StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
StackGenVis/run.py

3066 lines
125 KiB

6 years ago
from flask import Flask, render_template, jsonify, request
from flask_pymongo import PyMongo
from flask_cors import CORS, cross_origin
import json
import collections
import numpy as np
5 years ago
import re
from numpy import array
5 years ago
from statistics import mode
6 years ago
import pandas as pd
import warnings
import copy
from joblib import Memory
5 years ago
from itertools import chain
5 years ago
import ast
6 years ago
5 years ago
from sklearn.neighbors import KNeighborsClassifier # 1 neighbors
from sklearn.svm import SVC # 1 svm
from sklearn.naive_bayes import GaussianNB # 1 naive bayes
from sklearn.neural_network import MLPClassifier # 1 neural network
from sklearn.linear_model import LogisticRegression # 1 linear model
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis # 2 discriminant analysis
5 years ago
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier # 4 ensemble models
5 years ago
from joblib import Parallel, delayed
import multiprocessing
5 years ago
5 years ago
from sklearn.pipeline import make_pipeline
6 years ago
from sklearn import model_selection
from sklearn.manifold import MDS
5 years ago
from sklearn.manifold import TSNE
5 years ago
from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import log_loss
from sklearn.metrics import fbeta_score
from imblearn.metrics import geometric_mean_score
import umap
from sklearn.metrics import classification_report
from sklearn.preprocessing import scale
5 years ago
import eli5
from eli5.sklearn import PermutationImportance
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.feature_selection import RFE
from sklearn.decomposition import PCA
6 years ago
5 years ago
from mlxtend.classifier import StackingCVClassifier
from mlxtend.feature_selection import ColumnSelector
5 years ago
from skdist.distribute.search import DistGridSearchCV
from pyspark.sql import SparkSession
from scipy.spatial import procrustes
6 years ago
# This block of code is for the connection between the server, the database, and the client (plus routing).
# Access MongoDB
app = Flask(__name__)
app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb"
mongo = PyMongo(app)
cors = CORS(app, resources={r"/data/*": {"origins": "*"}})
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/Reset', methods=["GET", "POST"])
def Reset():
global DataRawLength
global DataResultsRaw
global previousState
previousState = []
global keySpecInternal
keySpecInternal = 1
global previousStateActive
previousStateActive = []
5 years ago
global RANDOM_SEED
RANDOM_SEED = 42
global factors
factors = [1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1]
5 years ago
global KNNModelsCount
global SVCModelsCount
global GausNBModelsCount
global MLPModelsCount
global LRModelsCount
global LDAModelsCount
global QDAModelsCount
global RFModelsCount
global ExtraTModelsCount
global AdaBModelsCount
global GradBModelsCount
global keyData
keyData = 0
5 years ago
KNNModelsCount = 0
SVCModelsCount = 576
GausNBModelsCount = 736
MLPModelsCount = 1236
LRModelsCount = 1356
LDAModelsCount = 1996
QDAModelsCount = 2196
RFModelsCount = 2446
ExtraTModelsCount = 2606
AdaBModelsCount = 2766
GradBModelsCount = 2926
global XData
XData = []
global yData
yData = []
5 years ago
global XDataStored
XDataStored = []
global yDataStored
yDataStored = []
5 years ago
global detailsParams
detailsParams = []
global algorithmList
algorithmList = []
global ClassifierIDsList
ClassifierIDsList = ''
# Initializing models
global resultsList
resultsList = []
global RetrieveModelsList
RetrieveModelsList = []
global allParametersPerformancePerModel
allParametersPerformancePerModel = []
global all_classifiers
all_classifiers = []
global crossValidation
5 years ago
crossValidation = 5
5 years ago
# models
global KNNModels
KNNModels = []
global RFModels
RFModels = []
global scoring
scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'}
5 years ago
global loopFeatures
loopFeatures = 2
global results
results = []
global resultsMetrics
resultsMetrics = []
global parametersSelData
parametersSelData = []
global target_names
target_names = []
return 'The reset was done!'
5 years ago
# Retrieve data from client and select the correct data set
6 years ago
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequest', methods=["GET", "POST"])
def RetrieveFileName():
global DataRawLength
global DataResultsRaw
5 years ago
5 years ago
fileName = request.get_data().decode('utf8').replace("'", '"')
global keySpecInternal
keySpecInternal = 1
5 years ago
global RANDOM_SEED
RANDOM_SEED = 42
global keyData
keyData = 0
5 years ago
global XData
XData = []
global previousState
previousState = []
global previousStateActive
previousStateActive = []
5 years ago
global yData
yData = []
5 years ago
global XDataStored
XDataStored = []
global yDataStored
yDataStored = []
global filterDataFinal
filterDataFinal = 'mean'
5 years ago
global ClassifierIDsList
ClassifierIDsList = ''
global algorithmList
algorithmList = []
5 years ago
global detailsParams
detailsParams = []
5 years ago
# Initializing models
global RetrieveModelsList
RetrieveModelsList = []
5 years ago
global resultsList
resultsList = []
global allParametersPerformancePerModel
allParametersPerformancePerModel = []
global all_classifiers
all_classifiers = []
global crossValidation
5 years ago
crossValidation = 5
5 years ago
5 years ago
global scoring
scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'}
5 years ago
global loopFeatures
loopFeatures = 2
5 years ago
# models
global KNNModels
5 years ago
global SVCModels
global GausNBModels
global MLPModels
global LRModels
global LDAModels
global QDAModels
5 years ago
global RFModels
5 years ago
global ExtraTModels
global AdaBModels
global GradBModels
KNNModels = []
SVCModels = []
GausNBModels = []
MLPModels = []
LRModels = []
LDAModels = []
QDAModels = []
5 years ago
RFModels = []
5 years ago
ExtraTModels = []
AdaBModels = []
GradBModels = []
5 years ago
5 years ago
global results
results = []
global resultsMetrics
resultsMetrics = []
global parametersSelData
parametersSelData = []
5 years ago
global target_names
target_names = []
6 years ago
DataRawLength = -1
data = json.loads(fileName)
if data['fileName'] == 'HeartC':
CollectionDB = mongo.db.HeartC.find()
elif data['fileName'] == 'StanceC':
CollectionDB = mongo.db.StanceC.find()
6 years ago
elif data['fileName'] == 'DiabetesC':
CollectionDB = mongo.db.DiabetesC.find()
else:
CollectionDB = mongo.db.IrisC.find()
DataResultsRaw = []
for index, item in enumerate(CollectionDB):
item['_id'] = str(item['_id'])
item['InstanceID'] = index
DataResultsRaw.append(item)
DataRawLength = len(DataResultsRaw)
5 years ago
DataSetSelection()
return 'Everything is okay'
5 years ago
def Convert(lst):
it = iter(lst)
res_dct = dict(zip(it, it))
return res_dct
# Retrieve data set from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"])
def SendToServerData():
uploadedData = request.get_data().decode('utf8').replace("'", '"')
uploadedDataParsed = json.loads(uploadedData)
DataResultsRaw = uploadedDataParsed['uploadedData']
DataResults = copy.deepcopy(DataResultsRaw)
for dictionary in DataResultsRaw:
for key in dictionary.keys():
if (key.find('*') != -1):
target = key
continue
continue
DataResultsRaw.sort(key=lambda x: x[target], reverse=True)
DataResults.sort(key=lambda x: x[target], reverse=True)
for dictionary in DataResults:
del dictionary[target]
global AllTargets
global target_names
AllTargets = [o[target] for o in DataResultsRaw]
AllTargetsFloatValues = []
previous = None
Class = 0
for i, value in enumerate(AllTargets):
if (i == 0):
previous = value
target_names.append(value)
if (value == previous):
AllTargetsFloatValues.append(Class)
else:
Class = Class + 1
target_names.append(value)
AllTargetsFloatValues.append(Class)
previous = value
ArrayDataResults = pd.DataFrame.from_dict(DataResults)
global XData, yData, RANDOM_SEED
XData, yData = ArrayDataResults, AllTargetsFloatValues
global XDataStored, yDataStored
XDataStored = XData.copy()
yDataStored = yData.copy()
return 'Processed uploaded data set'
5 years ago
# Sent data to client
@app.route('/data/ClientRequest', methods=["GET", "POST"])
def CollectionData():
json.dumps(DataResultsRaw)
response = {
6 years ago
'Collection': DataResultsRaw
}
return jsonify(response)
5 years ago
def DataSetSelection():
5 years ago
DataResults = copy.deepcopy(DataResultsRaw)
5 years ago
5 years ago
for dictionary in DataResultsRaw:
for key in dictionary.keys():
if (key.find('*') != -1):
target = key
continue
continue
DataResultsRaw.sort(key=lambda x: x[target], reverse=True)
DataResults.sort(key=lambda x: x[target], reverse=True)
for dictionary in DataResults:
del dictionary['_id']
del dictionary['InstanceID']
del dictionary[target]
5 years ago
global AllTargets
5 years ago
global target_names
5 years ago
AllTargets = [o[target] for o in DataResultsRaw]
AllTargetsFloatValues = []
previous = None
Class = 0
for i, value in enumerate(AllTargets):
if (i == 0):
previous = value
target_names.append(value)
if (value == previous):
AllTargetsFloatValues.append(Class)
else:
Class = Class + 1
target_names.append(value)
AllTargetsFloatValues.append(Class)
previous = value
ArrayDataResults = pd.DataFrame.from_dict(DataResults)
6 years ago
5 years ago
global XData, yData, RANDOM_SEED
XData, yData = ArrayDataResults, AllTargetsFloatValues
5 years ago
global XDataStored, yDataStored
XDataStored = XData.copy()
yDataStored = yData.copy()
5 years ago
warnings.simplefilter('ignore')
return 'Everything is okay'
def callPreResults():
global XData
global yData
global target_names
5 years ago
global impDataInst
5 years ago
DataSpaceResMDS = FunMDS(XData)
DataSpaceResTSNE = FunTsne(XData)
DataSpaceResTSNE = DataSpaceResTSNE.tolist()
DataSpaceUMAP = FunUMAP(XData)
5 years ago
XDataJSONEntireSetRes = XData.to_json(orient='records')
global preResults
preResults = []
preResults.append(json.dumps(target_names)) # Position: 0
preResults.append(json.dumps(DataSpaceResMDS)) # Position: 1
5 years ago
preResults.append(json.dumps(XDataJSONEntireSetRes)) # Position: 2
preResults.append(json.dumps(yData)) # Position: 3
preResults.append(json.dumps(AllTargets)) # Position: 4
preResults.append(json.dumps(DataSpaceResTSNE)) # Position: 5
preResults.append(json.dumps(DataSpaceUMAP)) # Position: 6
5 years ago
preResults.append(json.dumps(impDataInst)) # Position: 7
6 years ago
5 years ago
# Sending each model's results to frontend
@app.route('/data/requestDataSpaceResults', methods=["GET", "POST"])
def SendDataSpaceResults():
global preResults
response = {
'preDataResults': preResults,
}
return jsonify(response)
6 years ago
# Main function
if __name__ == '__main__':
app.run()
# Debugging and mirroring client
@app.route('/', defaults={'path': ''})
@app.route('/<path:path>')
def catch_all(path):
if app.debug:
return requests.get('http://localhost:8080/{}'.format(path)).text
return render_template("index.html")
6 years ago
# This block of code is for server computations
5 years ago
def column_index(df, query_cols):
cols = df.columns.values
sidx = np.argsort(cols)
return sidx[np.searchsorted(cols,query_cols,sorter=sidx)].tolist()
def class_feature_importance(X, Y, feature_importances):
N, M = X.shape
X = scale(X)
out = {}
for c in set(Y):
out[c] = dict(
zip(range(N), np.mean(X[Y==c, :], axis=0)*feature_importances)
)
return out
5 years ago
# Initialize every model for each algorithm
5 years ago
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"])
def RetrieveModel():
5 years ago
# get the models from the frontend
5 years ago
RetrievedModel = request.get_data().decode('utf8').replace("'", '"')
RetrievedModel = json.loads(RetrievedModel)
5 years ago
global algorithms
5 years ago
algorithms = RetrievedModel['Algorithms']
toggle = RetrievedModel['Toggle']
5 years ago
5 years ago
global XData
global yData
5 years ago
global SVCModelsCount
global GausNBModelsCount
global MLPModelsCount
global LRModelsCount
global LDAModelsCount
global QDAModelsCount
global RFModelsCount
global ExtraTModelsCount
global AdaBModelsCount
global GradBModelsCount
5 years ago
5 years ago
