializing models global classifiersId classifiersId = [] global classifiersIDwithFI classifiersIDwithFI = [] global classifiersIDPlusParams classifiersIDPlusParams = [] global classifierID classifierID = 0 global RetrieveModelsList RetrieveModelsList = [] global resultsList resultsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global crossValidation crossValidation = 3 global scoring #scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted', 'neg_log_loss': 'neg_log_loss', 'r2': 'r2', 'neg_mean_absolute_error': 'neg_mean_absolute_error', 'neg_mean_absolute_error': 'neg_mean_absolute_error'} scoring = {'accuracy': 'accuracy', 'f1_macro': 'f1_weighted', 'precision': 'precision_weighted', 'recall': 'recall_weighted', 'jaccard': 'jaccard_weighted'} global yPredictProb yPredictProb = [] global loopFeatures loopFeatures = 2 global columns columns = [] global results results = [] global target_names target_names = [] DataRawLength = -1 data = json.loads(fileName) if data['fileName'] == 'BreastC': CollectionDB = mongo.db.BreastC.find() elif data['fileName'] == 'DiabetesC': CollectionDB = mongo.db.DiabetesC.find() else: CollectionDB = mongo.db.IrisC.find() DataResultsRaw = [] for index, item in enumerate(CollectionDB): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRaw.append(item) DataRawLength = len(DataResultsRaw) DataSetSelection() return 'Everything is okay' # Sent data to client @app.route('/data/ClientRequest', methods=["GET", "POST"]) def CollectionData(): json.dumps(DataResultsRaw) response = { 'Collection': DataResultsRaw } return jsonify(response) def DataSetSelection(): DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues warnings.simplefilter('ignore') return 'Everything is okay' # Main function if __name__ == '__main__': app.run() # Debugging and mirroring client @app.route('/', defaults={'path': ''}) @app.route('/') def catch_all(path): if app.debug: return requests.get('http://localhost:8080/{}'.format(path)).text return render_template("index.html") # This block of code is for server computations def column_index(df, query_cols): cols = df.columns.values sidx = np.argsort(cols) return sidx[np.searchsorted(cols,query_cols,sorter=sidx)].tolist() global mem mem = Memory("./cache_dir") def GridSearch(clf, params, FI): global XData global yData global scoring global target_names grid = GridSearchCV(estimator=clf, param_grid=params, scoring=scoring, cv=crossValidation, refit='accuracy', n_jobs = -1) grid.fit(XData, yData) cv_results = [] cv_results.append(grid.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) number_of_classifiers = len(df_cv_results.iloc[0][0]) number_of_columns = len(df_cv_results.iloc[0]) df_cv_results_per_item = [] df_cv_results_per_row = [] for i in range(number_of_classifiers): df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) parameters = df_cv_results_classifiers['params'] PerClassMetrics = [] FeatureImp = [] PerFeatureAccuracy = [] global subset global loopFeatures global yPredictProb global columns columns = [] counter = 0 subset = XData for i, eachClassifierParams in enumerate(grid.cv_results_['params']): eachClassifierParamsDictList = {} for key, value in eachClassifierParams.items(): Listvalue = [] Listvalue.append(value) eachClassifierParamsDictList[key] = Listvalue counter = counter + 1 grid = GridSearchCV(estimator=clf, param_grid=eachClassifierParamsDictList, scoring=scoring, cv=crossValidation, refit='accuracy', n_jobs = -1) if (featureSelection['featureSelection'] == ''): subset = XData else: featureSelected = [] for indices, each in enumerate(XData.columns): if (int(''.join(x for x in featureSelection['featureSelection'][loopFeatures] if x.isdigit())) == 1): featureSelected.append(each) loopFeatures = loopFeatures + 3 subset = XData[featureSelected] element = (column_index(XData, featureSelected)) columns.append(element) grid.fit(subset, yData) if (FI == 0): n_feats = XData.shape[1] for i in range(n_feats): scores = model_selection.cross_val_score(grid.best_estimator_, XData.values[:, i].reshape(-1, 1), yData, cv=crossValidation) PerFeatureAccuracy.append(scores.mean()) yPredict = grid.predict(subset) yPredictProb.append(grid.predict_proba(subset)) PerClassMetrics.append(classification_report(yData, yPredict, target_names=target_names, digits=2, output_dict=True)) if (FI == 1): X = subset.values Y = array(yData) FeatureImp.append(class_feature_importance(X, Y, grid.best_estimator_.feature_importances_)) FeatureImpPandas = pd.DataFrame(FeatureImp) PerClassMetricsPandas = pd.DataFrame(PerClassMetrics) PerFeatureAccuracyPandas = pd.DataFrame(PerFeatureAccuracy) return df_cv_results_classifiers, parameters, FeatureImpPandas, PerClassMetricsPandas, PerFeatureAccuracyPandas def class_feature_importance(X, Y, feature_importances): N, M = X.shape X = scale(X) out = {} for c in set(Y): out[c] = dict( zip(range(N), np.mean(X[Y==c, :], axis=0)*feature_importances) ) return out #GridSearch = mem.cache(GridSearch) def Preprocessing(): global resultsList df_cv_results_classifiersList = [] parametersList = [] FeatureImportanceList = [] PerClassMetricsList = [] FeatureAccuracyList = [] for j, result in enumerate(resultsList): df_cv_results_classifiersList.append(resultsList[j][0]) parametersList.append(resultsList[j][1]) FeatureImportanceList.append(resultsList[j][2]) PerClassMetricsList.append(resultsList[j][3]) FeatureAccuracyList.append(resultsList[j][4]) df_cv_results_classifiers = pd.concat(df_cv_results_classifiersList, ignore_index=True, sort=False) parameters = pd.concat(parametersList, ignore_index=True, sort=False) FeatureImportance = pd.concat(FeatureImportanceList, ignore_index=True, sort=False) PerClassMetrics = pd.concat(PerClassMetricsList, ignore_index=True, sort=False) FeatureAccuracy = pd.concat(FeatureAccuracyList, ignore_index=True, sort=False) global factors factors = [1,1,1,1,1,1] global scoring NumberofscoringMetrics = len(scoring) global df_cv_results_classifiers_metrics del df_cv_results_classifiers['params'] df_cv_results_classifiers_metrics = df_cv_results_classifiers.copy() del df_cv_results_classifiers_metrics['mean_fit_time'] del df_cv_results_classifiers_metrics['mean_score_time'] df_cv_results_classifiers_metrics = df_cv_results_classifiers_metrics.ix[:, 0:NumberofscoringMetrics] return [parameters,FeatureImportance,PerClassMetrics,FeatureAccuracy,df_cv_results_classifiers_metrics] def sumPerMetric(factors): sumPerClassifier = [] global df_cv_results_classifiers_metrics for index, row in df_cv_results_classifiers_metrics.iterrows(): rowSum = 0 global scoring lengthFactors = len(scoring) for loop,elements in enumerate(row): lengthFactors = lengthFactors - 1 + factors[loop] rowSum = elements*factors[loop] + rowSum sumPerClassifier.append(rowSum/lengthFactors) return sumPerClassifier # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/factors', methods=["GET", "POST"]) def RetrieveFactors(): Factors = request.get_data().decode('utf8').replace("'", '"') FactorsInt = json.loads(Factors) global sumPerClassifierSel global ModelSpaceMDSNew global ModelSpaceTSNENew sumPerClassifierSel = [] ModelSpaceMDSNew = [] ModelSpaceTSNENew = [] preProcessResults = [] preProcessResults = Preprocessing() XClassifiers = preProcessResults[4] flagLocal = 0 countRemovals = 0 for l,el in enumerate(FactorsInt['Factors']): if el is 0: XClassifiers.drop(XClassifiers.columns[[l-countRemovals]], axis=1, inplace=True) counter = countRemovals + 1 flagLocal = 1 if flagLocal is 1: ModelSpaceMDSNew = FunMDS(XClassifiers) ModelSpaceTSNENew = FunTsne(XClassifiers) ModelSpaceTSNENew = ModelSpaceTSNENew.tolist() sumPerClassifierSel = sumPerMetric(FactorsInt['Factors']) return 'Everything Okay' @app.route('/data/UpdateOverv', methods=["GET", "POST"]) def