|
|
|
@ -1325,7 +1325,7 @@ function CostHistogram(points){ |
|
|
|
|
} |
|
|
|
|
var trace1 = { |
|
|
|
|
x: frequency2, |
|
|
|
|
name: '1/sigma', |
|
|
|
|
name: 'Density', |
|
|
|
|
autobinx: false,
|
|
|
|
|
marker: { |
|
|
|
|
color: "rgb(0,128,0)", |
|
|
|
@ -1350,7 +1350,7 @@ function CostHistogram(points){ |
|
|
|
|
} |
|
|
|
|
var trace2 = { |
|
|
|
|
x: frequency, |
|
|
|
|
name: 'KLD(P||Q)', |
|
|
|
|
name: 'Remaining Cost', |
|
|
|
|
autobinx: false,
|
|
|
|
|
histnorm: "count",
|
|
|
|
|
marker: { |
|
|
|
@ -1383,7 +1383,7 @@ function CostHistogram(points){ |
|
|
|
|
t: 10, |
|
|
|
|
pad: 4 |
|
|
|
|
}, |
|
|
|
|
xaxis:{range: [0,1.01],title: 'Normalized Bins from Min to Max Values.', |
|
|
|
|
xaxis:{range: [0,1.01],title: 'Normalized bins from min to max values.', |
|
|
|
|
titlefont: { |
|
|
|
|
size: 14, |
|
|
|
|
color: 'black' |
|
|
|
@ -1744,7 +1744,7 @@ function CalculateCorrel(flagForSchema){ // Calculate the correlation is a funct |
|
|
|
|
if (isNaN(pearsonCorrelation(tempData, 0, 1))) { |
|
|
|
|
} else{ |
|
|
|
|
SignStore.push([temp, pearsonCorrelation(tempData, 0, 1)]); // Keep the sign
|
|
|
|
|
correlationResults.push([Object.keys(dataFeatures[0])[temp] + " (" + temp + ")", Math.abs(pearsonCorrelation(tempData, 0, 1)),temp]); // Find the pearson correlations
|
|
|
|
|
correlationResults.push([Object.keys(dataFeatures[0])[temp], Math.abs(pearsonCorrelation(tempData, 0, 1)),temp]); // Find the pearson correlations
|
|
|
|
|
//correlationResults.push([Object.keys(dataFeatures[0])[temp] + " (" + temp + ")", Math.pow(pearsonCorrelation(tempData, 0, 1),2),temp]); // Find the pearson correlations (MAYBE!)
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -1802,7 +1802,6 @@ function CalculateCorrel(flagForSchema){ // Calculate the correlation is a funct |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
drawBarChart(); // Draw the horizontal barchart with the correlations.
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
@ -2448,7 +2447,7 @@ if (points.length) { // If points exist (at least 1 point) |
|
|
|
|
var trace1 = { |
|
|
|
|
x: kValuesLegend,
|
|
|
|
|
y: StoreInitialFindNearestTable,
|
|
|
|
|
name: 'Entire Projection',
|
|
|
|
|
name: 'Projection average',
|
|
|
|
|
type: 'bar', |
|
|
|
|
marker: { |
|
|
|
|
color: 'rgb(0,0,0)' |
|
|
|
@ -2457,7 +2456,7 @@ if (points.length) { // If points exist (at least 1 point) |
|
|
|
|
var trace2 = { |
|
|
|
|
x: kValuesLegend,
|
|
|
|
|
y: findNearestTable,
|
|
|
|
|
name: 'Lasso Selected Cluster',
|
|
|
|
|
name: 'Selected points',
|
|
|
|
|
type: 'bar', |
|
|
|
|
marker: { |
|
|
|
|
color: 'rgb(0, 187, 187)' |
|
|
|
@ -2477,13 +2476,13 @@ if (points.length) { // If points exist (at least 1 point) |
|
|
|
|
pad: 4 |
|
|
|
|
}, |
|
|
|
|
xaxis: {range: [0, LimitXaxis], |
|
|
|
|
title: 'K Values for K-NN', |
|
|
|
|
title: 'Number of neighbors', |
|
|
|
|
titlefont: { |
|
|
|
|
size: 12, |
|
|
|
|
color: 'black' |
|
|
|
|
}}, |
|
|
|
|
yaxis: { |
|
|
|
|
title: 'Cl. Purity', |
|
|
|
|
title: 'n, %', |
|
|
|
|
titlefont: { |
|
|
|
|
size: 12, |
|
|
|
|
color: 'black' |
|
|
|
@ -2746,7 +2745,7 @@ if (points.length) { // If points exist (at least 1 point) |
|
|
|
|
.labelFormat(d3.format(",.0f")) |
|
|
|
|
.cells(9) |
|
|
|
|
.labels([abbr_labels_beta[0],abbr_labels_beta[1],abbr_labels_beta[2],abbr_labels_beta[3],abbr_labels_beta[4],abbr_labels_beta[5],abbr_labels_beta[6],abbr_labels_beta[7],abbr_labels_beta[8]]) |
|
|
|
|
.title("1/sigma") |
|
|
|
|
.title("Density") |
|
|
