parent
7ad5f7be6a
commit
b4cc0f94e0
Binary file not shown.
@ -1 +1 @@ |
||||
{"duration": 50.60136699676514, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "QuadraticDiscriminantAnalysis(priors=None, reg_param=50, store_covariance=False,\n tol=0.00081)", "params": "{'reg_param': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], 'tol': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001]}", "eachAlgor": "'QDA'", "AlgorithmsIDsEnd": "2196"}} |
||||
{"duration": 54.30657696723938, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "QuadraticDiscriminantAnalysis(priors=None, reg_param=50, store_covariance=False,\n tol=0.00081)", "params": "{'reg_param': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], 'tol': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001]}", "eachAlgor": "'QDA'", "AlgorithmsIDsEnd": "2196"}} |
Binary file not shown.
@ -1 +0,0 @@ |
||||
{"duration": 219.70271110534668, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LogisticRegression(C=1.925, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=200,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=None, solver='saga', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [0.5, 0.575, 0.6499999999999999, 0.7249999999999999, 0.7999999999999998, 0.8749999999999998, 0.9499999999999997, 1.0249999999999997, 1.0999999999999996, 1.1749999999999996, 1.2499999999999996, 1.3249999999999995, 1.3999999999999995, 1.4749999999999994, 1.5499999999999994, 1.6249999999999993, 1.6999999999999993, 1.7749999999999992, 1.8499999999999992, 1.9249999999999992], 'max_iter': [50, 100, 150, 200], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "1356"}} |
Binary file not shown.
@ -1 +1 @@ |
||||
{"duration": 863.4842360019684, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "GradientBoostingClassifier(ccp_alpha=0.0, criterion='mae', init=None,\n learning_rate=0.12, loss='deviance', max_depth=3,\n max_features=None, max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=114,\n n_iter_no_change=None, presort='deprecated',\n random_state=None, subsample=1.0, tol=0.0001,\n validation_fraction=0.1, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "2926"}} |
||||
{"duration": 806.5329508781433, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "GradientBoostingClassifier(ccp_alpha=0.0, criterion='mae', init=None,\n learning_rate=0.12, loss='deviance', max_depth=3,\n max_features=None, max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=114,\n n_iter_no_change=None, presort='deprecated',\n random_state=None, subsample=1.0, tol=0.0001,\n validation_fraction=0.1, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "2926"}} |
Binary file not shown.
Binary file not shown.
@ -1 +1 @@ |
||||
{"duration": 158.92655205726624, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "MLPClassifier(activation='tanh', alpha=0.00081, batch_size='auto', beta_1=0.9,\n beta_2=0.999, early_stopping=False, epsilon=1e-08,\n hidden_layer_sizes=(100,), learning_rate='constant',\n learning_rate_init=0.001, max_fun=15000, max_iter=100,\n momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,\n power_t=0.5, random_state=None, shuffle=True, solver='sgd',\n tol=0.00081, validation_fraction=0.1, verbose=False,\n warm_start=False)", "params": "{'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "1236"}} |
||||
{"duration": 396.95492720603943, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=1.2,\n n_estimators=79, random_state=None)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], 'learning_rate': [0.1, 1.2000000000000002], 'algorithm': ['SAMME.R', 'SAMME']}", "eachAlgor": "'AdaB'", "AlgorithmsIDsEnd": "2766"}} |
@ -1 +0,0 @@ |
||||
{"duration": 554.8381459712982, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'ExtraT'", "AlgorithmsIDsEnd": "2606"}} |
@ -1 +1 @@ |
||||
{"duration": 710.1713180541992, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "2446"}} |
||||
{"duration": 604.6331548690796, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "2446"}} |
@ -0,0 +1 @@ |
||||
{"duration": 222.3701467514038, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LogisticRegression(C=1.925, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=200,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=None, solver='saga', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [0.5, 0.575, 0.6499999999999999, 0.7249999999999999, 0.7999999999999998, 0.8749999999999998, 0.9499999999999997, 1.0249999999999997, 1.0999999999999996, 1.1749999999999996, 1.2499999999999996, 1.3249999999999995, 1.3999999999999995, 1.4749999999999994, 1.5499999999999994, 1.6249999999999993, 1.6999999999999993, 1.7749999999999992, 1.8499999999999992, 1.9249999999999992], 'max_iter': [50, 100, 150, 200], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "1356"}} |
@ -0,0 +1 @@ |
||||
