parent 663ba726e4
commit 33845896be
  1. BIN
      __pycache__/tsneGrid.cpython-37.pyc
  2. 1
      cachedir/joblib/tsneGrid/wrapGetResults/0159e56a20dd841c1a46e0a4adec1857/metadata.json
  3. BIN
      cachedir/joblib/tsneGrid/wrapGetResults/0159e56a20dd841c1a46e0a4adec1857/output.pkl
  4. 1
      cachedir/joblib/tsneGrid/wrapGetResults/64ff4533f4d63a2f09e20b91dcce737c/metadata.json
  5. BIN
      cachedir/joblib/tsneGrid/wrapGetResults/64ff4533f4d63a2f09e20b91dcce737c/output.pkl
  6. 5
      cachedir/joblib/tsneGrid/wrapGetResults/func_code.py
  7. 6
      css/style.css
  8. 2
      css/w3.css
  9. 2
      js/tsne_vis.js
  10. 41
      tsneGrid.py

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

@ -0,0 +1,5 @@
# first line: 198
def wrapGetResults(listofParamsPlusData):
pool = Pool()
return pool.map(multi_run_wrapper, listofParamsPlusData)

@ -508,11 +508,11 @@ ul {
border: 16px solid #f3f3f3;
border-radius: 50%;
border-top: 16px solid #3498db;
width: 120px;
height: 120px;
width: 140px;
height: 140px;
-webkit-animation: spin 2s linear infinite; /* Safari */
animation: spin 2s linear infinite;
margin-left: 375px;
margin-left: 1025px;
margin-top: 500px;
margin-bottom: 500px;
}

@ -89,7 +89,7 @@ hr{border:0;border-top:1px solid #eee;margin:20px 0}
.w3-hide-small{display:none!important}.w3-mobile{display:block;width:100%!important}.w3-bar-item.w3-mobile,.w3-dropdown-hover.w3-mobile,.w3-dropdown-click.w3-mobile{text-align:center}
.w3-dropdown-hover.w3-mobile,.w3-dropdown-hover.w3-mobile .w3-btn,.w3-dropdown-hover.w3-mobile .w3-button,.w3-dropdown-click.w3-mobile,.w3-dropdown-click.w3-mobile .w3-btn,.w3-dropdown-click.w3-mobile .w3-button{width:100%}}
@media (max-width:768px){.w3-modal-content{width:500px}.w3-modal{padding-top:50px}}
@media (min-width:993px){.w3-modal-content{width:900px}.w3-hide-large{display:none!important}.w3-sidebar.w3-collapse{display:block!important}}
@media (min-width:993px){.w3-modal-content{width:2200px}.w3-hide-large{display:none!important}.w3-sidebar.w3-collapse{display:block!important}}
@media (max-width:992px) and (min-width:601px){.w3-hide-medium{display:none!important}}
@media (max-width:992px){.w3-sidebar.w3-collapse{display:none}.w3-main{margin-left:0!important;margin-right:0!important}.w3-auto{max-width:100%}}
.w3-top,.w3-bottom{position:fixed;width:100%;z-index:1}.w3-top{top:0}.w3-bottom{bottom:0}

@ -1028,7 +1028,7 @@ if (optionMetric == 1) {
}
var width = 900 // interactive visualization
var width = 2200 // interactive visualization
var height = 1150 // interactive visualization
document.getElementById("confirmModal").disabled = true;

@ -16,6 +16,8 @@ from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.neighbors import KNeighborsClassifier
from scipy import spatial
from scipy import stats
from joblib import Memory
import numpy as np
import pandas as pd
@ -161,7 +163,6 @@ def multi_run_wrapper(args):
embedding_array = bhtsne.run_bh_tsne(*args)
return embedding_array
def procrustesFun(projections):
similarityList = []
for proj1 in projections:
@ -191,6 +192,15 @@ def Clustering(similarity):
return clusterIndex
location = './cachedir'
memory = Memory(location, verbose=0)
def wrapGetResults(listofParamsPlusData):
pool = Pool()
return pool.map(multi_run_wrapper, listofParamsPlusData)
wrapGetResults = memory.cache(wrapGetResults)
@app.route('/receiver', methods = ['POST'])
def calculateGrid():
@ -209,9 +219,24 @@ def calculateGrid():
EMPTY_SEED = -1
VERBOSE = True
DEFAULT_USE_PCA = False
perplexity = [25,30] # 10 perplexity
learning_rate = [10,20,30,40,50,60] # 15 learning rate
n_iter = [200,250,300,350] # 7 iterations
# all other data sets
perplexity = [5,10,15,20,25,30,35,40,45,50] # 10 perplexity
# iris data set
if (labels[0] == 'Iris-setosa'):
perplexity = [5,10,15,20,25,28,32,35,40,45] # 10 perplexity
# breast cancer data set
if (labels[0] == 'Benign'):
perplexity =[30,35,40,45,50,55,60,65,70,75] # 10 perplexity
# diabetes data set
if (labels[0] == 1):
perplexity = [10,15,20,25,30,35,40,45,50,55] # 10 perplexity
learning_rate = [10,20,30,40,50,60,70,80,90,100] # 10 learning rate
n_iter = [100,150,200,250,350] # 5 iterations
global overalProjectionsNumber
overalProjectionsNumber = 0
@ -219,18 +244,16 @@ def calculateGrid():
global projectionsAll
pool = Pool()
listofParamsPlusData = []
listofParamsAll= []
for k in n_iter:
for j in learning_rate:
for i in perplexity:
listofParamsPlusData.append((dataProc,DEFAULT_NO_DIMS,length,i,j,EMPTY_SEED,VERBOSE,DEFAULT_USE_PCA,k))
listofParamsAll.append((i,j,k))
projectionsAll = pool.map(multi_run_wrapper, listofParamsPlusData)
pool.close()
pool.join()
listofParamsAll.append((i,j,k))
projectionsAll = wrapGetResults(listofParamsPlusData)
global SelectedListofParams
SelectedListofParams = []
global SelectedProjectionsReturn

Loading…
Cancel
Save