parent 663ba726e4
commit 33845896be
  1. BIN
      __pycache__/tsneGrid.cpython-37.pyc
  2. 1
      cachedir/joblib/tsneGrid/wrapGetResults/0159e56a20dd841c1a46e0a4adec1857/metadata.json
  3. BIN
      cachedir/joblib/tsneGrid/wrapGetResults/0159e56a20dd841c1a46e0a4adec1857/output.pkl
  4. 1
      cachedir/joblib/tsneGrid/wrapGetResults/64ff4533f4d63a2f09e20b91dcce737c/metadata.json
  5. BIN
      cachedir/joblib/tsneGrid/wrapGetResults/64ff4533f4d63a2f09e20b91dcce737c/output.pkl
  6. 5
      cachedir/joblib/tsneGrid/wrapGetResults/func_code.py
  7. 6
      css/style.css
  8. 2
      css/w3.css
  9. 2
      js/tsne_vis.js
  10. 41
      tsneGrid.py

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

@ -0,0 +1,5 @@
# first line: 198
def wrapGetResults(listofParamsPlusData):
pool = Pool()
return pool.map(multi_run_wrapper, listofParamsPlusData)

@ -508,11 +508,11 @@ ul {
border: 16px solid #f3f3f3; border: 16px solid #f3f3f3;
border-radius: 50%; border-radius: 50%;
border-top: 16px solid #3498db; border-top: 16px solid #3498db;
width: 120px; width: 140px;
height: 120px; height: 140px;
-webkit-animation: spin 2s linear infinite; /* Safari */ -webkit-animation: spin 2s linear infinite; /* Safari */
animation: spin 2s linear infinite; animation: spin 2s linear infinite;
margin-left: 375px; margin-left: 1025px;
margin-top: 500px; margin-top: 500px;
margin-bottom: 500px; margin-bottom: 500px;
} }

@ -89,7 +89,7 @@ hr{border:0;border-top:1px solid #eee;margin:20px 0}
.w3-hide-small{display:none!important}.w3-mobile{display:block;width:100%!important}.w3-bar-item.w3-mobile,.w3-dropdown-hover.w3-mobile,.w3-dropdown-click.w3-mobile{text-align:center} .w3-hide-small{display:none!important}.w3-mobile{display:block;width:100%!important}.w3-bar-item.w3-mobile,.w3-dropdown-hover.w3-mobile,.w3-dropdown-click.w3-mobile{text-align:center}
.w3-dropdown-hover.w3-mobile,.w3-dropdown-hover.w3-mobile .w3-btn,.w3-dropdown-hover.w3-mobile .w3-button,.w3-dropdown-click.w3-mobile,.w3-dropdown-click.w3-mobile .w3-btn,.w3-dropdown-click.w3-mobile .w3-button{width:100%}} .w3-dropdown-hover.w3-mobile,.w3-dropdown-hover.w3-mobile .w3-btn,.w3-dropdown-hover.w3-mobile .w3-button,.w3-dropdown-click.w3-mobile,.w3-dropdown-click.w3-mobile .w3-btn,.w3-dropdown-click.w3-mobile .w3-button{width:100%}}
@media (max-width:768px){.w3-modal-content{width:500px}.w3-modal{padding-top:50px}} @media (max-width:768px){.w3-modal-content{width:500px}.w3-modal{padding-top:50px}}
@media (min-width:993px){.w3-modal-content{width:900px}.w3-hide-large{display:none!important}.w3-sidebar.w3-collapse{display:block!important}} @media (min-width:993px){.w3-modal-content{width:2200px}.w3-hide-large{display:none!important}.w3-sidebar.w3-collapse{display:block!important}}
@media (max-width:992px) and (min-width:601px){.w3-hide-medium{display:none!important}} @media (max-width:992px) and (min-width:601px){.w3-hide-medium{display:none!important}}
@media (max-width:992px){.w3-sidebar.w3-collapse{display:none}.w3-main{margin-left:0!important;margin-right:0!important}.w3-auto{max-width:100%}} @media (max-width:992px){.w3-sidebar.w3-collapse{display:none}.w3-main{margin-left:0!important;margin-right:0!important}.w3-auto{max-width:100%}}
.w3-top,.w3-bottom{position:fixed;width:100%;z-index:1}.w3-top{top:0}.w3-bottom{bottom:0} .w3-top,.w3-bottom{position:fixed;width:100%;z-index:1}.w3-top{top:0}.w3-bottom{bottom:0}

