StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics
https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1.4 KiB
1.4 KiB
ndarray-gradient
Computes the gradient of an ndarray using a 2-point central finite difference template.
Example
var pack = require('ndarray-pack')
var pool = require('ndarray-scratch')
var grad = require('ndarray-gradient')
var show = require('ndarray-show')
var X = pack([[0, 0, 0],
[0, 1, 0],
[0, 0, 0]])
//Compute gradient of X
var dX = grad(pool.zero([3,3,2]), X)
console.log('grad(X) = \n', show(dX))
Output:
grad(X) =
0.000 0.000 0.000
-0.500 0.000 0.500
0.000 0.000 0.000
0.000 -0.500 0.000
0.000 0.000 0.000
0.000 0.500 0.000
Install
npm install ndarray-gradient
API
require('ndarray-gradient')(dst, src[, bc])
Computes the gradient of src
storing the result into dst
.
-
dst
is an array of gradient values. The shape ofdst
must be the shape ofsrc
with one additional dimension for the components of the gradient -
src
is the array to differentiate -
bc
is an array of boundary conditions. The boundary conditions are encoded as string values and must be one of the following values:'clamp'
(Default) clamp boundary edges to boundary'mirror'
mirror values across the boundary'wrap'
wrap values across boundary
Returns dst
Credits
(c) 2014 Mikola Lysenko. MIT License