{"duration": 465.37524604797363, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "SVC(C=4.39, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,\n decision_function_shape='ovr', degree=3, gamma='scale', kernel='sigmoid',\n max_iter=-1, probability=True, random_state=None, shrinking=True, tol=0.001,\n verbose=False)", "params": "{'C': [0.1, 0.21000000000000002, 0.32000000000000006, 0.43000000000000005, 0.54, 0.65, 0.7600000000000001, 0.8700000000000001, 0.9800000000000001, 1.09, 1.2000000000000002, 1.3100000000000003, 1.4200000000000004, 1.5300000000000002, 1.6400000000000003, 1.7500000000000002, 1.8600000000000003, 1.9700000000000004, 2.08, 2.1900000000000004, 2.3000000000000003, 2.4100000000000006, 2.5200000000000005, 2.6300000000000003, 2.7400000000000007, 2.8500000000000005, 2.9600000000000004, 3.0700000000000003, 3.1800000000000006, 3.2900000000000005, 3.4000000000000004, 3.5100000000000007, 3.6200000000000006, 3.7300000000000004, 3.8400000000000007, 3.9500000000000006, 4.0600000000000005, 4.17, 4.28, 4.390000000000001], 'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}", "eachAlgor": "'SVC'", "AlgorithmsIDsEnd": "576"}} |
@ -1 +1 @@ |
||||
{"duration": 429.9728858470917, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=1.2,\n n_estimators=79, random_state=None)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], 'learning_rate': [0.1, 1.2000000000000002], 'algorithm': ['SAMME.R', 'SAMME']}", "eachAlgor": "'AdaB'", "AlgorithmsIDsEnd": "2766"}} |
||||
{"duration": 153.8552680015564, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "MLPClassifier(activation='tanh', alpha=0.00081, batch_size='auto', beta_1=0.9,\n beta_2=0.999, early_stopping=False, epsilon=1e-08,\n hidden_layer_sizes=(100,), learning_rate='constant',\n learning_rate_init=0.001, max_fun=15000, max_iter=100,\n momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,\n power_t=0.5, random_state=None, shuffle=True, solver='sgd',\n tol=0.00081, validation_fraction=0.1, verbose=False,\n warm_start=False)", "params": "{'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "1236"}} |
Binary file not shown.
Binary file not shown.
@ -0,0 +1 @@ |
||||
{"duration": 505.02412009239197, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'ExtraT'", "AlgorithmsIDsEnd": "2606"}} |
@ -1 +0,0 @@ |
||||
{"duration": 483.94886302948, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "SVC(C=4.39, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,\n decision_function_shape='ovr', degree=3, gamma='scale', kernel='sigmoid',\n max_iter=-1, probability=True, random_state=None, shrinking=True, tol=0.001,\n verbose=False)", "params": "{'C': [0.1, 0.21000000000000002, 0.32000000000000006, 0.43000000000000005, 0.54, 0.65, 0.7600000000000001, 0.8700000000000001, 0.9800000000000001, 1.09, 1.2000000000000002, 1.3100000000000003, 1.4200000000000004, 1.5300000000000002, 1.6400000000000003, 1.7500000000000002, 1.8600000000000003, 1.9700000000000004, 2.08, 2.1900000000000004, 2.3000000000000003, 2.4100000000000006, 2.5200000000000005, 2.6300000000000003, 2.7400000000000007, 2.8500000000000005, 2.9600000000000004, 3.0700000000000003, 3.1800000000000006, 3.2900000000000005, 3.4000000000000004, 3.5100000000000007, 3.6200000000000006, 3.7300000000000004, 3.8400000000000007, 3.9500000000000006, 4.0600000000000005, 4.17, 4.28, 4.390000000000001], 'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}", "eachAlgor": "'SVC'", "AlgorithmsIDsEnd": "576"}} |
@ -1 +1 @@ |
||||
{"duration": 43.934420108795166, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=0.99,\n solver='eigen', store_covariance=False, tol=0.0001)", "params": "{'shrinkage': [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35000000000000003, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41000000000000003, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47000000000000003, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.5700000000000001, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.6900000000000001, 0.7000000000000001, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.8200000000000001, 0.8300000000000001, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.9400000000000001, 0.9500000000000001, 0.96, 0.97, 0.98, 0.99], 'solver': ['lsqr', 'eigen']}", "eachAlgor": "'LDA'", "AlgorithmsIDsEnd": "1996"}} |
||||
{"duration": 43.723469972610474, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=0.99,\n solver='eigen', store_covariance=False, tol=0.0001)", "params": "{'shrinkage': [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35000000000000003, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41000000000000003, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47000000000000003, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.5700000000000001, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.6900000000000001, 0.7000000000000001, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.8200000000000001, 0.8300000000000001, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.9400000000000001, 0.9500000000000001, 0.96, 0.97, 0.98, 0.99], 'solver': ['lsqr', 'eigen']}", "eachAlgor": "'LDA'", "AlgorithmsIDsEnd": "1996"}} |
Binary file not shown.
