added comments, fixed schema investigation

master
parent bb30bdd3a3
commit e7e028cec3
  1. 2
      index.html
  2. 15
      js/tsne_vis.js

@ -134,7 +134,7 @@
<option value="iris.csv" selected>Iris</option>
<option value="mnist.csv" >Mnist</option>
<option value="Frogs_MFCCs_s.csv" >Frogs</option>
<option value="empty">Add New File</option>
<option value="empty.empty">Add New File</option>
</select>
<button type="button" class="button" id="FactRes" onclick="FactoryReset()">Factory reset</button>
</div>

@ -145,7 +145,6 @@ var getData = function() {
value = document.getElementById("param-dataset").value; // Get the value of the data set
format = value.split("."); //Get the format (e.g., [iris, csv])
if (format[value.split(".").length-1] == "csv") { // Parse the predefined files
parseData("./data/"+value);
} else{
@ -570,7 +569,7 @@ function init(data, results_all, fields) {
$("#datasetDetails").html("Number of Dimensions: " + (Object.keys(dataFeatures[0]).length - valCategExists) + ", Number of Samples: " + final_dataset.length); // Print on the screen the number of dimensions and samples of the data set, which is being analyzed.
dists = computeDistances(data, document.getElementById("param-distance").value, document.getElementById("param-transform").value); // Compute the distances in the high-dimensional space.
tsne.initDataDist(dists); // Init t-SNE with dists.
console.log(dists);
for(var i = 0; i < dataFeatures.length; i++) {
if (dataFeatures[i][Category] != "" || dataFeatures[i][Category] != "undefined"){ // If a categorization label exist then add it into all_labels variable.
all_labels[i] = dataFeatures[i][Category];
@ -738,6 +737,8 @@ function computeDistances(data, distFunc, transFunc) {
// Function that updates embedding
function updateEmbedding(AnalaysisResults) {
points = [];
points2d = [];
if (AnalaysisResults == ""){ // Check if the embedding does not need to load because we had a previous analysis uploaded.
var Y = tsne.getSolution(); // We receive the solution from the t-SNE
var xExt = d3.extent(Y, d => d[0]);
@ -760,6 +761,7 @@ function updateEmbedding(AnalaysisResults) {
points[i] = extend(points[i], dataFeatures[i]);
}
} else{
console.log("mpa");
points = AnalaysisResults.slice(0,dataFeatures.length); // Load the points from the previous analysis
points2d = AnalaysisResults.slice(dataFeatures.length,2*dataFeatures.length); // Load the 2D points
overallCost = AnalaysisResults.slice(dataFeatures.length*2,dataFeatures.length*2+1); // Load the overall cost
@ -772,6 +774,9 @@ function updateEmbedding(AnalaysisResults) {
document.getElementById("param-transform").value = ParametersSet[5];
}
InitialStatePoints = points; // Initial Points will not be modified!
console.log(points2d);
console.log(points);
function extend(obj, src) { // Call this function to add additional information to the points such as dataFeatures and Array which contains the data features without strings.
for (var key in src) {
@ -808,11 +813,13 @@ function ShepardHeatMap () {
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
// Calculate the 2D distances.
dists2d = computeDistances(points2d, document.getElementById("param-distance").value, document.getElementById("param-transform").value);
var dist_list2d = []; // Distances lists empty
var dist_list = [];
dists2d = [];
// Calculate the 2D distances.
dists2d = computeDistances(points2d, document.getElementById("param-distance").value, document.getElementById("param-transform").value);
for (var j=0; j<dists2d.length; j++){ // Fill them with the distances 2D and high-dimensional, respectively.
dists2d[j] = dists2d[j].slice(0,j);

Loading…
Cancel
Save