# loop through the algorithms
global allParametersPerformancePerModel
5 years ago
for eachAlgor in algorithms:
if (eachAlgor) == 'KNN':
clf = KNeighborsClassifier()
5 years ago
params = {'n_neighbors': list(range(1, 25)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}
5 years ago
AlgorithmsIDsEnd = 0
5 years ago
elif (eachAlgor) == 'SVC':
5 years ago
clf = SVC(probability=True,random_state=RANDOM_SEED)
5 years ago
params = {'C': list(np.arange(0.1,4.43,0.11)), 'kernel': ['rbf','linear', 'poly', 'sigmoid']}
5 years ago
AlgorithmsIDsEnd = SVCModelsCount
5 years ago
elif (eachAlgor) == 'GausNB':
clf = GaussianNB()
5 years ago
params = {'var_smoothing': list(np.arange(0.00000000001,0.0000001,0.0000000002))}
5 years ago
AlgorithmsIDsEnd = GausNBModelsCount
5 years ago
elif (eachAlgor) == 'MLP':
5 years ago
clf = MLPClassifier(random_state=RANDOM_SEED)
5 years ago
params = {'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']}
5 years ago
AlgorithmsIDsEnd = MLPModelsCount
5 years ago
elif (eachAlgor) == 'LR':
5 years ago
clf = LogisticRegression(random_state=RANDOM_SEED)
5 years ago
params = {'C': list(np.arange(0.5,2,0.075)), 'max_iter': list(np.arange(50,250,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}
5 years ago
AlgorithmsIDsEnd = LRModelsCount
5 years ago
elif (eachAlgor) == 'LDA':
clf = LinearDiscriminantAnalysis()
5 years ago
params = {'shrinkage': list(np.arange(0,1,0.01)), 'solver': ['lsqr', 'eigen']}
5 years ago
AlgorithmsIDsEnd = LDAModelsCount
5 years ago
elif (eachAlgor) == 'QDA':
clf = QuadraticDiscriminantAnalysis()
params = {'reg_param': list(np.arange(0,1,0.02)), 'tol': list(np.arange(0.00001,0.001,0.0002))}
5 years ago
AlgorithmsIDsEnd = QDAModelsCount
5 years ago
elif (eachAlgor) == 'RF':
5 years ago
clf = RandomForestClassifier(random_state=RANDOM_SEED)
5 years ago
params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']}
5 years ago
AlgorithmsIDsEnd = RFModelsCount
5 years ago
elif (eachAlgor) == 'ExtraT':
5 years ago
clf = ExtraTreesClassifier(random_state=RANDOM_SEED)
5 years ago
params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']}
5 years ago
AlgorithmsIDsEnd = ExtraTModelsCount
5 years ago
elif (eachAlgor) == 'AdaB':
5 years ago
clf = AdaBoostClassifier(random_state=RANDOM_SEED)
5 years ago
params = {'n_estimators': list(range(40, 80)), 'learning_rate': list(np.arange(0.1,2.3,1.1)), 'algorithm': ['SAMME.R', 'SAMME']}
5 years ago
AlgorithmsIDsEnd = AdaBModelsCount
5 years ago
else:
5 years ago
clf = GradientBoostingClassifier(random_state=RANDOM_SEED)
5 years ago
params = {'n_estimators': list(range(85, 115)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']}
5 years ago
AlgorithmsIDsEnd = GradBModelsCount
allParametersPerformancePerModel = GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle)
5 years ago
# call the function that sends the results to the frontend
5 years ago
SendEachClassifiersPerformanceToVisualize()
5 years ago
5 years ago
return 'Everything Okay'
5 years ago
location = './cachedir'
memory = Memory(location, verbose=0)
5 years ago
5 years ago
# calculating for all algorithms and models the performance and other results
@memory.cache
def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle):
5 years ago
# instantiate spark session
spark = (
SparkSession
.builder
.getOrCreate()
)
sc = spark.sparkContext
# this is the grid we use to train the models
grid = DistGridSearchCV(
estimator=clf, param_grid=params,
sc=sc, cv=crossValidation, refit='accuracy', scoring=scoring,
verbose=0, n_jobs=-1)
5 years ago
5 years ago
# fit and extract the probabilities
5 years ago
grid.fit(XData, yData)
5 years ago
# process the results
5 years ago
cv_results = []
cv_results.append(grid.cv_results_)
df_cv_results = pd.DataFrame.from_dict(cv_results)
5 years ago
5 years ago
# number of models stored
number_of_models = len(df_cv_results.iloc[0][0])
# initialize results per row
5 years ago
df_cv_results_per_row = []
5 years ago
# loop through number of models
modelsIDs = []
for i in range(number_of_models):
modelsIDs.append(AlgorithmsIDsEnd+i)
# initialize results per item
5 years ago
df_cv_results_per_item = []
for column in df_cv_results.iloc[0]:
df_cv_results_per_item.append(column[i])
df_cv_results_per_row.append(df_cv_results_per_item)
5 years ago
# store the results into a pandas dataframe
df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns)
5 years ago
5 years ago
# copy and filter in order to get only the metrics
5 years ago
metrics = df_cv_results_classifiers.copy()
5 years ago
metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_micro','mean_test_precision_macro','mean_test_precision_weighted','mean_test_recall_micro','mean_test_recall_macro','mean_test_recall_weighted','mean_test_roc_auc_ovo_weighted'])
5 years ago
# concat parameters and performance
5 years ago
parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params'])
5 years ago
parametersPerformancePerModel = parametersPerformancePerModel.to_json()
5 years ago
5 years ago
parametersLocal = json.loads(parametersPerformancePerModel)['params'].copy()
Models = []
for index, items in enumerate(parametersLocal):
Models.append(str(index))
parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ]
permList = []
PerFeatureAccuracy = []
PerFeatureAccuracyAll = []
5 years ago
PerClassMetric = []
5 years ago
perModelProb = []
5 years ago
perModelPrediction = []
5 years ago
resultsMicro = []
resultsMacro = []
resultsWeighted = []
resultsCorrCoef = []
resultsMicroBeta5 = []
resultsMacroBeta5 = []
resultsWeightedBeta5 = []
resultsMicroBeta1 = []
resultsMacroBeta1 = []
resultsWeightedBeta1 = []
resultsMicroBeta2 = []
resultsMacroBeta2 = []
resultsWeightedBeta2 = []
resultsLogLoss = []
5 years ago
resultsLogLossFinal = []
5 years ago
loop = 8
5 years ago
5 years ago
# influence calculation for all the instances
inputs = range(len(XData))
num_cores = multiprocessing.cpu_count()
5 years ago
#impDataInst = Parallel(n_jobs=num_cores)(delayed(processInput)(i,XData,yData,crossValidation,clf) for i in inputs)
5 years ago
for eachModelParameters in parametersLocalNew:
clf.set_params(**eachModelParameters)
if (toggle == 1):
perm = PermutationImportance(clf, cv = None, refit = True, n_iter = 25).fit(XData, yData)
permList.append(perm.feature_importances_)
n_feats = XData.shape[1]
PerFeatureAccuracy = []
for i in range(n_feats):
scores = model_selection.cross_val_score(clf, XData.values[:, i].reshape(-1, 1), yData, cv=crossValidation)
PerFeatureAccuracy.append(scores.mean())
PerFeatureAccuracyAll.append(PerFeatureAccuracy)
else:
permList.append(0)
PerFeatureAccuracyAll.append(0)
5 years ago
clf.fit(XData, yData)
yPredict = clf.predict(XData)
yPredict = np.nan_to_num(yPredict)
5 years ago
perModelPrediction.append(yPredict)
5 years ago
# retrieve target names (class names)
PerClassMetric.append(classification_report(yData, yPredict, target_names=target_names, digits=2, output_dict=True))
5 years ago
yPredictProb = clf.predict_proba(XData)
yPredictProb = np.nan_to_num(yPredictProb)
5 years ago
perModelProb.append(yPredictProb.tolist())
5 years ago
resultsMicro.append(geometric_mean_score(yData, yPredict, average='micro'))
resultsMacro.append(geometric_mean_score(yData, yPredict, average='macro'))
resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted'))
resultsCorrCoef.append(matthews_corrcoef(yData, yPredict))
resultsMicroBeta5.append(fbeta_score(yData, yPredict, average='micro', beta=0.5))
resultsMacroBeta5.append(fbeta_score(yData, yPredict, average='macro', beta=0.5))
resultsWeightedBeta5.append(fbeta_score(yData, yPredict, average='weighted', beta=0.5))
resultsMicroBeta1.append(fbeta_score(yData, yPredict, average='micro', beta=1))
resultsMacroBeta1.append(fbeta_score(yData, yPredict, average='macro', beta=1))
resultsWeightedBeta1.append(fbeta_score(yData, yPredict, average='weighted', beta=1))
5 years ago
resultsMicroBeta2.append(fbeta_score(yData, yPredict, average='micro', beta=2))
resultsMacroBeta2.append(fbeta_score(yData, yPredict, average='macro', beta=2))
resultsWeightedBeta2.append(fbeta_score(yData, yPredict, average='weighted', beta=2))
5 years ago
resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True))
5 years ago
5 years ago
maxLog = max(resultsLogLoss)
minLog = min(resultsLogLoss)
for each in resultsLogLoss:
resultsLogLossFinal.append((each-minLog)/(maxLog-minLog))
5 years ago
metrics.insert(loop,'geometric_mean_score_micro',resultsMicro)
metrics.insert(loop+1,'geometric_mean_score_macro',resultsMacro)
metrics.insert(loop+2,'geometric_mean_score_weighted',resultsWeighted)
metrics.insert(loop+3,'matthews_corrcoef',resultsCorrCoef)
metrics.insert(loop+4,'f5_micro',resultsMicroBeta5)
metrics.insert(loop+5,'f5_macro',resultsMacroBeta5)
metrics.insert(loop+6,'f5_weighted',resultsWeightedBeta5)
metrics.insert(loop+7,'f1_micro',resultsMicroBeta1)
metrics.insert(loop+8,'f1_macro',resultsMacroBeta1)
metrics.insert(loop+9,'f1_weighted',resultsWeightedBeta1)
metrics.insert(loop+10,'f2_micro',resultsMicroBeta2)
metrics.insert(loop+11,'f2_macro',resultsMacroBeta2)
metrics.insert(loop+12,'f2_weighted',resultsWeightedBeta2)
5 years ago
metrics.insert(loop+13,'log_loss',resultsLogLossFinal)
5 years ago
5 years ago
perModelPredPandas = pd.DataFrame(perModelPrediction)
print(perModelPredPandas)
perModelPredPandas = perModelPredPandas.to_json()
5 years ago
perModelProbPandas = pd.DataFrame(perModelProb)
perModelProbPandas = perModelProbPandas.to_json()
5 years ago
5 years ago
PerClassMetricPandas = pd.DataFrame(PerClassMetric)
del PerClassMetricPandas['accuracy']
del PerClassMetricPandas['macro avg']
del PerClassMetricPandas['weighted avg']
PerClassMetricPandas = PerClassMetricPandas.to_json()
5 years ago
5 years ago
perm_imp_eli5PD = pd.DataFrame(permList)
perm_imp_eli5PD = perm_imp_eli5PD.to_json()
PerFeatureAccuracyPandas = pd.DataFrame(PerFeatureAccuracyAll)
5 years ago
PerFeatureAccuracyPandas = PerFeatureAccuracyPandas.to_json()
bestfeatures = SelectKBest(score_func=chi2, k='all')
fit = bestfeatures.fit(XData,yData)
dfscores = pd.DataFrame(fit.scores_)
dfcolumns = pd.DataFrame(XData.columns)
featureScores = pd.concat([dfcolumns,dfscores],axis=1)
featureScores.columns = ['Specs','Score'] #naming the dataframe columns
featureScores = featureScores.to_json()
# gather the results and send them back
results.append(modelsIDs) # Position: 0 and so on
results.append(parametersPerformancePerModel) # Position: 1 and so on
results.append(PerClassMetricPandas) # Position: 2 and so on
results.append(PerFeatureAccuracyPandas) # Position: 3 and so on
results.append(perm_imp_eli5PD) # Position: 4 and so on
results.append(featureScores) # Position: 5 and so on
5 years ago
metrics = metrics.to_json()
results.append(metrics) # Position: 6 and so on
results.append(perModelProbPandas) # Position: 7 and so on
5 years ago
results.append(json.dumps(perModelPredPandas)) # Position: 8 and so on
5 years ago
return results
# Sending each model's results to frontend
5 years ago
@app.route('/data/PerformanceForEachModel', methods=["GET", "POST"])
5 years ago
def SendEachClassifiersPerformanceToVisualize():
5 years ago
response = {
5 years ago
'PerformancePerModel': allParametersPerformancePerModel,
5 years ago
}
return jsonify(response)
def Remove(duplicate):
final_list = []
for num in duplicate:
if num not in final_list:
if (isinstance(num, float)):
if np.isnan(num):
pass
else:
5 years ago
final_list.append(float(num))
else:
final_list.append(num)
return final_list
5 years ago
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/SendBrushedParam', methods=["GET", "POST"])
def RetrieveModelsParam():
RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"')
RetrieveModelsPar = json.loads(RetrieveModelsPar)
5 years ago
5 years ago
counterKNN = 0
counterSVC = 0
counterGausNB = 0
counterMLP = 0
counterLR = 0
counterLDA = 0
counterQDA = 0
counterRF = 0
counterExtraT = 0
counterAdaB = 0
counterGradB = 0
5 years ago
5 years ago
global KNNModels
5 years ago
global SVCModels
global GausNBModels
global MLPModels
global LRModels
global LDAModels
global QDAModels
5 years ago
global RFModels
5 years ago
global ExtraTModels
global AdaBModels
global GradBModels
5 years ago
global algorithmsList