|
|
.scale(colorScale); |
|
|
|
|
|
|
|
|
|
svg.select(".legendLinear") |
|
|
|
@ -2759,19 +2758,18 @@ if (points.length) { // If points exist (at least 1 point) |
|
|
|
|
.attr("transform", "translate(10,20)"); |
|
|
|
|
|
|
|
|
|
var SizeRange1 = []; |
|
|
|
|
SizeRange1.push((minSize1).toFixed(3)); |
|
|
|
|
SizeRange1.push(((maxSize1-minSize1)/2).toFixed(3)); |
|
|
|
|
SizeRange1.push((maxSize1).toFixed(3)); |
|
|
|
|
SizeRange1.push((minSize1).toFixed(4)); |
|
|
|
|
SizeRange1.push(((maxSize1-minSize1)/2).toFixed(4)); |
|
|
|
|
SizeRange1.push((maxSize1).toFixed(4)); |
|
|
|
|
|
|
|
|
|
var legendSize1 = d3.legendSize() |
|
|
|
|
.scale(legendScale1) |
|
|
|
|
.labelFormat(d3.format(",.5f")) |
|
|
|
|
.cells(3) |
|
|
|
|
.shape('circle') |
|
|
|
|
.labels([SizeRange1[0],SizeRange1[1],SizeRange1[2]]) |
|
|
|
|
.shapePadding(10) |
|
|
|
|
.labelOffset(5) |
|
|
|
|
.title("KLD(P||Q)") |
|
|
|
|
.title("Remaining Cost") |
|
|
|
|
.orient('vertical'); |
|
|
|
|
|
|
|
|
|
svg.select(".legendSize") |
|
|
|
@ -2834,7 +2832,7 @@ if (points.length) { // If points exist (at least 1 point) |
|
|
|
|
.labelFormat(d3.format(",.5f")) |
|
|
|
|
.cells(9) |
|
|
|
|
.labels([abbr_labels_cost[0],abbr_labels_cost[1],abbr_labels_cost[2],abbr_labels_cost[3],abbr_labels_cost[4],abbr_labels_cost[5],abbr_labels_cost[6],abbr_labels_cost[7],abbr_labels_cost[8]]) |
|
|
|
|
.title("KLD(P||Q)") |
|
|
|
|
.title("Remaining Cost") |
|
|
|
|
.scale(colorScale); |
|
|
|
|
|
|
|
|
|
svg.select(".legendLinear") |
|
|
|
@ -2854,7 +2852,7 @@ if (points.length) { // If points exist (at least 1 point) |
|
|
|
|
|
|
|
|
|
svg.append("g") |
|
|
|
|
.attr("class", "legendSize") |
|
|
|
|
.attr("transform", "translate(15,20)"); |
|
|
|
|
.attr("transform", "translate(45,20)"); |
|
|
|
|
|
|
|
|
|
var SizeRange2 = []; |
|
|
|
|
SizeRange2.push(0); |
|
|
|
@ -2870,7 +2868,7 @@ if (points.length) { // If points exist (at least 1 point) |
|
|
|
|
.labels([SizeRange2[0],SizeRange2[1],SizeRange2[2]]) |
|
|
|
|
.shapePadding(10) |
|
|
|
|
.labelOffset(5) |
|
|
|
|
.title("1/sigma") |
|
|
|
|
.title("Density") |
|
|
|
|
.orient('vertical'); |
|
|
|
|
|
|
|
|
|
svg.select(".legendSize") |
|
|
|
@ -2977,6 +2975,7 @@ if (points.length) { // If points exist (at least 1 point) |
|
|
|
|
var color = new THREE.Color("rgb(145, 145, 145)"); |
|
|
|
|
} else if (ColSizeSelector == "color") { |
|
|
|
|
var color = new THREE.Color(colorScale(points[i].beta)); |
|
|
|
|
//var color = new THREE.Color("rgb(125, 125, 125)");
|
|
|
|
|
} |
|
|
|
|
else{ |
|
|
|
|
if (points[i].cost < min){ |
|
|
|
@ -3062,7 +3061,7 @@ if (points.length) { // If points exist (at least 1 point) |
|
|
|
|
.labelFormat(d3.format(",.0f")) |
|
|
|
|
.cells(9) |
|
|
|
|
.labels([abbr_labels_beta[0],abbr_labels_beta[1],abbr_labels_beta[2],abbr_labels_beta[3],abbr_labels_beta[4],abbr_labels_beta[5],abbr_labels_beta[6],abbr_labels_beta[7],abbr_labels_beta[8]]) |
|
|
|
|
.title("1/sigma") |
|
|
|
|
.title("Density") |
|
|
|
|
.scale(colorScale); |
|
|
|
|
|
|
|
|
|
svg.select(".legendLinear") |
|
|
|
@ -3114,7 +3113,7 @@ if (points.length) { // If points exist (at least 1 point) |
|
|
|
|
.labelFormat(d3.format(",.5f")) |
|
|
|
|
.cells(7) |
|
|
|
|
.labels([abbr_labels_cost[0],abbr_labels_cost[1],abbr_labels_cost[2],abbr_labels_cost[3],abbr_labels_cost[4],abbr_labels_cost[5],abbr_labels_cost[6]]) |
|
|
|
|
.title("KLD(P||Q)") |
|
|
|
|
.title("Remaining Cost") |
|
|
|
|
.scale(colorScale); |
|
|
|
|
|
|
|
|
|
svg.select(".legendLinear") |
|
|
|
|