UpdateOverview(): global sumPerClassifierSel global ModelSpaceMDSNew global ModelSpaceTSNENew ResultsUpdateOverview = [] ResultsUpdateOverview.append(sumPerClassifierSel) ResultsUpdateOverview.append(ModelSpaceMDSNew) ResultsUpdateOverview.append(ModelSpaceTSNENew) response = { 'Results': ResultsUpdateOverview } return jsonify(response) def InitializeEnsemble(): preProcessResults = [] preProcessResults = Preprocessing() sumPerClassifier = sumPerMetric(factors) mergedPredList = zip(*yPredictProb) mergedPredListListForm = [] for el in mergedPredList: mergedPredListListForm.append(list(chain(*el))) XClassifiers = preProcessResults[4] PredictionSpace = FunTsne(mergedPredListListForm) DataSpace = FunTsne(XData) ModelSpaceMDS = FunMDS(XClassifiers) ModelSpaceTSNE = FunTsne(XClassifiers) ModelSpaceTSNE = ModelSpaceTSNE.tolist() global ClassifierIDsList key = 0 EnsembleModel(ClassifierIDsList, key) PredictionSpaceList = PredictionSpace.tolist() DataSpaceList = DataSpace.tolist() ReturnResults(sumPerClassifier,ModelSpaceMDS,ModelSpaceTSNE,preProcessResults,DataSpaceList,PredictionSpaceList) def ReturnResults(sumPerClassifier,ModelSpaceMDS,ModelSpaceTSNE,preProcessResults,DataSpaceList,PredictionSpaceList): global Results Results = [] FeatureImportance = preProcessResults[1] PerClassMetrics = preProcessResults[2] FeatureAccuracy = preProcessResults[3] FeatureImportance = FeatureImportance.to_json(orient='records') PerClassMetrics = PerClassMetrics.to_json(orient='records') FeatureAccuracy = FeatureAccuracy.to_json(orient='records') XDataJSON = XData.columns.tolist() Results.append(json.dumps(sumPerClassifier)) # Position: 0 Results.append(json.dumps(ModelSpaceMDS)) # Position: 1 Results.append(json.dumps(classifiersIDPlusParams)) # Position: 2 Results.append(FeatureImportance) # Position: 3 Results.append(PerClassMetrics) # Position: 4 Results.append(json.dumps(target_names)) # Position: 5 Results.append(FeatureAccuracy) # Position: 6 Results.append(json.dumps(XDataJSON)) # Position: 7 Results.append(json.dumps(classifiersId)) # Position: 8 Results.append(json.dumps(classifiersIDwithFI)) # Position: 9 Results.append(json.dumps(DataSpaceList)) # Position: 10 Results.append(json.dumps(PredictionSpaceList)) # Position: 11 Results.append(json.dumps(ModelSpaceTSNE)) # Position: 12 return Results # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelPoin', methods=["GET", "POST"]) def RetrieveSelClassifiersID(): global ClassifierIDsList ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"') key = 1 EnsembleModel(ClassifierIDsList, key) return 'Everything Okay' # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/FeaturesSelection', methods=["GET", "POST"]) def FeatureSelPerModel(): global featureSelection global loopFeatures global ClassifierIDsList RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"') RetrieveModelsPar = json.loads(RetrieveModelsPar) RetrieveModelsParRed = [] print(RetrieveModelsPar['brushedAll']) # FIX THIS THING!!!!! #for j, i in enumerate(RetrieveModelsPar['brushedAll']): # print(j) #RetrieveModelsParRed = [for j, i in enumerate(RetrieveModelsPar['brushedAll']) if j not in ClassifierIDsList] #RetrieveModelsParPandas = pd.DataFrame(RetrieveModelsParRed) RetrieveModelsParPandas = pd.DataFrame(RetrieveModelsPar) RetrieveModelsParPandas = RetrieveModelsParPandas.drop(columns=['performance']) RetrieveModelsParPandas = RetrieveModelsParPandas.to_dict(orient='list') print(RetrieveModelsParPandas) RetrieveModels = {} for key, value in RetrieveModelsParPandas.items(): withoutDuplicates = Remove(value) RetrieveModels[key] = withoutDuplicates global RetrieveModelsListNew RetrieveModelsListNew.append(RetrieveModels) loopFeatures = 2 featureSelection = request.get_data().decode('utf8').replace("'", '"') featureSelection = json.loads(featureSelection) global algorithmList