5 years ago
5 years ago
algorithmsList = RetrieveModelsPar['algorithms']
for index, items in enumerate(algorithmsList):
5 years ago
if (items == 'KNN'):
5 years ago
counterKNN += 1
5 years ago
KNNModels.append(int(RetrieveModelsPar['models'][index]))
5 years ago
elif (items == 'SVC'):
counterSVC += 1
SVCModels.append(int(RetrieveModelsPar['models'][index]))
elif (items == 'GausNB'):
counterGausNB += 1
GausNBModels.append(int(RetrieveModelsPar['models'][index]))
elif (items == 'MLP'):
counterMLP += 1
MLPModels.append(int(RetrieveModelsPar['models'][index]))
elif (items == 'LR'):
counterLR += 1
LRModels.append(int(RetrieveModelsPar['models'][index]))
elif (items == 'LDA'):
counterLDA += 1
LDAModels.append(int(RetrieveModelsPar['models'][index]))
elif (items == 'QDA'):
counterQDA += 1
QDAModels.append(int(RetrieveModelsPar['models'][index]))
elif (items == 'RF'):
counterRF += 1
RFModels.append(int(RetrieveModelsPar['models'][index]))
5 years ago
elif (items == 'ExtraT'):
counterExtraT += 1
ExtraTModels.append(int(RetrieveModelsPar['models'][index]))
elif (items == 'AdaB'):
counterAdaB += 1
AdaBModels.append(int(RetrieveModelsPar['models'][index]))
else:
counterGradB += 1
GradBModels.append(int(RetrieveModelsPar['models'][index]))
5 years ago
return 'Everything Okay'
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/factors', methods=["GET", "POST"])
def RetrieveFactors():
5 years ago
global factors
global allParametersPerformancePerModel
5 years ago
Factors = request.get_data().decode('utf8').replace("'", '"')
FactorsInt = json.loads(Factors)
factors = FactorsInt['Factors']
5 years ago
# this is if we want to change the factors before running the search
#if (len(allParametersPerformancePerModel) == 0):
# pass
#else:
5 years ago
global sumPerClassifierSel
global ModelSpaceMDSNew
global ModelSpaceTSNENew
global metricsPerModel
5 years ago
sumPerClassifierSel = []
sumPerClassifierSel = preProcsumPerMetric(factors)
5 years ago
ModelSpaceMDSNew = []
ModelSpaceTSNENew = []
loopThroughMetrics = PreprocessingMetrics()
loopThroughMetrics = loopThroughMetrics.fillna(0)
metricsPerModel = preProcMetricsAllAndSel()
5 years ago
flagLocal = 0
countRemovals = 0
for l,el in enumerate(factors):
5 years ago
if el is 0:
loopThroughMetrics.drop(loopThroughMetrics.columns[[l-countRemovals]], axis=1, inplace=True)
5 years ago
countRemovals = countRemovals + 1
flagLocal = 1
if flagLocal is 1:
ModelSpaceMDSNew = FunMDS(loopThroughMetrics)
ModelSpaceTSNENew = FunTsne(loopThroughMetrics)
5 years ago
ModelSpaceTSNENew = ModelSpaceTSNENew.tolist()
return 'Everything Okay'
@app.route('/data/UpdateOverv', methods=["GET", "POST"])
def UpdateOverview():
ResultsUpdateOverview = []
ResultsUpdateOverview.append(sumPerClassifierSel)
ResultsUpdateOverview.append(ModelSpaceMDSNew)
ResultsUpdateOverview.append(ModelSpaceTSNENew)
ResultsUpdateOverview.append(metricsPerModel)
response = {
'Results': ResultsUpdateOverview
}
return jsonify(response)
def PreprocessingMetrics():
dicKNN = json.loads(allParametersPerformancePerModel[6])
5 years ago
dicSVC = json.loads(allParametersPerformancePerModel[15])
dicGausNB = json.loads(allParametersPerformancePerModel[24])
dicMLP = json.loads(allParametersPerformancePerModel[33])
dicLR = json.loads(allParametersPerformancePerModel[42])
dicLDA = json.loads(allParametersPerformancePerModel[51])
dicQDA = json.loads(allParametersPerformancePerModel[60])
dicRF = json.loads(allParametersPerformancePerModel[69])
dicExtraT = json.loads(allParametersPerformancePerModel[78])
dicAdaB = json.loads(allParametersPerformancePerModel[87])
dicGradB = json.loads(allParametersPerformancePerModel[96])
5 years ago
5 years ago
dfKNN = pd.DataFrame.from_dict(dicKNN)
5 years ago
dfSVC = pd.DataFrame.from_dict(dicSVC)
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfLR = pd.DataFrame.from_dict(dicLR)
dfLDA = pd.DataFrame.from_dict(dicLDA)
dfQDA = pd.DataFrame.from_dict(dicQDA)
dfRF = pd.DataFrame.from_dict(dicRF)
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfKNN.index = dfKNN.index.astype(int)
5 years ago
dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount
dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount
dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount
dfLR.index = dfLR.index.astype(int) + LRModelsCount
dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount
dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount
dfRF.index = dfRF.index.astype(int) + RFModelsCount
dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount
dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount
dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount
dfKNNFiltered = dfKNN.loc[KNNModels, :]
5 years ago
dfSVCFiltered = dfSVC.loc[SVCModels, :]
dfGausNBFiltered = dfGausNB.loc[GausNBModels, :]
dfMLPFiltered = dfMLP.loc[MLPModels, :]
dfLRFiltered = dfLR.loc[LRModels, :]
dfLDAFiltered = dfLDA.loc[LDAModels, :]
dfQDAFiltered = dfQDA.loc[QDAModels, :]
dfRFFiltered = dfRF.loc[RFModels, :]
5 years ago
dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :]
dfAdaBFiltered = dfAdaB.loc[AdaBModels, :]
dfGradBFiltered = dfGradB.loc[GradBModels, :]
df_concatMetrics = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered])
5 years ago
return df_concatMetrics
def PreprocessingPred():
dicKNN = json.loads(allParametersPerformancePerModel[7])
5 years ago
dicSVC = json.loads(allParametersPerformancePerModel[16])
dicGausNB = json.loads(allParametersPerformancePerModel[25])
dicMLP = json.loads(allParametersPerformancePerModel[34])
dicLR = json.loads(allParametersPerformancePerModel[43])
dicLDA = json.loads(allParametersPerformancePerModel[52])
dicQDA = json.loads(allParametersPerformancePerModel[61])
dicRF = json.loads(allParametersPerformancePerModel[70])
dicExtraT = json.loads(allParametersPerformancePerModel[79])
dicAdaB = json.loads(allParametersPerformancePerModel[88])
dicGradB = json.loads(allParametersPerformancePerModel[97])
5 years ago
5 years ago
dfKNN = pd.DataFrame.from_dict(dicKNN)
5 years ago
dfSVC = pd.DataFrame.from_dict(dicSVC)
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfLR = pd.DataFrame.from_dict(dicLR)
dfLDA = pd.DataFrame.from_dict(dicLDA)
dfQDA = pd.DataFrame.from_dict(dicQDA)
dfRF = pd.DataFrame.from_dict(dicRF)
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfKNN.index = dfKNN.index.astype(int)
5 years ago
dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount
dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount
dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount
dfLR.index = dfLR.index.astype(int) + LRModelsCount
dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount
dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount
dfRF.index = dfRF.index.astype(int) + RFModelsCount
dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount
dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount
dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount
dfKNNFiltered = dfKNN.loc[KNNModels, :]
5 years ago
dfSVCFiltered = dfSVC.loc[SVCModels, :]
dfGausNBFiltered = dfGausNB.loc[GausNBModels, :]
dfMLPFiltered = dfMLP.loc[MLPModels, :]
dfLRFiltered = dfLR.loc[LRModels, :]
dfLDAFiltered = dfLDA.loc[LDAModels, :]
dfQDAFiltered = dfQDA.loc[QDAModels, :]
dfRFFiltered = dfRF.loc[RFModels, :]
5 years ago
dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :]
dfAdaBFiltered = dfAdaB.loc[AdaBModels, :]
dfGradBFiltered = dfGradB.loc[GradBModels, :]
df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered])
5 years ago
predictions = []
for column, content in df_concatProbs.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictions.append(el)
5 years ago
5 years ago
return predictions
def PreprocessingPredUpdate(Models):
Models = json.loads(Models)
ModelsList= []
for loop in Models['ClassifiersList']:
5 years ago
ModelsList.append(loop)
5 years ago
dicKNN = json.loads(allParametersPerformancePerModel[7])
5 years ago
dicSVC = json.loads(allParametersPerformancePerModel[16])
dicGausNB = json.loads(allParametersPerformancePerModel[25])
dicMLP = json.loads(allParametersPerformancePerModel[34])
dicLR = json.loads(allParametersPerformancePerModel[43])
dicLDA = json.loads(allParametersPerformancePerModel[52])
dicQDA = json.loads(allParametersPerformancePerModel[61])
dicRF = json.loads(allParametersPerformancePerModel[70])
dicExtraT = json.loads(allParametersPerformancePerModel[79])
dicAdaB = json.loads(allParametersPerformancePerModel[88])
dicGradB = json.loads(allParametersPerformancePerModel[97])
5 years ago
dfKNN = pd.DataFrame.from_dict(dicKNN)
5 years ago
dfSVC = pd.DataFrame.from_dict(dicSVC)
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfLR = pd.DataFrame.from_dict(dicLR)
dfLDA = pd.DataFrame.from_dict(dicLDA)
dfQDA = pd.DataFrame.from_dict(dicQDA)
dfRF = pd.DataFrame.from_dict(dicRF)
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfKNN.index = dfKNN.index.astype(int)
5 years ago
dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount
dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount
dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount
dfLR.index = dfLR.index.astype(int) + LRModelsCount
dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount
dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount
dfRF.index = dfRF.index.astype(int) + RFModelsCount
dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount
dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount
dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount
dfKNNFiltered = dfKNN.loc[KNNModels, :]
5 years ago
dfSVCFiltered = dfSVC.loc[SVCModels, :]
dfGausNBFiltered = dfGausNB.loc[GausNBModels, :]
dfMLPFiltered = dfMLP.loc[MLPModels, :]
dfLRFiltered = dfLR.loc[LRModels, :]
dfLDAFiltered = dfLDA.loc[LDAModels, :]
dfQDAFiltered = dfQDA.loc[QDAModels, :]
dfRFFiltered = dfRF.loc[RFModels, :]
5 years ago
dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :]
dfAdaBFiltered = dfAdaB.loc[AdaBModels, :]
dfGradBFiltered = dfGradB.loc[GradBModels, :]
df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered])
listProbs = df_concatProbs.index.values.tolist()
deletedElements = 0
for index, element in enumerate(listProbs):
if element in ModelsList:
index = index - deletedElements
df_concatProbs = df_concatProbs.drop(df_concatProbs.index[index])
deletedElements = deletedElements + 1
df_concatProbsCleared = df_concatProbs
5 years ago
listIDsRemoved = df_concatProbsCleared.index.values.tolist()
predictionsAll = PreprocessingPred()
PredictionSpaceAll = FunMDS(predictionsAll)
predictionsSel = []
for column, content in df_concatProbsCleared.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsSel.append(el)
PredictionSpaceSel = FunMDS(predictionsSel)
mtx2PredFinal = []
mtx1Pred, mtx2Pred, disparity2 = procrustes(PredictionSpaceAll, PredictionSpaceSel)
5 years ago
a1 = [i[1] for i in mtx2Pred]
b1 = [i[0] for i in mtx2Pred]
mtx2PredFinal.append(a1)
mtx2PredFinal.append(b1)
5 years ago
return [mtx2PredFinal,listIDsRemoved]
def PreprocessingParam():
dicKNN = json.loads(allParametersPerformancePerModel[1])
5 years ago
dicSVC = json.loads(allParametersPerformancePerModel[10])
dicGausNB = json.loads(allParametersPerformancePerModel[19])
dicMLP = json.loads(allParametersPerformancePerModel[28])
dicLR = json.loads(allParametersPerformancePerModel[37])
dicLDA = json.loads(allParametersPerformancePerModel[46])
dicQDA = json.loads(allParametersPerformancePerModel[55])
dicRF = json.loads(allParametersPerformancePerModel[64])
dicExtraT = json.loads(allParametersPerformancePerModel[73])
dicAdaB = json.loads(allParametersPerformancePerModel[82])
dicGradB = json.loads(allParametersPerformancePerModel[91])
5 years ago
dicKNN = dicKNN['params']
5 years ago
dicSVC = dicSVC['params']
dicGausNB = dicGausNB['params']
dicMLP = dicMLP['params']
dicLR = dicLR['params']
dicLDA = dicLDA['params']
dicQDA = dicQDA['params']
dicRF = dicRF['params']
5 years ago
dicExtraT = dicExtraT['params']
dicAdaB = dicAdaB['params']
dicGradB = dicGradB['params']
dicKNN = {int(k):v for k,v in dicKNN.items()}
dicSVC = {int(k):v for k,v in dicSVC.items()}
dicGausNB = {int(k):v for k,v in dicGausNB.items()}
dicMLP = {int(k):v for k,v in dicMLP.items()}
dicLR = {int(k):v for k,v in dicLR.items()}