Binary file not shown.
@ -1 +1 @@ |
||||
{"duration": 319.8098211288452, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} |
||||
{"duration": 307.30965399742126, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} |
Binary file not shown.
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
@ -0,0 +1,229 @@ |
||||
/* W3.CSS 4.13 June 2019 by Jan Egil and Borge Refsnes */ |
||||
html{box-sizing:border-box}*,*:before,*:after{box-sizing:inherit} |
||||
/* Extract from normalize.css by Nicolas Gallagher and Jonathan Neal git.io/normalize */ |
||||
html{-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}body{margin:0} |
||||
article,aside,details,figcaption,figure,footer,header,main,menu,nav,section{display:block}summary{display:list-item} |
||||
audio,canvas,progress,video{display:inline-block}progress{vertical-align:baseline} |
||||
audio:not([controls]){display:none;height:0}[hidden],template{display:none} |
||||
a{background-color:transparent}a:active,a:hover{outline-width:0} |
||||
abbr[title]{border-bottom:none;text-decoration:underline;text-decoration:underline dotted} |
||||
b,strong{font-weight:bolder}dfn{font-style:italic}mark{background:#ff0;color:#000} |
||||
small{font-size:80%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline} |
||||
sub{bottom:-0.25em}sup{top:-0.5em}figure{margin:1em 40px}img{border-style:none} |
||||
code,kbd,pre,samp{font-family:monospace,monospace;font-size:1em}hr{box-sizing:content-box;height:0;overflow:visible} |
||||
button,input,select,textarea,optgroup{font:inherit;margin:0}optgroup{font-weight:bold} |
||||
button,input{overflow:visible}button,select{text-transform:none} |
||||
button,[type=button],[type=reset],[type=submit]{-webkit-appearance:button} |
||||
button::-moz-focus-inner,[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner{border-style:none;padding:0} |
||||
button:-moz-focusring,[type=button]:-moz-focusring,[type=reset]:-moz-focusring,[type=submit]:-moz-focusring{outline:1px dotted ButtonText} |
||||
fieldset{border:1px solid #c0c0c0;margin:0 2px;padding:.35em .625em .75em} |
||||
legend{color:inherit;display:table;max-width:100%;padding:0;white-space:normal}textarea{overflow:auto} |
||||
[type=checkbox],[type=radio]{padding:0} |
||||
[type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto} |
||||
[type=search]{-webkit-appearance:textfield;outline-offset:-2px} |
||||
[type=search]::-webkit-search-decoration{-webkit-appearance:none} |
||||
::-webkit-file-upload-button{-webkit-appearance:button;font:inherit} |
||||
/* End extract */ |
||||
h3{font-size:24px}h3 |
||||
hr{border:0;border-top:1px solid #eee;margin:20px 0} |
||||
.w3-table,.w3-table-all{border-collapse:collapse;border-spacing:0;width:100%;display:table}.w3-table-all{border:1px solid #ccc} |
||||
.w3-bordered tr,.w3-table-all tr{border-bottom:1px solid #ddd}.w3-striped tbody tr:nth-child(even){background-color:#f1f1f1} |
||||
.w3-table-all tr:nth-child(odd){background-color:#fff}.w3-table-all tr:nth-child(even){background-color:#f1f1f1} |
||||
.w3-hoverable tbody tr:hover,.w3-ul.w3-hoverable li:hover{background-color:#ccc}.w3-centered tr th,.w3-centered tr td{text-align:center} |
||||
.w3-table td,.w3-table th,.w3-table-all td,.w3-table-all th{padding:8px 8px;display:table-cell;text-align:left;vertical-align:top} |
||||
.w3-table th:first-child,.w3-table td:first-child,.w3-table-all th:first-child,.w3-table-all td:first-child{padding-left:16px} |
||||
.w3-btn,.w3-button{border:none;display:inline-block;padding:8px 16px;vertical-align:middle;overflow:hidden;text-decoration:none;color:inherit;background-color:inherit;text-align:center;cursor:pointer;white-space:nowrap} |