results = [] for index, eachalgor in enumerate(algorithmList): if (eachalgor == 'KNN'): clf = KNeighborsClassifier() params = RetrieveModelsListNew[index] IF = 0 results.append(GridSearch(clf, params, IF)) resultsList.append(results[0]) else: clf = RandomForestClassifier() params = RetrieveModelsListNew[index] IF = 1 results.append(GridSearch(clf, params, IF)) resultsList.append(results[0]) key = 2 EnsembleModel(ClassifierIDsList, key) return 'Everything Okay' def FunMDS (data): mds = MDS(n_components=2, random_state=RANDOM_SEED) XTransformed = mds.fit_transform(data).T XTransformed = XTransformed.tolist() return XTransformed def FunTsne (data): tsne = TSNE(n_components=2).fit_transform(data) tsne.shape return tsne def EnsembleModel (ClassifierIDsList, keyRetrieved): global scores scores = [] global all_classifiersSelection all_classifiersSelection = [] global columns global all_classifiers if (keyRetrieved == 0): columnsInit = [] all_classifiers = [] columnsInit = [XData.columns.get_loc(c) for c in XData.columns if c in XData] for index, eachelem in enumerate(algorithmList): if (eachelem == 'KNN'): for each in resultsList[index][1]: all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), KNeighborsClassifier().set_params(**each))) else: for each in resultsList[index][1]: all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), RandomForestClassifier().set_params(**each))) lr = LogisticRegression() sclf = StackingCVClassifier(classifiers=all_classifiers, use_probas=True, meta_classifier=lr, random_state=RANDOM_SEED, n_jobs = -1) elif (keyRetrieved == 1): ClassifierIDsList = json.loads(ClassifierIDsList) for loop in ClassifierIDsList['ClassifiersList']: temp = [int(s) for s in re.findall(r'\b\d+\b', loop)] all_classifiersSelection.append(all_classifiers[temp[0]]) lr = LogisticRegression() sclf = StackingCVClassifier(classifiers=all_classifiersSelection, use_probas=True, meta_classifier=lr, random_state=RANDOM_SEED, n_jobs = -1) else: columnsReduce = columns.copy() lr = LogisticRegression() if (len(all_classifiersSelection) == 0): all_classifiers = [] for index, eachelem in enumerate(algorithmList): if (eachelem == 'KNN'): for j, each in enumerate(resultsList[index][1]): all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), KNeighborsClassifier().set_params(**each))) del columnsReduce[0:len(resultsList[index][1])] else: for j, each in enumerate(resultsList[index][1]): all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), RandomForestClassifier().set_params(**each))) del columnsReduce[0:len(resultsList[index][1])] sclf = StackingCVClassifier(classifiers=all_classifiers, use_probas=True, meta_classifier=lr, random_state=RANDOM_SEED, n_jobs = -1) else: for index, eachelem in enumerate(algorithmList): if (eachelem == 'KNN'): for j, each in enumerate(resultsList[index][1]): all_classifiersSelection.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), KNeighborsClassifier().set_params(**each))) del columnsReduce[0:len(resultsList[index][1])] else: for j, each in enumerate(resultsList[index][1]): all_classifiersSelection.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), RandomForestClassifier().set_params(**each))) del columnsReduce[0:len(resultsList[index][1])] sclf = StackingCVClassifier(classifiers=all_classifiersSelection, use_probas=True, meta_classifier=lr, random_state=RANDOM_SEED, n_jobs = -1) for clf, label in zip([sclf], ['StackingClassifier']): scores = model_selection.cross_val_score(clf, XData, yData, cv=crossValidation, scoring='accuracy') # Sending the final results to be visualized as a line plot @app.route('/data/SendFinalResultsBacktoVisualize', methods=["GET", "POST"]) def SendToPlotFinalResults(): FinalResults = [] FinalResults.append(scores.mean()) FinalResults.append(scores.std()) response = { 'FinalResults': FinalResults } return jsonify(response) # Sending