dicLDA = {int(k):v for k,v in dicLDA.items()}
dicQDA = {int(k):v for k,v in dicQDA.items()}
dicRF = {int(k):v for k,v in dicRF.items()}
dicExtraT = {int(k):v for k,v in dicExtraT.items()}
dicAdaB = {int(k):v for k,v in dicAdaB.items()}
dicGradB = {int(k):v for k,v in dicGradB.items()}
5 years ago
dfKNN = pd.DataFrame.from_dict(dicKNN)
5 years ago
dfSVC = pd.DataFrame.from_dict(dicSVC)
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfLR = pd.DataFrame.from_dict(dicLR)
dfLDA = pd.DataFrame.from_dict(dicLDA)
dfQDA = pd.DataFrame.from_dict(dicQDA)
dfRF = pd.DataFrame.from_dict(dicRF)
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfKNN = dfKNN.T
5 years ago
dfSVC = dfSVC.T
dfGausNB = dfGausNB.T
dfMLP = dfMLP.T
dfLR = dfLR.T
dfLDA = dfLDA.T
dfQDA = dfQDA.T
dfRF = dfRF.T
dfExtraT = dfExtraT.T
dfAdaB = dfAdaB.T
dfGradB = dfGradB.T
dfKNN.index = dfKNN.index.astype(int)
5 years ago
dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount
dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount
dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount
dfLR.index = dfLR.index.astype(int) + LRModelsCount
dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount
dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount
dfRF.index = dfRF.index.astype(int) + RFModelsCount
dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount
dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount
dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount
dfKNNFiltered = dfKNN.loc[KNNModels, :]
5 years ago
dfSVCFiltered = dfSVC.loc[SVCModels, :]
dfGausNBFiltered = dfGausNB.loc[GausNBModels, :]
dfMLPFiltered = dfMLP.loc[MLPModels, :]
dfLRFiltered = dfLR.loc[LRModels, :]
dfLDAFiltered = dfLDA.loc[LDAModels, :]
dfQDAFiltered = dfQDA.loc[QDAModels, :]
dfRFFiltered = dfRF.loc[RFModels, :]
5 years ago
dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :]
dfAdaBFiltered = dfAdaB.loc[AdaBModels, :]
dfGradBFiltered = dfGradB.loc[GradBModels, :]
df_params = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered])
return df_params
def PreprocessingParamSep():
dicKNN = json.loads(allParametersPerformancePerModel[1])
5 years ago
dicSVC = json.loads(allParametersPerformancePerModel[10])
dicGausNB = json.loads(allParametersPerformancePerModel[19])
dicMLP = json.loads(allParametersPerformancePerModel[28])
dicLR = json.loads(allParametersPerformancePerModel[37])
dicLDA = json.loads(allParametersPerformancePerModel[46])
dicQDA = json.loads(allParametersPerformancePerModel[55])
dicRF = json.loads(allParametersPerformancePerModel[64])
dicExtraT = json.loads(allParametersPerformancePerModel[73])
dicAdaB = json.loads(allParametersPerformancePerModel[82])
dicGradB = json.loads(allParametersPerformancePerModel[91])
5 years ago
dicKNN = dicKNN['params']
5 years ago
dicSVC = dicSVC['params']
dicGausNB = dicGausNB['params']
dicMLP = dicMLP['params']
dicLR = dicLR['params']
dicLDA = dicLDA['params']
dicQDA = dicQDA['params']
dicRF = dicRF['params']
5 years ago
dicExtraT = dicExtraT['params']
dicAdaB = dicAdaB['params']
dicGradB = dicGradB['params']
dicKNN = {int(k):v for k,v in dicKNN.items()}
dicSVC = {int(k):v for k,v in dicSVC.items()}
dicGausNB = {int(k):v for k,v in dicGausNB.items()}
dicMLP = {int(k):v for k,v in dicMLP.items()}
dicLR = {int(k):v for k,v in dicLR.items()}
dicLDA = {int(k):v for k,v in dicLDA.items()}
dicQDA = {int(k):v for k,v in dicQDA.items()}
dicRF = {int(k):v for k,v in dicRF.items()}
dicExtraT = {int(k):v for k,v in dicExtraT.items()}
dicAdaB = {int(k):v for k,v in dicAdaB.items()}
dicGradB = {int(k):v for k,v in dicGradB.items()}
dfKNN = pd.DataFrame.from_dict(dicKNN)
5 years ago
dfSVC = pd.DataFrame.from_dict(dicSVC)
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfLR = pd.DataFrame.from_dict(dicLR)
dfLDA = pd.DataFrame.from_dict(dicLDA)
dfQDA = pd.DataFrame.from_dict(dicQDA)
dfRF = pd.DataFrame.from_dict(dicRF)
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfKNN = dfKNN.T
5 years ago
dfSVC = dfSVC.T
dfGausNB = dfGausNB.T
dfMLP = dfMLP.T
dfLR = dfLR.T
dfLDA = dfLDA.T
dfQDA = dfQDA.T
dfRF = dfRF.T
dfExtraT = dfExtraT.T
dfAdaB = dfAdaB.T
dfGradB = dfGradB.T
dfKNN.index = dfKNN.index.astype(int)
5 years ago
dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount
dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount
dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount
dfLR.index = dfLR.index.astype(int) + LRModelsCount
dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount
dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount
dfRF.index = dfRF.index.astype(int) + RFModelsCount
dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount
dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount
dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount
dfKNNFiltered = dfKNN.loc[KNNModels, :]
5 years ago
dfSVCFiltered = dfSVC.loc[SVCModels, :]
dfGausNBFiltered = dfGausNB.loc[GausNBModels, :]
dfMLPFiltered = dfMLP.loc[MLPModels, :]
dfLRFiltered = dfLR.loc[LRModels, :]
dfLDAFiltered = dfLDA.loc[LDAModels, :]
dfQDAFiltered = dfQDA.loc[QDAModels, :]
dfRFFiltered = dfRF.loc[RFModels, :]
5 years ago
dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :]
dfAdaBFiltered = dfAdaB.loc[AdaBModels, :]
dfGradBFiltered = dfGradB.loc[GradBModels, :]
return [dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]
def preProcessPerClassM():
dicKNN = json.loads(allParametersPerformancePerModel[2])
5 years ago
dicSVC = json.loads(allParametersPerformancePerModel[11])
dicGausNB = json.loads(allParametersPerformancePerModel[20])
dicMLP = json.loads(allParametersPerformancePerModel[29])
dicLR = json.loads(allParametersPerformancePerModel[38])
dicLDA = json.loads(allParametersPerformancePerModel[47])
dicQDA = json.loads(allParametersPerformancePerModel[56])
dicRF = json.loads(allParametersPerformancePerModel[65])
dicExtraT = json.loads(allParametersPerformancePerModel[74])
dicAdaB = json.loads(allParametersPerformancePerModel[83])
dicGradB = json.loads(allParametersPerformancePerModel[92])
5 years ago
dfKNN = pd.DataFrame.from_dict(dicKNN)
5 years ago
dfSVC = pd.DataFrame.from_dict(dicSVC)
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfLR = pd.DataFrame.from_dict(dicLR)
dfLDA = pd.DataFrame.from_dict(dicLDA)
dfQDA = pd.DataFrame.from_dict(dicQDA)
dfRF = pd.DataFrame.from_dict(dicRF)
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfKNN.index = dfKNN.index.astype(int)
5 years ago
dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount
dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount
dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount
dfLR.index = dfLR.index.astype(int) + LRModelsCount
dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount
dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount
dfRF.index = dfRF.index.astype(int) + RFModelsCount
dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount
dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount
dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount
dfKNNFiltered = dfKNN.loc[KNNModels, :]
5 years ago
dfSVCFiltered = dfSVC.loc[SVCModels, :]
dfGausNBFiltered = dfGausNB.loc[GausNBModels, :]
dfMLPFiltered = dfMLP.loc[MLPModels, :]
dfLRFiltered = dfLR.loc[LRModels, :]
dfLDAFiltered = dfLDA.loc[LDAModels, :]
dfQDAFiltered = dfQDA.loc[QDAModels, :]
dfRFFiltered = dfRF.loc[RFModels, :]
5 years ago
dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :]
dfAdaBFiltered = dfAdaB.loc[AdaBModels, :]
dfGradBFiltered = dfGradB.loc[GradBModels, :]
df_concatParams = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered])
return df_concatParams
def preProcessFeatAcc():
dicKNN = json.loads(allParametersPerformancePerModel[3])
5 years ago
dicSVC = json.loads(allParametersPerformancePerModel[12])
dicGausNB = json.loads(allParametersPerformancePerModel[21])
dicMLP = json.loads(allParametersPerformancePerModel[30])
dicLR = json.loads(allParametersPerformancePerModel[39])
dicLDA = json.loads(allParametersPerformancePerModel[48])
dicQDA = json.loads(allParametersPerformancePerModel[57])
dicRF = json.loads(allParametersPerformancePerModel[66])
dicExtraT = json.loads(allParametersPerformancePerModel[75])
dicAdaB = json.loads(allParametersPerformancePerModel[84])
dicGradB = json.loads(allParametersPerformancePerModel[93])
5 years ago
dfKNN = pd.DataFrame.from_dict(dicKNN)
5 years ago
dfSVC = pd.DataFrame.from_dict(dicSVC)
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfLR = pd.DataFrame.from_dict(dicLR)
dfLDA = pd.DataFrame.from_dict(dicLDA)
dfQDA = pd.DataFrame.from_dict(dicQDA)
dfRF = pd.DataFrame.from_dict(dicRF)
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfKNN.index = dfKNN.index.astype(int)
5 years ago
dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount
dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount
dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount
dfLR.index = dfLR.index.astype(int) + LRModelsCount
dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount
dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount
dfRF.index = dfRF.index.astype(int) + RFModelsCount
dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount
dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount
dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount
dfKNNFiltered = dfKNN.loc[KNNModels, :]
5 years ago
dfSVCFiltered = dfSVC.loc[SVCModels, :]
dfGausNBFiltered = dfGausNB.loc[GausNBModels, :]
dfMLPFiltered = dfMLP.loc[MLPModels, :]
dfLRFiltered = dfLR.loc[LRModels, :]
dfLDAFiltered = dfLDA.loc[LDAModels, :]
dfQDAFiltered = dfQDA.loc[QDAModels, :]
dfRFFiltered = dfRF.loc[RFModels, :]
5 years ago
dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :]
dfAdaBFiltered = dfAdaB.loc[AdaBModels, :]
dfGradBFiltered = dfGradB.loc[GradBModels, :]
df_featAcc = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered])
return df_featAcc
def preProcessPerm():
dicKNN = json.loads(allParametersPerformancePerModel[4])
5 years ago
dicSVC = json.loads(allParametersPerformancePerModel[13])
dicGausNB = json.loads(allParametersPerformancePerModel[22])
dicMLP = json.loads(allParametersPerformancePerModel[31])
dicLR = json.loads(allParametersPerformancePerModel[40])
dicLDA = json.loads(allParametersPerformancePerModel[49])
dicQDA = json.loads(allParametersPerformancePerModel[58])
dicRF = json.loads(allParametersPerformancePerModel[67])
dicExtraT = json.loads(allParametersPerformancePerModel[76])
dicAdaB = json.loads(allParametersPerformancePerModel[85])
dicGradB = json.loads(allParametersPerformancePerModel[94])
5 years ago
dfKNN = pd.DataFrame.from_dict(dicKNN)
5 years ago
dfSVC = pd.DataFrame.from_dict(dicSVC)
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfLR = pd.DataFrame.from_dict(dicLR)
dfLDA = pd.DataFrame.from_dict(dicLDA)
dfQDA = pd.DataFrame.from_dict(dicQDA)
dfRF = pd.DataFrame.from_dict(dicRF)
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfKNN.index = dfKNN.index.astype(int)
5 years ago
dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount
dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount
dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount
dfLR.index = dfLR.index.astype(int) + LRModelsCount
dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount
dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount
dfRF.index = dfRF.index.astype(int) + RFModelsCount
dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount
dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount
dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount
dfKNNFiltered = dfKNN.loc[KNNModels, :]
5 years ago
dfSVCFiltered = dfSVC.loc[SVCModels, :]
dfGausNBFiltered = dfGausNB.loc[GausNBModels, :]
dfMLPFiltered = dfMLP.loc[MLPModels, :]
dfLRFiltered = dfLR.loc[LRModels, :]
dfLDAFiltered = dfLDA.loc[LDAModels, :]
dfQDAFiltered = dfQDA.loc[QDAModels, :]
dfRFFiltered = dfRF.loc[RFModels, :]
5 years ago
dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :]
dfAdaBFiltered = dfAdaB.loc[AdaBModels, :]
dfGradBFiltered = dfGradB.loc[GradBModels, :]
df_perm = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered])
return df_perm
def preProcessFeatSc():
dicKNN = json.loads(allParametersPerformancePerModel[5])
dfKNN = pd.DataFrame.from_dict(dicKNN)
