StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
StackGenVis/frontend/node_modules/ndarray-gradient/README.md

58 lines
1.4 KiB

ndarray-gradient
================
Computes the gradient of an ndarray using a 2-point central finite difference template.
# Example
```javascript
var pack = require('ndarray-pack')
var pool = require('ndarray-scratch')
var grad = require('ndarray-gradient')
var show = require('ndarray-show')
var X = pack([[0, 0, 0],
[0, 1, 0],
[0, 0, 0]])
//Compute gradient of X
var dX = grad(pool.zero([3,3,2]), X)
console.log('grad(X) = \n', show(dX))
```
Output:
```
grad(X) =
0.000 0.000 0.000
-0.500 0.000 0.500
0.000 0.000 0.000
0.000 -0.500 0.000
0.000 0.000 0.000
0.000 0.500 0.000
```
# Install
```
npm install ndarray-gradient
```
# API
### `require('ndarray-gradient')(dst, src[, bc])`
Computes the gradient of `src` storing the result into `dst`.
* `dst` is an array of gradient values. The shape of `dst` must be the shape of `src` with one additional dimension for the components of the gradient
* `src` is the array to differentiate
* `bc` is an array of boundary conditions. The boundary conditions are encoded as string values and must be one of the following values:
+ `'clamp'` (Default) clamp boundary edges to boundary
+ `'mirror'` mirror values across the boundary
+ `'wrap'` wrap values across boundary
**Returns** `dst`
# Credits
(c) 2014 Mikola Lysenko. MIT License