the overview classifiers' results to be visualized as a scatterplot @app.route('/data/PlotClassifiers', methods=["GET", "POST"]) def SendToPlot(): while (len(DataResultsRaw) != DataRawLength): pass InitializeEnsemble() response = { 'OverviewResults': Results } return jsonify(response) # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"]) def RetrieveModel(): global RetrievedModel RetrievedModel = request.get_data().decode('utf8').replace("'", '"') RetrievedModel = json.loads(RetrievedModel) global parametersPerformancePerModel parametersPerformancePerModel = [] global algorithms algorithms = RetrievedModel['Algorithms'] for eachAlgor in algorithms: if (eachAlgor) == 'KNN': clf = KNeighborsClassifier() params = {'n_neighbors': list(range(1, 25)), 'weights': ['uniform', 'distance'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski']} else: clf = RandomForestClassifier() params = {'n_estimators': list(range(80, 120)), 'criterion': ['gini', 'entropy']} GridSearchForParameters(clf, params) SendEachClassifiersPerformanceToVisualize() return 'Everything Okay' def GridSearchForParameters(clf, params): grid = GridSearchCV(estimator=clf, param_grid=params, scoring='accuracy', cv=crossValidation, n_jobs = -1) grid.fit(XData, yData) cv_results = [] cv_results.append(grid.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) number_of_classifiers = len(df_cv_results.iloc[0][0]) number_of_columns = len(df_cv_results.iloc[0]) df_cv_results_per_item = [] df_cv_results_per_row = [] for i in range(number_of_classifiers): df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) global allParametersPerformancePerModel parametersPerformancePerModel = df_cv_results_classifiers[['mean_test_score','params']] parametersPerformancePerModel = parametersPerformancePerModel.to_json() allParametersPerformancePerModel.append(parametersPerformancePerModel) return 'Everything is okay' #GridSearchForParameters = mem.cache(GridSearchForParameters) # Sending each model's results @app.route('/data/PerformanceForEachModel', methods=["GET", "POST"]) def SendEachClassifiersPerformanceToVisualize (): response = { 'PerformancePerModel': allParametersPerformancePerModel } return jsonify(response) def Remove(duplicate): final_list = [] for num in duplicate: if num not in final_list: final_list.append(num) return final_list # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendBrushedParam', methods=["GET", "POST"]) def RetrieveModelsParam(): RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"') RetrieveModelsPar = json.loads(RetrieveModelsPar) algorithm = RetrieveModelsPar['algorithm'] RetrieveModelsParPandas = pd.DataFrame(RetrieveModelsPar['brushed']) RetrieveModelsParPandas = RetrieveModelsParPandas.drop(columns=['performance']) RetrieveModelsParPandas = RetrieveModelsParPandas.drop(columns=['model']) RetrieveModelsParPandas = RetrieveModelsParPandas.to_dict(orient='list') RetrieveModels = {} for key, value in RetrieveModelsParPandas.items(): withoutDuplicates = Remove(value) RetrieveModels[key] = withoutDuplicates global RetrieveModelsList RetrieveModelsList.append(RetrieveModels) global classifierID global algorithmList results = [] algorithmList.append(algorithm) if (algorithm == 'KNN'): clf = KNeighborsClassifier() params = RetrieveModels IF = 0 results.append(GridSearch(clf, params, IF)) resultsList.append(results[0]) for j, oneClassifier in enumerate(results[0][1]): classifiersId.append(classifierID) classifiersIDPlusParams.append(classifierID) classifierID = classifierID + 1 else: clf = RandomForestClassifier() params = RetrieveModels IF = 1 results.append(GridSearch(clf, params, IF)) resultsList.append(results[0]) for oneClassifier, j in enumerate(results[0][1]): classifiersIDPlusParams.append(classifierID) classifiersIDwithFI.append(classifierID) classifierID = classifierID + 1 return 'Everything Okay'