return dfKNN
5 years ago
# remove that maybe!
def preProcsumPerMetric(factors):
sumPerClassifier = []
loopThroughMetrics = PreprocessingMetrics()
loopThroughMetrics = loopThroughMetrics.fillna(0)
5 years ago
loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss']
for row in loopThroughMetrics.iterrows():
rowSum = 0
name, values = row
for loop, elements in enumerate(values):
rowSum = elements*factors[loop] + rowSum
5 years ago
if sum(factors) is 0:
sumPerClassifier = 0
else:
5 years ago
sumPerClassifier.append(rowSum/sum(factors) * 100)
return sumPerClassifier
def preProcMetricsAllAndSel():
loopThroughMetrics = PreprocessingMetrics()
loopThroughMetrics = loopThroughMetrics.fillna(0)
5 years ago
global factors
metricsPerModelColl = []
5 years ago
metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy'])
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_micro'])
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro'])
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_micro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_micro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted'])
metricsPerModelColl.append(loopThroughMetrics['f5_micro'])
metricsPerModelColl.append(loopThroughMetrics['f5_macro'])
metricsPerModelColl.append(loopThroughMetrics['f5_weighted'])
metricsPerModelColl.append(loopThroughMetrics['f1_micro'])
metricsPerModelColl.append(loopThroughMetrics['f1_macro'])
metricsPerModelColl.append(loopThroughMetrics['f1_weighted'])
metricsPerModelColl.append(loopThroughMetrics['f2_micro'])
metricsPerModelColl.append(loopThroughMetrics['f2_macro'])
metricsPerModelColl.append(loopThroughMetrics['f2_weighted'])
metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted'])
metricsPerModelColl.append(loopThroughMetrics['log_loss'])
f=lambda a: (abs(a)+a)/2
for index, metric in enumerate(metricsPerModelColl):
if (index == 19):
metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100
elif (index == 21):
5 years ago
metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100
5 years ago
else:
5 years ago
metricsPerModelColl[index] = (metric*factors[index]) * 100
metricsPerModelColl[index] = metricsPerModelColl[index].to_json()
return metricsPerModelColl
def preProceModels():
5 years ago
models = KNNModels + SVCModels + GausNBModels + MLPModels + LRModels + LDAModels + QDAModels + RFModels + ExtraTModels + AdaBModels + GradBModels
return models
5 years ago
def FunMDS (data):
mds = MDS(n_components=2, random_state=RANDOM_SEED)
XTransformed = mds.fit_transform(data).T
XTransformed = XTransformed.tolist()
return XTransformed
def FunTsne (data):
5 years ago
tsne = TSNE(n_components=2, random_state=RANDOM_SEED).fit_transform(data)
5 years ago
tsne.shape
return tsne
def FunUMAP (data):
5 years ago
trans = umap.UMAP(n_neighbors=15, random_state=RANDOM_SEED).fit(data)
Xpos = trans.embedding_[:, 0].tolist()
Ypos = trans.embedding_[:, 1].tolist()
return [Xpos,Ypos]
5 years ago
def InitializeEnsemble():
XModels = PreprocessingMetrics()
global ModelSpaceMDS
global ModelSpaceTSNE
5 years ago
global allParametersPerformancePerModel
global impDataInst
XModels = XModels.fillna(0)
5 years ago
ModelSpaceMDS = FunMDS(XModels)
ModelSpaceTSNE = FunTsne(XModels)
ModelSpaceTSNE = ModelSpaceTSNE.tolist()
ModelSpaceUMAP = FunUMAP(XModels)
5 years ago
PredictionProbSel = PreprocessingPred()
PredictionSpaceMDS = FunMDS(PredictionProbSel)
PredictionSpaceTSNE = FunTsne(PredictionProbSel)
PredictionSpaceTSNE = PredictionSpaceTSNE.tolist()
PredictionSpaceUMAP = FunUMAP(PredictionProbSel)
5 years ago
ModelsIDs = preProceModels()
5 years ago
impDataInst = processDataInstance(ModelsIDs,allParametersPerformancePerModel)
5 years ago
callPreResults()
5 years ago
key = 0
EnsembleModel(ModelsIDs, key)
5 years ago
ReturnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionSpaceMDS,PredictionSpaceTSNE,PredictionSpaceUMAP)
5 years ago
5 years ago
def processDataInstance(ModelsIDs, allParametersPerformancePerModel):
dicKNN = json.loads(allParametersPerformancePerModel[8])
5 years ago
dicKNN = json.loads(dicKNN)
5 years ago
dicSVC = json.loads(allParametersPerformancePerModel[17])
5 years ago
dicSVC = json.loads(dicSVC)
5 years ago
dicGausNB = json.loads(allParametersPerformancePerModel[26])
5 years ago
dicGausNB = json.loads(dicGausNB)
5 years ago
dicMLP = json.loads(allParametersPerformancePerModel[35])
5 years ago
dicMLP = json.loads(dicMLP)
5 years ago
dicLR = json.loads(allParametersPerformancePerModel[44])
5 years ago
dicLR = json.loads(dicLR)
5 years ago
dicLDA = json.loads(allParametersPerformancePerModel[53])
5 years ago
dicLDA = json.loads(dicLDA)
5 years ago
dicQDA = json.loads(allParametersPerformancePerModel[62])
5 years ago
dicQDA = json.loads(dicQDA)
5 years ago
dicRF = json.loads(allParametersPerformancePerModel[71])
5 years ago
dicRF = json.loads(dicRF)
dicExtraT = json.loads(allParametersPerformancePerModel[80])
dicExtraT = json.loads(dicExtraT)
5 years ago
dicAdaB = json.loads(allParametersPerformancePerModel[89])
5 years ago
dicAdaB = json.loads(dicAdaB)
5 years ago
dicGradB = json.loads(allParametersPerformancePerModel[98])
5 years ago
dicGradB = json.loads(dicGradB)
5 years ago
dfKNN = pd.DataFrame.from_dict(dicKNN)
dfSVC = pd.DataFrame.from_dict(dicSVC)
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfLR = pd.DataFrame.from_dict(dicLR)
dfLDA = pd.DataFrame.from_dict(dicLDA)
dfQDA = pd.DataFrame.from_dict(dicQDA)
dfRF = pd.DataFrame.from_dict(dicRF)
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfKNN.index = dfKNN.index.astype(int)
dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount
dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount
dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount
dfLR.index = dfLR.index.astype(int) + LRModelsCount
dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount
dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount
dfRF.index = dfRF.index.astype(int) + RFModelsCount
dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount
dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount
dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount
dfKNNFiltered = dfKNN.loc[KNNModels, :]
dfSVCFiltered = dfSVC.loc[SVCModels, :]
dfGausNBFiltered = dfGausNB.loc[GausNBModels, :]
dfMLPFiltered = dfMLP.loc[MLPModels, :]
dfLRFiltered = dfLR.loc[LRModels, :]
dfLDAFiltered = dfLDA.loc[LDAModels, :]
dfQDAFiltered = dfQDA.loc[QDAModels, :]
dfRFFiltered = dfRF.loc[RFModels, :]
dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :]
dfAdaBFiltered = dfAdaB.loc[AdaBModels, :]
dfGradBFiltered = dfGradB.loc[GradBModels, :]
df_connect = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered])
5 years ago
global yData
countCorrect = []
length = len(df_connect.index)
for index, element in enumerate(yData):
countTemp = 0
dfPart = df_connect[[str(index)]]
for indexdf, row in dfPart.iterrows():
if (int(row.values[0]) == int(element)):
countTemp += 1
countCorrect.append(1 - (countTemp/length))
return countCorrect
5 years ago
def ReturnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionSpaceMDS,PredictionSpaceTSNE,PredictionSpaceUMAP):
5 years ago
global Results
5 years ago
global AllTargets
5 years ago
Results = []
parametersGen = PreprocessingParam()
PerClassMetrics = preProcessPerClassM()
FeatureAccuracy = preProcessFeatAcc()
perm_imp_eli5PDCon = preProcessPerm()
featureScoresCon = preProcessFeatSc()
metricsPerModel = preProcMetricsAllAndSel()
sumPerClassifier = preProcsumPerMetric(factors)
ModelsIDs = preProceModels()
parametersGenPD = parametersGen.to_json(orient='records')
PerClassMetrics = PerClassMetrics.to_json(orient='records')
FeatureAccuracy = FeatureAccuracy.to_json(orient='records')
perm_imp_eli5PDCon = perm_imp_eli5PDCon.to_json(orient='records')
featureScoresCon = featureScoresCon.to_json(orient='records')
XDataJSONEntireSet = XData.to_json(orient='records')
5 years ago
XDataJSON = XData.columns.tolist()
5 years ago
Results.append(json.dumps(sumPerClassifier)) # Position: 0
Results.append(json.dumps(ModelSpaceMDS)) # Position: 1
Results.append(json.dumps(parametersGenPD)) # Position: 2
Results.append(PerClassMetrics) # Position: 3
Results.append(json.dumps(target_names)) # Position: 4
Results.append(FeatureAccuracy) # Position: 5
Results.append(json.dumps(XDataJSON)) # Position: 6
Results.append(0) # Position: 7
Results.append(json.dumps(PredictionSpaceMDS)) # Position: 8
Results.append(json.dumps(metricsPerModel)) # Position: 9
Results.append(perm_imp_eli5PDCon) # Position: 10
Results.append(featureScoresCon) # Position: 11
Results.append(json.dumps(ModelSpaceTSNE)) # Position: 12
Results.append(json.dumps(ModelsIDs)) # Position: 13
Results.append(json.dumps(XDataJSONEntireSet)) # Position: 14
Results.append(json.dumps(yData)) # Position: 15
5 years ago
Results.append(json.dumps(AllTargets)) # Position: 16
Results.append(json.dumps(ModelSpaceUMAP)) # Position: 17
Results.append(json.dumps(PredictionSpaceTSNE)) # Position: 18
Results.append(json.dumps(PredictionSpaceUMAP)) # Position: 19
5 years ago
return Results
5 years ago
# Sending the overview classifiers' results to be visualized as a scatterplot
@app.route('/data/PlotClassifiers', methods=["GET", "POST"])
def SendToPlot():
while (len(DataResultsRaw) != DataRawLength):
pass
InitializeEnsemble()
response = {
'OverviewResults': Results
}
return jsonify(response)
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRemoveFromStack', methods=["GET", "POST"])
def RetrieveSelClassifiersIDandRemoveFromStack():
ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"')
PredictionProbSelUpdate = PreprocessingPredUpdate(ClassifierIDsList)
5 years ago
print(ClassifierIDsList)
print(PredictionProbSelUpdate)
global resultsUpdatePredictionSpace
resultsUpdatePredictionSpace = []
resultsUpdatePredictionSpace.append(json.dumps(PredictionProbSelUpdate[0])) # Position: 0
resultsUpdatePredictionSpace.append(json.dumps(PredictionProbSelUpdate[1]))
key = 3
EnsembleModel(ClassifierIDsList, key)
return 'Everything Okay'
# Sending the overview classifiers' results to be visualized as a scatterplot
@app.route('/data/UpdatePredictionsSpace', methods=["GET", "POST"])
def SendPredBacktobeUpdated():
response = {
'UpdatePredictions': resultsUpdatePredictionSpace
}
return jsonify(response)
5 years ago
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequestSelPoin', methods=["GET", "POST"])
def RetrieveSelClassifiersID():
ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"')
ComputeMetricsForSel(ClassifierIDsList)
ClassifierIDCleaned = json.loads(ClassifierIDsList)
global keySpecInternal
keySpecInternal = 1
keySpecInternal = ClassifierIDCleaned['keyNow']
EnsembleModel(ClassifierIDsList, 1)
5 years ago
return 'Everything Okay'
def ComputeMetricsForSel(Models):
Models = json.loads(Models)
MetricsAlltoSel = PreprocessingMetrics()
listofModels = []
for loop in Models['ClassifiersList']:
5 years ago
listofModels.append(loop)
MetricsAlltoSel = MetricsAlltoSel.loc[listofModels,:]
global metricsPerModelCollSel
5 years ago
global factors
metricsPerModelCollSel = []
5 years ago
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_accuracy'])
metricsPerModelCollSel.append(MetricsAlltoSel['geometric_mean_score_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['geometric_mean_score_macro'])
metricsPerModelCollSel.append(MetricsAlltoSel['geometric_mean_score_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_precision_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_precision_macro'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_precision_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_recall_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_recall_macro'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_recall_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['f5_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f5_macro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f5_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['f1_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f1_macro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f1_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['f2_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f2_macro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f2_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['matthews_corrcoef'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_roc_auc_ovo_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['log_loss'])
f=lambda a: (abs(a)+a)/2
5 years ago
for index, metric in enumerate(metricsPerModelCollSel):
if (index == 19):
metricsPerModelCollSel[index] = ((f(metric))*factors[index]) * 100
elif (index == 21):
metricsPerModelCollSel[index] = (1 - metric)*factors[index] * 100
5 years ago
else:
metricsPerModelCollSel[index] = metric*factors[index] * 100
5 years ago
metricsPerModelCollSel[index] = metricsPerModelCollSel[index].to_json()
return 'okay'
5 years ago
# function to get unique values
def unique(list1):
# intilize a null list
unique_list = []
# traverse for all elements
for x in list1:
# check if exists in unique_list or not
if x not in unique_list:
unique_list.append(x)
return unique_list
# Sending the overview classifiers' results to be visualized as a scatterplot
@app.route('/data/BarChartSelectedModels', methods=["GET", "POST"])
def SendToUpdateBarChart():
response = {
'SelectedMetricsForModels': metricsPerModelCollSel
}
return jsonify(response)
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequestDataPoint', methods=["GET", "POST"])
def RetrieveSelDataPoints():
5 years ago
DataPointsSel = request.get_data().decode('utf8').replace("'", '"')
DataPointsSelClear = json.loads(DataPointsSel)
listofDataPoints = []
for loop in DataPointsSelClear['DataPointsSel']:
temp = [int(s) for s in re.findall(r'\b\d+\b', loop)]
listofDataPoints.append(temp[0])
5 years ago
global algorithmsList
paramsListSepPD = []
paramsListSepPD = PreprocessingParamSep()
paramsListSeptoDicKNN = paramsListSepPD[0].to_dict(orient='list')
5 years ago
paramsListSeptoDicSVC = paramsListSepPD[1].to_dict(orient='list')
paramsListSeptoDicGausNB = paramsListSepPD[2].to_dict(orient='list')
paramsListSeptoDicMLP = paramsListSepPD[3].to_dict(orient='list')
paramsListSeptoDicLR = paramsListSepPD[4].to_dict(orient='list')