@ -1028,7 +1028,7 @@ if (optionMetric == 1) {
} }
var width = 900 // interactive visualization var width = 2200 // interactive visualization
var height = 1150 // interactive visualization var height = 1150 // interactive visualization
document.getElementById("confirmModal").disabled = true; document.getElementById("confirmModal").disabled = true;

@ -16,6 +16,8 @@ from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import KNeighborsClassifier
from scipy import spatial from scipy import spatial
from scipy import stats from scipy import stats
from joblib import Memory
import numpy as np import numpy as np
import pandas as pd import pandas as pd
@ -161,7 +163,6 @@ def multi_run_wrapper(args):
embedding_array = bhtsne.run_bh_tsne(*args) embedding_array = bhtsne.run_bh_tsne(*args)
return embedding_array return embedding_array
def procrustesFun(projections): def procrustesFun(projections):
similarityList = [] similarityList = []
for proj1 in projections: for proj1 in projections:
@ -191,6 +192,15 @@ def Clustering(similarity):
return clusterIndex return clusterIndex
location = './cachedir'
memory = Memory(location, verbose=0)
def wrapGetResults(listofParamsPlusData):
pool = Pool()
return pool.map(multi_run_wrapper, listofParamsPlusData)
wrapGetResults = memory.cache(wrapGetResults)
@app.route('/receiver', methods = ['POST']) @app.route('/receiver', methods = ['POST'])
def calculateGrid(): def calculateGrid():
@ -209,9 +219,24 @@ def calculateGrid():
EMPTY_SEED = -1 EMPTY_SEED = -1
VERBOSE = True VERBOSE = True
DEFAULT_USE_PCA = False DEFAULT_USE_PCA = False
perplexity = [25,30] # 10 perplexity
learning_rate = [10,20,30,40,50,60] # 15 learning rate # all other data sets
n_iter = [200,250,300,350] # 7 iterations perplexity = [5,10,15,20,25,30,35,40,45,50] # 10 perplexity
# iris data set
if (labels[0] == 'Iris-setosa'):
perplexity = [5,10,15,20,25,28,32,35,40,45] # 10 perplexity
# breast cancer data set
if (labels[0] == 'Benign'):
perplexity =[30,35,40,45,50,55,60,65,70,75] # 10 perplexity
# diabetes data set
if (labels[0] == 1):
perplexity = [10,15,20,25,30,35,40,45,50,55] # 10 perplexity
learning_rate = [10,20,30,40,50,60,70,80,90,100] # 10 learning rate
n_iter = [100,150,200,250,350] # 5 iterations
global overalProjectionsNumber global overalProjectionsNumber
overalProjectionsNumber = 0 overalProjectionsNumber = 0
@ -219,18 +244,16 @@ def calculateGrid():
global projectionsAll global projectionsAll
pool = Pool()
listofParamsPlusData = [] listofParamsPlusData = []
listofParamsAll= [] listofParamsAll= []
for k in n_iter: for k in n_iter:
for j in learning_rate: for j in learning_rate:
for i in perplexity: for i in perplexity:
listofParamsPlusData.append((dataProc,DEFAULT_NO_DIMS,length,i,j,EMPTY_SEED,VERBOSE,DEFAULT_USE_PCA,k)) listofParamsPlusData.append((dataProc,DEFAULT_NO_DIMS,length,i,j,EMPTY_SEED,VERBOSE,DEFAULT_USE_PCA,k))
listofParamsAll.append((i,j,k)) listofParamsAll.append((i,j,k))
projectionsAll = pool.map(multi_run_wrapper, listofParamsPlusData)
pool.close()
pool.join()
projectionsAll = wrapGetResults(listofParamsPlusData)
global SelectedListofParams global SelectedListofParams
SelectedListofParams = [] SelectedListofParams = []
global SelectedProjectionsReturn global SelectedProjectionsReturn

Loading…
Cancel
Save