paramsListSeptoDicLDA = paramsListSepPD[5].to_dict(orient='list')
paramsListSeptoDicQDA = paramsListSepPD[6].to_dict(orient='list')
paramsListSeptoDicRF = paramsListSepPD[7].to_dict(orient='list')
paramsListSeptoDicExtraT = paramsListSepPD[8].to_dict(orient='list')
paramsListSeptoDicAdaB = paramsListSepPD[9].to_dict(orient='list')
paramsListSeptoDicGradB = paramsListSepPD[10].to_dict(orient='list')
RetrieveParamsCleared = {}
RetrieveParamsClearedListKNN = []
for key, value in paramsListSeptoDicKNN.items():
withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListKNN.append(RetrieveParamsCleared)
5 years ago
RetrieveParamsCleared = {}
RetrieveParamsClearedListSVC = []
for key, value in paramsListSeptoDicSVC.items():
withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListSVC.append(RetrieveParamsCleared)
RetrieveParamsCleared = {}
RetrieveParamsClearedListGausNB = []
for key, value in paramsListSeptoDicGausNB.items():
withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListGausNB.append(RetrieveParamsCleared)
RetrieveParamsCleared = {}
RetrieveParamsClearedListMLP = []
for key, value in paramsListSeptoDicMLP.items():
withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListMLP.append(RetrieveParamsCleared)
RetrieveParamsCleared = {}
RetrieveParamsClearedListLR = []
for key, value in paramsListSeptoDicLR.items():
withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListLR.append(RetrieveParamsCleared)
RetrieveParamsCleared = {}
RetrieveParamsClearedListLDA = []
for key, value in paramsListSeptoDicLDA.items():
withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListLDA.append(RetrieveParamsCleared)
RetrieveParamsCleared = {}
RetrieveParamsClearedListQDA = []
for key, value in paramsListSeptoDicQDA.items():
withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListQDA.append(RetrieveParamsCleared)
RetrieveParamsCleared = {}
RetrieveParamsClearedListRF = []
for key, value in paramsListSeptoDicRF.items():
withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListRF.append(RetrieveParamsCleared)
5 years ago
RetrieveParamsCleared = {}
RetrieveParamsClearedListExtraT = []
for key, value in paramsListSeptoDicExtraT.items():
withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListExtraT.append(RetrieveParamsCleared)
RetrieveParamsCleared = {}
RetrieveParamsClearedListAdaB = []
for key, value in paramsListSeptoDicAdaB.items():
withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListAdaB.append(RetrieveParamsCleared)
RetrieveParamsCleared = {}
RetrieveParamsClearedListGradB = []
for key, value in paramsListSeptoDicGradB.items():
withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListGradB.append(RetrieveParamsCleared)
if (len(paramsListSeptoDicKNN['n_neighbors']) is 0):
RetrieveParamsClearedListKNN = []
5 years ago
if (len(paramsListSeptoDicSVC['C']) is 0):
RetrieveParamsClearedListSVC = []
if (len(paramsListSeptoDicGausNB['var_smoothing']) is 0):
RetrieveParamsClearedListGausNB = []
if (len(paramsListSeptoDicMLP['alpha']) is 0):
RetrieveParamsClearedListMLP = []
if (len(paramsListSeptoDicLR['C']) is 0):
RetrieveParamsClearedListLR = []
if (len(paramsListSeptoDicLDA['shrinkage']) is 0):
RetrieveParamsClearedListLDA = []
if (len(paramsListSeptoDicQDA['reg_param']) is 0):
RetrieveParamsClearedListQDA = []
if (len(paramsListSeptoDicRF['n_estimators']) is 0):
RetrieveParamsClearedListRF = []
5 years ago
if (len(paramsListSeptoDicExtraT['n_estimators']) is 0):
RetrieveParamsClearedListExtraT = []
if (len(paramsListSeptoDicAdaB['n_estimators']) is 0):
RetrieveParamsClearedListAdaB = []
if (len(paramsListSeptoDicGradB['n_estimators']) is 0):
RetrieveParamsClearedListGradB = []
for eachAlgor in algorithms:
if (eachAlgor) == 'KNN':
clf = KNeighborsClassifier()
params = RetrieveParamsClearedListKNN
AlgorithmsIDsEnd = 0
5 years ago
elif (eachAlgor) == 'SVC':
5 years ago
clf = SVC(probability=True,random_state=RANDOM_SEED)
5 years ago
params = RetrieveParamsClearedListSVC
AlgorithmsIDsEnd = SVCModelsCount
elif (eachAlgor) == 'GausNB':
clf = GaussianNB()
params = RetrieveParamsClearedListGausNB
AlgorithmsIDsEnd = GausNBModelsCount
elif (eachAlgor) == 'MLP':
5 years ago
clf = MLPClassifier(random_state=RANDOM_SEED)
5 years ago
params = RetrieveParamsClearedListMLP
AlgorithmsIDsEnd = MLPModelsCount
elif (eachAlgor) == 'LR':
5 years ago
clf = LogisticRegression(random_state=RANDOM_SEED)
5 years ago
params = RetrieveParamsClearedListLR
AlgorithmsIDsEnd = LRModelsCount
elif (eachAlgor) == 'LDA':
clf = LinearDiscriminantAnalysis()
params = RetrieveParamsClearedListLDA
AlgorithmsIDsEnd = LDAModelsCount
elif (eachAlgor) == 'QDA':
clf = QuadraticDiscriminantAnalysis()
params = RetrieveParamsClearedListQDA
AlgorithmsIDsEnd = QDAModelsCount
elif (eachAlgor) == 'RF':
5 years ago
clf = RandomForestClassifier(random_state=RANDOM_SEED)
params = RetrieveParamsClearedListRF
5 years ago
AlgorithmsIDsEnd = RFModelsCount
elif (eachAlgor) == 'ExtraT':
5 years ago
clf = ExtraTreesClassifier(random_state=RANDOM_SEED)
5 years ago
params = RetrieveParamsClearedListExtraT
AlgorithmsIDsEnd = ExtraTModelsCount
elif (eachAlgor) == 'AdaB':
5 years ago
clf = AdaBoostClassifier(random_state=RANDOM_SEED)
5 years ago
params = RetrieveParamsClearedListGradB
AlgorithmsIDsEnd = AdaBModelsCount
else:
5 years ago
clf = GradientBoostingClassifier(random_state=RANDOM_SEED)
5 years ago
params = RetrieveParamsClearedListGradB
AlgorithmsIDsEnd = GradBModelsCount
metricsSelList = GridSearchSel(clf, params, factors, AlgorithmsIDsEnd, listofDataPoints)
5 years ago
if (len(metricsSelList[0]) != 0 and len(metricsSelList[1]) != 0 and len(metricsSelList[2]) != 0 and len(metricsSelList[3]) != 0 and len(metricsSelList[4]) != 0 and len(metricsSelList[5]) != 0 and len(metricsSelList[6]) != 0 and len(metricsSelList[7]) != 0 and len(metricsSelList[8]) != 0 and len(metricsSelList[9]) != 0 and len(metricsSelList[10]) != 0):
dicKNN = json.loads(metricsSelList[0])
dfKNN = pd.DataFrame.from_dict(dicKNN)
parametersSelDataPD = parametersSelData[0].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[0], paramsListSepPD[0]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfKNNCleared = dfKNN
else:
dfKNNCleared = dfKNN.drop(dfKNN.index[set_diff_df])
5 years ago
dicSVC = json.loads(metricsSelList[1])
dfSVC = pd.DataFrame.from_dict(dicSVC)
parametersSelDataPD = parametersSelData[1].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[1], paramsListSepPD[1]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
5 years ago
if (len(set_diff_df) == 0):
dfSVCCleared = dfSVC
else:
dfSVCCleared = dfSVC.drop(dfSVC.index[set_diff_df])
dicGausNB = json.loads(metricsSelList[2])
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
parametersSelDataPD = parametersSelData[2].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[2], paramsListSepPD[2]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfGausNBCleared = dfGausNB
else:
dfGausNBCleared = dfGausNB.drop(dfGausNB.index[set_diff_df])
dicMLP = json.loads(metricsSelList[3])
dfMLP = pd.DataFrame.from_dict(dicMLP)
parametersSelDataPD = parametersSelData[3].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[3], paramsListSepPD[3]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfMLPCleared = dfMLP
else:
dfMLPCleared = dfMLP.drop(dfMLP.index[set_diff_df])
dicLR = json.loads(metricsSelList[4])
dfLR = pd.DataFrame.from_dict(dicLR)
parametersSelDataPD = parametersSelData[4].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[4], paramsListSepPD[4]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfLRCleared = dfLR
else:
dfLRCleared = dfLR.drop(dfLR.index[set_diff_df])
dicLDA = json.loads(metricsSelList[5])
dfLDA = pd.DataFrame.from_dict(dicLDA)
parametersSelDataPD = parametersSelData[5].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[5], paramsListSepPD[5]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfLDACleared = dfLDA
else:
dfLDACleared = dfLDA.drop(dfLDA.index[set_diff_df])
dicQDA = json.loads(metricsSelList[6])
dfQDA = pd.DataFrame.from_dict(dicQDA)
parametersSelDataPD = parametersSelData[6].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[6], paramsListSepPD[6]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfQDACleared = dfQDA
else:
dfQDACleared = dfQDA.drop(dfQDA.index[set_diff_df])
dicRF = json.loads(metricsSelList[7])
dfRF = pd.DataFrame.from_dict(dicRF)
parametersSelDataPD = parametersSelData[7].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[7], paramsListSepPD[7]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfRFCleared = dfRF
else:
dfRFCleared = dfRF.drop(dfRF.index[set_diff_df])
5 years ago
dicExtraT = json.loads(metricsSelList[8])
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
parametersSelDataPD = parametersSelData[8].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[8], paramsListSepPD[8]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfExtraTCleared = dfExtraT
else:
dfExtraTCleared = dfExtraT.drop(dfExtraT.index[set_diff_df])
dicAdaB = json.loads(metricsSelList[9])
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
parametersSelDataPD = parametersSelData[9].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[9], paramsListSepPD[9]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfAdaBCleared = dfAdaB
else:
dfAdaBCleared = dfAdaB.drop(dfAdaB.index[set_diff_df])
dicGradB = json.loads(metricsSelList[10])
dfGradB = pd.DataFrame.from_dict(dicGradB)
parametersSelDataPD = parametersSelData[10].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[10], paramsListSepPD[10]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfGradBCleared = dfGradB
else:
dfGradBCleared = dfGradB.drop(dfGradB.index[set_diff_df])
df_concatMetrics = pd.concat([dfKNNCleared, dfSVCCleared, dfGausNBCleared, dfMLPCleared, dfLRCleared, dfLDACleared, dfQDACleared, dfRFCleared, dfExtraTCleared, dfAdaBCleared, dfGradBCleared])
else:
if (len(metricsSelList[0]) != 0):
dicKNN = json.loads(metricsSelList[0])
dfKNN = pd.DataFrame.from_dict(dicKNN)
parametersSelDataPD = parametersSelData[0].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[0], paramsListSepPD[0]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfKNNCleared = dfKNN
else:
dfKNNCleared = dfKNN.drop(dfKNN.index[set_diff_df])
df_concatMetrics = dfKNNCleared
5 years ago
elif (len(metricsSelList[1]) != 0):
dicSVC = json.loads(metricsSelList[1])
dfSVC = pd.DataFrame.from_dict(dicSVC)
parametersSelDataPD = parametersSelData[1].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[1], paramsListSepPD[1]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
5 years ago
if (len(set_diff_df) == 0):
dfSVCCleared = dfSVC
else:
dfSVCCleared = dfSVC.drop(dfSVC.index[set_diff_df])
df_concatMetrics = dfSVCCleared
elif (len(metricsSelList[2]) != 0):
dicGausNB = json.loads(metricsSelList[2])
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
parametersSelDataPD = parametersSelData[2].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[2], paramsListSepPD[2]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfGausNBCleared = dfGausNB
else:
dfGausNBCleared = dfGausNB.drop(dfGausNB.index[set_diff_df])
df_concatMetrics = dfGausNBCleared
elif (len(metricsSelList[3]) != 0):
dicMLP = json.loads(metricsSelList[3])
dfMLP = pd.DataFrame.from_dict(dicMLP)
parametersSelDataPD = parametersSelData[3].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[3], paramsListSepPD[3]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfMLPCleared = dfMLP
else:
dfMLPCleared = dfMLP.drop(dfMLP.index[set_diff_df])
df_concatMetrics = dfMLPCleared
elif (len(metricsSelList[4]) != 0):
dicLR = json.loads(metricsSelList[4])
dfLR = pd.DataFrame.from_dict(dicLR)
parametersSelDataPD = parametersSelData[4].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[4], paramsListSepPD[4]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfLRCleared = dfLR
else:
dfLRCleared = dfLR.drop(dfLR.index[set_diff_df])
df_concatMetrics = dfLRCleared
elif (len(metricsSelList[5]) != 0):
dicLDA = json.loads(metricsSelList[5])
dfLDA = pd.DataFrame.from_dict(dicLDA)
parametersSelDataPD = parametersSelData[5].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[5], paramsListSepPD[5]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfLDACleared = dfLDA
else:
dfLDACleared = dfLDA.drop(dfLDA.index[set_diff_df])
df_concatMetrics = dfLDACleared
elif (len(metricsSelList[6]) != 0):
dicQDA = json.loads(metricsSelList[6])
dfQDA = pd.DataFrame.from_dict(dicQDA)
parametersSelDataPD = parametersSelData[6].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[6], paramsListSepPD[6]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfQDACleared = dfQDA
else:
dfQDACleared = dfQDA.drop(dfQDA.index[set_diff_df])
df_concatMetrics = dfQDACleared
elif (len(metricsSelList[7]) != 0):
dicRF = json.loads(metricsSelList[7])
dfRF = pd.DataFrame.from_dict(dicRF)
parametersSelDataPD = parametersSelData[7].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[7], paramsListSepPD[7]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfRFCleared = dfRF
else:
dfRFCleared = dfRF.drop(dfRF.index[set_diff_df])
df_concatMetrics = dfRFCleared
5 years ago
elif (len(metricsSelList[8]) != 0):
dicExtraT = json.loads(metricsSelList[8])
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
parametersSelDataPD = parametersSelData[8].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[8], paramsListSepPD[8]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfExtraTCleared = dfExtraT
else:
dfExtraTCleared = dfExtraT.drop(dfExtraT.index[set_diff_df])
df_concatMetrics = dfExtraTCleared
elif (len(metricsSelList[9]) != 0):
dicAdaB = json.loads(metricsSelList[9])
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
parametersSelDataPD = parametersSelData[9].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[9], paramsListSepPD[9]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfAdaBCleared = dfAdaB
else:
dfAdaBCleared = dfAdaB.drop(dfAdaB.index[set_diff_df])
df_concatMetrics = dfAdaBCleared
else:
dicGradB = json.loads(metricsSelList[10])
dfGradB = pd.DataFrame.from_dict(dicGradB)
parametersSelDataPD = parametersSelData[10].apply(pd.Series)
set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[10], paramsListSepPD[10]]).drop_duplicates(keep=False)
set_diff_df = set_diff_df.index.tolist()
if (len(set_diff_df) == 0):
dfAdaBCleared = dfGradB
else:
dfAdaBCleared = dfGradB.drop(dfGradB.index[set_diff_df])
df_concatMetrics = dfAdaBCleared
global foreachMetricResults
foreachMetricResults = []
foreachMetricResults = preProcSumForEachMetric(factors, df_concatMetrics)
5 years ago
df_concatMetrics.loc[:, 'log_loss'] = 1 - df_concatMetrics.loc[:, 'log_loss']
global sumPerClassifierSelUpdate
sumPerClassifierSelUpdate = []
sumPerClassifierSelUpdate = preProcsumPerMetricAccordingtoData(factors, df_concatMetrics)
ModelSpaceMDSNewComb = [list(a) for a in zip(ModelSpaceMDS[0], ModelSpaceMDS[1])]
# fix that for tsne and UMAP
ModelSpaceMDSNewSel = FunMDS(df_concatMetrics)
ModelSpaceMDSNewSelComb = [list(a) for a in zip(ModelSpaceMDSNewSel[0], ModelSpaceMDSNewSel[1])]
global mt2xFinal
mt2xFinal = []
mtx1, mtx2, disparity = procrustes(ModelSpaceMDSNewComb, ModelSpaceMDSNewSelComb)
a, b = zip(*mtx2)
mt2xFinal.append(a)
mt2xFinal.append(b)
return 'Everything Okay'
def GridSearchSel(clf, params, factors, AlgorithmsIDsEnd, DataPointsSel):
if (len(params) == 0):
resultsMetrics.append([]) # Position: 0 and so on
parametersSelData.append([])
else:
# instantiate spark session
spark = (
SparkSession
.builder
.getOrCreate()
)
sc = spark.sparkContext
XDatasubset = XData.loc[DataPointsSel,:]
yDataSubset = [yData[i] for i in DataPointsSel]
# this is the grid we use to train the models
grid = DistGridSearchCV(
estimator=clf, param_grid=params,
sc=sc, cv=crossValidation, refit='accuracy', scoring=scoring,
verbose=0, n_jobs=-1)
# fit and extract the probabilities
grid.fit(XDatasubset, yDataSubset)
# process the results
cv_results = []
cv_results.append(grid.cv_results_)
df_cv_results = pd.DataFrame.from_dict(cv_results)
# number of models stored
number_of_models = len(df_cv_results.iloc[0][0])
# initialize results per row
df_cv_results_per_row = []
# loop through number of models
modelsIDs = []
for i in range(number_of_models):
modelsIDs.append(AlgorithmsIDsEnd+i)
# initialize results per item
df_cv_results_per_item = []
for column in df_cv_results.iloc[0]:
df_cv_results_per_item.append(column[i])
df_cv_results_per_row.append(df_cv_results_per_item)
# store the results into a pandas dataframe
df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns)
parametersSelData.append(df_cv_results_classifiers['params'])
# copy and filter in order to get only the metrics
metrics = df_cv_results_classifiers.copy()
metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_micro','mean_test_precision_macro','mean_test_precision_weighted','mean_test_recall_micro','mean_test_recall_macro','mean_test_recall_weighted','mean_test_roc_auc_ovo_weighted'])
5 years ago
# concat parameters and performance
parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params'])
parametersPerformancePerModel = parametersPerformancePerModel.to_json()
parametersLocal = json.loads(parametersPerformancePerModel)['params'].copy()
Models = []
for index, items in enumerate(parametersLocal):
Models.append(str(index))
parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ]
permList = []
PerFeatureAccuracy = []
PerFeatureAccuracyAll = []
PerClassMetric = []
perModelProb = []
resultsMicro = []
resultsMacro = []
resultsWeighted = []
resultsCorrCoef = []
resultsMicroBeta5 = []
resultsMacroBeta5 = []
resultsWeightedBeta5 = []
resultsMicroBeta1 = []
resultsMacroBeta1 = []
resultsWeightedBeta1 = []
resultsMicroBeta2 = []
resultsMacroBeta2 = []
resultsWeightedBeta2 = []
resultsLogLoss = []
resultsLogLossFinal = []
loop = 8
5 years ago
for eachModelParameters in parametersLocalNew:
clf.set_params(**eachModelParameters)
clf.fit(XData, yData)
yPredict = clf.predict(XData)
yPredictProb = clf.predict_proba(XData)
resultsMicro.append(geometric_mean_score(yData, yPredict, average='micro'))
resultsMacro.append(geometric_mean_score(yData, yPredict, average='macro'))
resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted'))
resultsCorrCoef.append(matthews_corrcoef(yData, yPredict))
resultsMicroBeta5.append(fbeta_score(yData, yPredict, average='micro', beta=0.5))
resultsMacroBeta5.append(fbeta_score(yData, yPredict, average='macro', beta=0.5))
resultsWeightedBeta5.append(fbeta_score(yData, yPredict, average='weighted', beta=0.5))
resultsMicroBeta1.append(fbeta_score(yData, yPredict, average='micro', beta=1))
resultsMacroBeta1.append(fbeta_score(yData, yPredict, average='macro', beta=1))
resultsWeightedBeta1.append(fbeta_score(yData, yPredict, average='weighted', beta=1))
resultsMicroBeta2.append(fbeta_score(yData, yPredict, average='micro', beta=2))
resultsMacroBeta2.append(fbeta_score(yData, yPredict, average='macro', beta=2))
resultsWeightedBeta2.append(fbeta_score(yData, yPredict, average='weighted', beta=2))
resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True))
maxLog = abs(max(resultsLogLoss))
minLog = abs(min(resultsLogLoss))
5 years ago
for each in resultsLogLoss:
resultsLogLossFinal.append((abs(each)-minLog)/(maxLog-minLog))
5 years ago
metrics.insert(loop,'geometric_mean_score_micro',resultsMicro)
metrics.insert(loop+1,'geometric_mean_score_macro',resultsMacro)
metrics.insert(loop+2,'geometric_mean_score_weighted',resultsWeighted)
metrics.insert(loop+3,'matthews_corrcoef',resultsCorrCoef)
metrics.insert(loop+4,'f5_micro',resultsMicroBeta5)
metrics.insert(loop+5,'f5_macro',resultsMacroBeta5)
metrics.insert(loop+6,'f5_weighted',resultsWeightedBeta5)
metrics.insert(loop+7,'f1_micro',resultsMicroBeta1)
metrics.insert(loop+8,'f1_macro',resultsMacroBeta1)
metrics.insert(loop+9,'f1_weighted',resultsWeightedBeta1)
metrics.insert(loop+10,'f2_micro',resultsMicroBeta2)
metrics.insert(loop+11,'f2_macro',resultsMacroBeta2)
metrics.insert(loop+12,'f2_weighted',resultsWeightedBeta2)
metrics.insert(loop+13,'log_loss',resultsLogLossFinal)
metrics = metrics.to_json()
resultsMetrics.append(metrics) # Position: 0 and so on
return resultsMetrics
def preProcsumPerMetricAccordingtoData(factors, loopThroughMetrics):
sumPerClassifier = []
loopThroughMetrics = loopThroughMetrics.fillna(0)
for row in loopThroughMetrics.iterrows():
rowSum = 0
name, values = row
for loop, elements in enumerate(values):
rowSum = elements*factors[loop] + rowSum
5 years ago
if sum(factors) is 0:
sumPerClassifier = 0
else:
5 years ago
sumPerClassifier.append(rowSum/sum(factors) * 100)
return sumPerClassifier
def preProcSumForEachMetric(factors, loopThroughMetrics):
metricsPerModelColl = []
loopThroughMetrics = loopThroughMetrics.fillna(0)
metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy'])
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_micro'])
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro'])
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_micro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_micro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted'])
metricsPerModelColl.append(loopThroughMetrics['f5_micro'])
metricsPerModelColl.append(loopThroughMetrics['f5_macro'])
metricsPerModelColl.append(loopThroughMetrics['f5_weighted'])
metricsPerModelColl.append(loopThroughMetrics['f1_micro'])
metricsPerModelColl.append(loopThroughMetrics['f1_macro'])
metricsPerModelColl.append(loopThroughMetrics['f1_weighted'])
metricsPerModelColl.append(loopThroughMetrics['f2_micro'])
metricsPerModelColl.append(loopThroughMetrics['f2_macro'])
metricsPerModelColl.append(loopThroughMetrics['f2_weighted'])
metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted'])
metricsPerModelColl.append(loopThroughMetrics['log_loss'])
f=lambda a: (abs(a)+a)/2
for index, metric in enumerate(metricsPerModelColl):
if (index == 19):
metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100
elif (index == 21):
metricsPerModelColl[index] = ((1 - metric)*factors[index]) * 100
else:
metricsPerModelColl[index] = (metric*factors[index]) * 100
metricsPerModelColl[index] = metricsPerModelColl[index].to_json()
return metricsPerModelColl
# Sending the overview classifiers' results to be visualized as a scatterplot
@app.route('/data/ServerSentDataPointsModel', methods=["GET", "POST"])
def SendDataPointsModels():
ResultsUpdate = []
global sumPerClassifierSelUpdate
sumPerClassifierSelUpdateJSON = json.dumps(sumPerClassifierSelUpdate)
ResultsUpdate.append(sumPerClassifierSelUpdateJSON)
global mt2xFinal
mt2xFinalJSON = json.dumps(mt2xFinal)
ResultsUpdate.append(mt2xFinalJSON)
global foreachMetricResults
foreachMetricResultsJSON = json.dumps(foreachMetricResults)
ResultsUpdate.append(foreachMetricResultsJSON)
response = {
'DataPointsModels': ResultsUpdate
}
return jsonify(response)
5 years ago
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/FeaturesSelection', methods=["GET", "POST"])
def FeatureSelPerModel():
global featureSelection
featureSelection = request.get_data().decode('utf8').replace("'", '"')
featureSelection = json.loads(featureSelection)
key = 2
ModelsIDs = preProceModels()
EnsembleModel(ModelsIDs, key)
5 years ago
return 'Everything Okay'
def EnsembleModel(Models, keyRetrieved):
global scores
global previousState
global previousStateActive
global keySpec
global keySpecInternal
global keyData
scores = []
5 years ago
global all_classifiersSelection
all_classifiersSelection = []
5 years ago
global all_classifiers
global XData
global yData
5 years ago
global sclf
5 years ago
lr = LogisticRegression(random_state=RANDOM_SEED)
5 years ago
if (keyRetrieved == 0):
all_classifiers = []
5 years ago
columnsInit = []
columnsInit = [XData.columns.get_loc(c) for c in XData.columns if c in XData]
temp = json.loads(allParametersPerformancePerModel[1])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamKNN = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamKNNFilt = dfParamKNN.iloc[:,0]
5 years ago
for eachelem in KNNModels:
arg = dfParamKNNFilt[eachelem]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), KNeighborsClassifier().set_params(**arg)))
5 years ago
temp = json.loads(allParametersPerformancePerModel[10])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamSVC = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamSVCFilt = dfParamSVC.iloc[:,0]
for eachelem in SVCModels:
arg = dfParamSVCFilt[eachelem-SVCModelsCount]
5 years ago
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), SVC(probability=True,random_state=RANDOM_SEED).set_params(**arg)))
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[19])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamGauNB = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamGauNBFilt = dfParamGauNB.iloc[:,0]
for eachelem in GausNBModels:
arg = dfParamGauNBFilt[eachelem-GausNBModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), GaussianNB().set_params(**arg)))
5 years ago
temp = json.loads(allParametersPerformancePerModel[28])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamMLP = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamMLPFilt = dfParamMLP.iloc[:,0]
for eachelem in MLPModels:
arg = dfParamMLPFilt[eachelem-MLPModelsCount]
5 years ago
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), MLPClassifier(random_state=RANDOM_SEED).set_params(**arg)))
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[37])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamLR = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamLRFilt = dfParamLR.iloc[:,0]
for eachelem in LRModels:
arg = dfParamLRFilt[eachelem-LRModelsCount]
5 years ago
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), LogisticRegression(random_state=RANDOM_SEED).set_params(**arg)))
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[46])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamLDA = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamLDAFilt = dfParamLDA.iloc[:,0]
for eachelem in LDAModels:
arg = dfParamLDAFilt[eachelem-LDAModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), LinearDiscriminantAnalysis().set_params(**arg)))
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[55])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamQDA = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamQDAFilt = dfParamQDA.iloc[:,0]
for eachelem in QDAModels:
arg = dfParamQDAFilt[eachelem-QDAModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), QuadraticDiscriminantAnalysis().set_params(**arg)))
5 years ago
temp = json.loads(allParametersPerformancePerModel[64])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamRF = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamRFFilt = dfParamRF.iloc[:,0]
5 years ago
for eachelem in RFModels:
5 years ago
arg = dfParamRFFilt[eachelem-RFModelsCount]
5 years ago
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), RandomForestClassifier(random_state=RANDOM_SEED).set_params(**arg)))
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[73])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamExtraT = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamExtraTFilt = dfParamExtraT.iloc[:,0]
5 years ago
for eachelem in ExtraTModels:
arg = dfParamExtraTFilt[eachelem-ExtraTModelsCount]
5 years ago
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), ExtraTreesClassifier(random_state=RANDOM_SEED).set_params(**arg)))
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[82])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamAdaB = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamAdaBFilt = dfParamAdaB.iloc[:,0]
for eachelem in AdaBModels:
arg = dfParamAdaBFilt[eachelem-AdaBModelsCount]
5 years ago
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), AdaBoostClassifier(random_state=RANDOM_SEED).set_params(**arg)))
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[91])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamGradB = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamGradBFilt = dfParamGradB.iloc[:,0]
for eachelem in GradBModels:
arg = dfParamGradBFilt[eachelem-GradBModelsCount]
5 years ago
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), GradientBoostingClassifier(random_state=RANDOM_SEED).set_params(**arg)))
5 years ago
global sclf
sclf = 0
5 years ago
sclf = StackingCVClassifier(classifiers=all_classifiers,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
keySpec = 0
elif (keyRetrieved == 1):
Models = json.loads(Models)
ModelsAll = preProceModels()
for index, modHere in enumerate(ModelsAll):
flag = 0
for loop in Models['ClassifiersList']:
5 years ago
if (int(loop) == int(modHere)):
flag = 1
if (flag is 1):
all_classifiersSelection.append(all_classifiers[index])
5 years ago
sclf = StackingCVClassifier(classifiers=all_classifiersSelection,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
keySpec = 1
elif (keyRetrieved == 2):
5 years ago
if (len(all_classifiersSelection) == 0):
all_classifiers = []
columnsInit = []
countItems = 0
temp = json.loads(allParametersPerformancePerModel[1])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamKNN = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamKNNFilt = dfParamKNN.iloc[:,0]
flag = 0
for index, eachelem in enumerate(KNNModels):
arg = dfParamKNNFilt[eachelem]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), KNeighborsClassifier().set_params(**arg)))
countItems += 1
5 years ago
temp = json.loads(allParametersPerformancePerModel[10])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamSVC = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamSVCFilt = dfParamSVC.iloc[:,0]
for index, eachelem in enumerate(SVCModels):
arg = dfParamSVCFilt[eachelem-SVCModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), SVC(probability=True,random_state=RANDOM_SEED).set_params(**arg)))
countItems += 1
5 years ago
temp = json.loads(allParametersPerformancePerModel[19])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamGauNB = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamGauNBFilt = dfParamGauNB.iloc[:,0]
for index, eachelem in enumerate(GausNBModels):
arg = dfParamGauNBFilt[eachelem-GausNBModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), GaussianNB().set_params(**arg)))
countItems += 1
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[28])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamMLP = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamMLPFilt = dfParamMLP.iloc[:,0]
for index, eachelem in enumerate(MLPModels):
arg = dfParamMLPFilt[eachelem-MLPModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), MLPClassifier(random_state=RANDOM_SEED).set_params(**arg)))
countItems += 1
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[37])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamLR = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamLRFilt = dfParamLR.iloc[:,0]
for index, eachelem in enumerate(LRModels):
arg = dfParamLRFilt[eachelem-LRModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), LogisticRegression(random_state=RANDOM_SEED).set_params(**arg)))
countItems += 1
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[46])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamLDA = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamLDAFilt = dfParamLDA.iloc[:,0]
for index, eachelem in enumerate(LDAModels):
arg = dfParamLDAFilt[eachelem-LDAModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), LinearDiscriminantAnalysis().set_params(**arg)))
countItems += 1
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[55])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamQDA = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamQDAFilt = dfParamQDA.iloc[:,0]
for index, eachelem in enumerate(QDAModels):
arg = dfParamQDAFilt[eachelem-QDAModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), QuadraticDiscriminantAnalysis().set_params(**arg)))
countItems += 1
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[64])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamRF = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamRFFilt = dfParamRF.iloc[:,0]
for index, eachelem in enumerate(RFModels):
5 years ago
arg = dfParamRFFilt[eachelem-RFModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), RandomForestClassifier(random_state=RANDOM_SEED).set_params(**arg)))
countItems += 1
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[73])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamExtraT = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamExtraTFilt = dfParamExtraT.iloc[:,0]
for index, eachelem in enumerate(ExtraTModels):
arg = dfParamExtraTFilt[eachelem-ExtraTModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), ExtraTreesClassifier(random_state=RANDOM_SEED).set_params(**arg)))
countItems += 1
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[82])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamAdaB = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamAdaBFilt = dfParamAdaB.iloc[:,0]
for index, eachelem in enumerate(AdaBModels):
arg = dfParamAdaBFilt[eachelem-AdaBModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), AdaBoostClassifier(random_state=RANDOM_SEED).set_params(**arg)))
countItems += 1
5 years ago
5 years ago
temp = json.loads(allParametersPerformancePerModel[91])
temp = temp['params']
temp = {int(k):v for k,v in temp.items()}
tempDic = {
'params': temp
}
dfParamGradB = pd.DataFrame.from_dict(tempDic)
5 years ago
dfParamGradBFilt = dfParamGradB.iloc[:,0]
for index, eachelem in enumerate(GradBModels):
arg = dfParamGradBFilt[eachelem-GradBModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), GradientBoostingClassifier().set_params(**arg)))
5 years ago
store = index
flag = 1
5 years ago
sclf = StackingCVClassifier(classifiers=all_classifiers,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
keySpec = 1
else:
keySpec = 2
# Models = json.loads(Models)
# ModelsAll = preProceModels()
# for index, modHere in enumerate(ModelsAll):
# flag = 0
# for loop in Models['ClassifiersList']:
# if (int(loop) == int(modHere)):
# flag = 1
# if (flag is 1):
# all_classifiersSelection.append(all_classifiers[index])
# sclfStack = StackingCVClassifier(classifiers=all_classifiersSelection,
# use_probas=True,
# meta_classifier=lr,
# random_state=RANDOM_SEED,
# n_jobs = -1)
5 years ago
#else:
# for index, eachelem in enumerate(algorithmsWithoutDuplicates):
# if (eachelem == 'KNN'):
# for j, each in enumerate(resultsList[index][1]):
# all_classifiersSelection.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), KNeighborsClassifier().set_params(**each)))
# del columnsReduce[0:len(resultsList[index][1])]
# else:
# for j, each in enumerate(resultsList[index][1]):
5 years ago
# all_classifiersSelection.append(make_pipeline(ColumnSelector(cols=columnsReduce[j]), RandomForestClassifier(random_state=RANDOM_SEED).set_params(**each)))
# del columnsReduce[0:len(resultsList[index][1])]
# sclf = StackingCVClassifier(classifiers=all_classifiersSelection,
# use_probas=True,
# meta_classifier=lr,
# random_state=RANDOM_SEED,
# n_jobs = -1)
# if (keyRetrieved == 0):
# pass
# else:
print(keySpec)
print(keySpecInternal)
if (keySpec == 0 or keySpec == 1):
num_cores = multiprocessing.cpu_count()
inputsSc = ['accuracy','precision_weighted','recall_weighted','f1_weighted']
flat_results = Parallel(n_jobs=num_cores)(delayed(solve)(sclf,keyData,keySpec,keySpecInternal,previousState,previousStateActive,XData,yData,crossValidation,item,index) for index, item in enumerate(inputsSc))
scores = [item for sublist in flat_results for item in sublist]
if (keySpec == 0):
previousState = []
previousState.append(scores[2])
previousState.append(scores[3])
previousState.append(scores[6])
previousState.append(scores[7])
previousState.append(scores[10])
previousState.append(scores[11])
previousState.append(scores[14])
previousState.append(scores[15])
elif (keySpec == 1):
if (keySpecInternal == 1):
previousStateActive = []
previousStateActive.append(scores[0])
previousStateActive.append(scores[1])
previousStateActive.append(scores[4])
previousStateActive.append(scores[5])
previousStateActive.append(scores[8])
previousStateActive.append(scores[9])
previousStateActive.append(scores[12])
previousStateActive.append(scores[13])
else:
previousStateActive = []
previousStateActive.append(scores[0])
previousStateActive.append(scores[1])
previousStateActive.append(scores[4])
previousStateActive.append(scores[5])
previousStateActive.append(scores[8])
previousStateActive.append(scores[9])
previousStateActive.append(scores[12])
previousStateActive.append(scores[13])
previousState = []
previousState.append(scores[2])
previousState.append(scores[3])
previousState.append(scores[6])
previousState.append(scores[7])
previousState.append(scores[10])
previousState.append(scores[11])
previousState.append(scores[14])
previousState.append(scores[15])
else:
scores = []
previousState = []
scores.append(previousStateActive[0])
scores.append(previousStateActive[1])
scores.append(previousStateActive[0])
scores.append(previousStateActive[1])
previousState.append(previousStateActive[0])
previousState.append(previousStateActive[1])
scores.append(previousStateActive[2])
scores.append(previousStateActive[3])
scores.append(previousStateActive[2])
scores.append(previousStateActive[3])
previousState.append(previousStateActive[2])
previousState.append(previousStateActive[3])
scores.append(previousStateActive[4])
scores.append(previousStateActive[5])
scores.append(previousStateActive[4])
scores.append(previousStateActive[5])
previousState.append(previousStateActive[4])
previousState.append(previousStateActive[5])
scores.append(previousStateActive[6])
scores.append(previousStateActive[7])
scores.append(previousStateActive[6])
scores.append(previousStateActive[7])
previousState.append(previousStateActive[6])
previousState.append(previousStateActive[7])
return 'Okay'
5 years ago
def solve(sclf,keyData,keySpec,keySpecInternal,previousStateLoc,previousStateActiveLoc,XData,yData,crossValidation,scoringIn,loop):
5 years ago
scoresLoc = []
if (keySpec == 0):
5 years ago
temp = model_selection.cross_val_score(sclf, XData, yData, cv=crossValidation, scoring=scoringIn, n_jobs=-1)
scoresLoc.append(temp.mean())
scoresLoc.append(temp.std())
if (keyData == 1):
if (loop == 0):
scoresLoc.append(previousStateLoc[0])
scoresLoc.append(previousStateLoc[1])
elif (loop == 1):
scoresLoc.append(previousStateLoc[2])
scoresLoc.append(previousStateLoc[3])
elif (loop == 2):
scoresLoc.append(previousStateLoc[4])
scoresLoc.append(previousStateLoc[5])
else:
scoresLoc.append(previousStateLoc[6])
scoresLoc.append(previousStateLoc[7])
else:
scoresLoc.append(temp.mean())
scoresLoc.append(temp.std())
5 years ago
else:
if (keySpecInternal == 1):
temp = model_selection.cross_val_score(sclf, XData, yData, cv=crossValidation, scoring=scoringIn, n_jobs=-1)
scoresLoc.append(temp.mean())
scoresLoc.append(temp.std())
if (loop == 0):
scoresLoc.append(previousStateLoc[0])
scoresLoc.append(previousStateLoc[1])
elif (loop == 1):
scoresLoc.append(previousStateLoc[2])
scoresLoc.append(previousStateLoc[3])
elif (loop == 2):
scoresLoc.append(previousStateLoc[4])
scoresLoc.append(previousStateLoc[5])
else:
scoresLoc.append(previousStateLoc[6])
scoresLoc.append(previousStateLoc[7])
else:
temp = model_selection.cross_val_score(sclf, XData, yData, cv=crossValidation, scoring=scoringIn, n_jobs=-1)
scoresLoc.append(temp.mean())
scoresLoc.append(temp.std())
scoresLoc.append(temp.mean())
scoresLoc.append(temp.std())
5 years ago
return scoresLoc
5 years ago
# Sending the final results to be visualized as a line plot
@app.route('/data/SendFinalResultsBacktoVisualize', methods=["GET", "POST"])
def SendToPlotFinalResults():
response = {
'FinalResults': scores
5 years ago
}
5 years ago
return jsonify(response)
5 years ago
# Sending the final results to be visualized as a line plot
5 years ago
#@app.route('/data/SendInstancesImportance', methods=["GET", "POST"])
#def SendImportInstances():
# global DataHeatmap
# response = {
# 'instancesImportance': DataHeatmap
# }
# return jsonify(response)
5 years ago
5 years ago
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/UpdateFilter', methods=["GET", "POST"])
def RetrieveFilter():
filterData = request.get_data().decode('utf8').replace("'", '"')
filterDataCleared = json.loads(filterData)
global filterDataFinal
filterDataFinal = filterDataCleared['filter']
return 'Done'
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/SendDataSpacPoints', methods=["GET", "POST"])
def RetrieveDataSpacePoints():
dataSpacePoints = request.get_data().decode('utf8').replace("'", '"')
dataSpacePointsCleared = json.loads(dataSpacePoints)
global keyData
keyData = 1
5 years ago
global dataSpacePointsIDs
dataSpacePointsIDs = dataSpacePointsCleared['points']
return 'Done'
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/UpdateAction', methods=["GET", "POST"])
def RetrieveAction():
filterAction = request.get_data().decode('utf8').replace("'", '"')
filterActionCleared = json.loads(filterAction)
global filterActionFinal
global dataSpacePointsIDs
global filterDataFinal
global XData
global yData
filterActionFinal = filterActionCleared['action']
5 years ago
if (filterActionFinal == 'merge'):
5 years ago
if (filterDataFinal == 'mean' or filterDataFinal == ''):
mean = XData.iloc[dataSpacePointsIDs, :].mean()
XData.loc[len(XData)]= mean
else:
median = XData.iloc[dataSpacePointsIDs, :].median()
XData.loc[len(XData)]= median
yDataSelected = [yData[i] for i in dataSpacePointsIDs]
storeMode = mode(yDataSelected)
yData.append(storeMode)
XData = XData.drop(dataSpacePointsIDs)
yData = [i for j, i in enumerate(yData) if j not in dataSpacePointsIDs]
XData.reset_index(drop=True, inplace=True)
5 years ago
elif (filterActionFinal == 'compose'):
if (filterDataFinal == 'mean' or filterDataFinal == ''):
mean = XData.iloc[dataSpacePointsIDs, :].mean()
XData.loc[len(XData)]= mean
else:
median = XData.iloc[dataSpacePointsIDs, :].median()
XData.loc[len(XData)]= median
yDataSelected = [yData[i] for i in dataSpacePointsIDs]
storeMode = mode(yDataSelected)
yData.append(storeMode)
else:
XData = XData.drop(dataSpacePointsIDs)
yData = [i for j, i in enumerate(yData) if j not in dataSpacePointsIDs]
return 'Done'
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/UpdateProvenanceState', methods=["GET", "POST"])
def RetrieveProvenance():
filterProvenance = request.get_data().decode('utf8').replace("'", '"')
filterProvenanceCleared = json.loads(filterProvenance)
global filterProvenanceFinal
filterProvenanceFinal = filterProvenanceCleared['provenance']
global XDataStored
global XData
global yDataStored
global yData
5 years ago
# save and restore
if (filterProvenanceFinal == 'save'):
XDataStored = XData
yDataStored = yData
else:
5 years ago
XData = XDataStored.copy()
yData = yDataStored.copy()
5 years ago
5 years ago
return 'Done'