||||
.w3-btn:hover{box-shadow:0 8px 16px 0 rgba(0,0,0,0.2),0 6px 20px 0 rgba(0,0,0,0.19)} |
||||
.w3-btn,.w3-button{-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none} |
||||
.w3-disabled,.w3-btn:disabled,.w3-button:disabled{cursor:not-allowed;opacity:0.3}.w3-disabled *,:disabled *{pointer-events:none} |
||||
.w3-btn.w3-disabled:hover,.w3-btn:disabled:hover{box-shadow:none} |
||||
.w3-badge,.w3-tag{background-color:#000;color:#fff;display:inline-block;padding-left:8px;padding-right:8px;text-align:center}.w3-badge{border-radius:50%} |
||||
.w3-ul{list-style-type:none;padding:0;margin:0}.w3-ul li{padding:8px 16px;border-bottom:1px solid #ddd}.w3-ul li:last-child{border-bottom:none} |
||||
.w3-tooltip,.w3-display-container{position:relative}.w3-tooltip .w3-text{display:none}.w3-tooltip:hover .w3-text{display:inline-block} |
||||
.w3-ripple:active{opacity:0.5}.w3-ripple{transition:opacity 0s} |
||||
.w3-input{padding:8px;display:block;border:none;border-bottom:1px solid #ccc;width:100%} |
||||
.w3-select{padding:9px 0;width:100%;border:none;border-bottom:1px solid #ccc} |
||||
.w3-dropdown-click,.w3-dropdown-hover{position:relative;display:inline-block;cursor:pointer} |
||||
.w3-dropdown-hover:hover .w3-dropdown-content{display:block} |
||||
.w3-dropdown-hover:first-child,.w3-dropdown-click:hover{background-color:#ccc;color:#000} |
||||
.w3-dropdown-hover:hover > .w3-button:first-child,.w3-dropdown-click:hover > .w3-button:first-child{background-color:#ccc;color:#000} |
||||
.w3-dropdown-content{cursor:auto;color:#000;background-color:#fff;display:none;position:absolute;min-width:160px;margin:0;padding:0;z-index:1} |
||||
.w3-check,.w3-radio{width:24px;height:24px;position:relative;top:6px} |
||||
.w3-sidebar{height:100%;width:200px;background-color:#fff;position:fixed!important;z-index:1;overflow:auto} |
||||
.w3-bar-block .w3-dropdown-hover,.w3-bar-block .w3-dropdown-click{width:100%} |
||||
.w3-bar-block .w3-dropdown-hover .w3-dropdown-content,.w3-bar-block .w3-dropdown-click .w3-dropdown-content{min-width:100%} |
||||
.w3-bar-block .w3-dropdown-hover .w3-button,.w3-bar-block .w3-dropdown-click .w3-button{width:100%;text-align:left;padding:8px 16px} |
||||
.w3-main,#main{transition:margin-left .4s} |
||||
.w3-modal{z-index:3;display:none;padding-top:100px;position:fixed;left:0;top:0;width:100%;height:100%;overflow:auto;background-color:rgb(0,0,0);background-color:rgba(0,0,0,0.4)} |
||||
.w3-modal-content{margin:auto;background-color:#fff;position:relative;padding:0;outline:0;width:600px} |
||||
.w3-bar{width:100%;overflow:hidden}.w3-center .w3-bar{display:inline-block;width:auto} |
||||
.w3-bar .w3-bar-item{padding:8px 16px;float:left;width:auto;border:none;display:block;outline:0} |
||||
.w3-bar .w3-dropdown-hover,.w3-bar .w3-dropdown-click{position:static;float:left} |
||||
.w3-bar .w3-button{white-space:normal} |
||||
.w3-bar-block .w3-bar-item{width:100%;display:block;padding:8px 16px;text-align:left;border:none;white-space:normal;float:none;outline:0} |
||||
.w3-bar-block.w3-center .w3-bar-item{text-align:center}.w3-block{display:block;width:100%} |
||||
.w3-responsive{display:block;overflow-x:auto} |
||||
.w3-container:after,.w3-container:before,.w3-panel:after,.w3-panel:before,.w3-row:after,.w3-row:before,.w3-row-padding:after,.w3-row-padding:before, |
||||
.w3-cell-row:before,.w3-cell-row:after,.w3-clear:after,.w3-clear:before,.w3-bar:before,.w3-bar:after{content:"";display:table;clear:both} |
||||
.w3-col,.w3-half,.w3-third,.w3-twothird,.w3-threequarter,.w3-quarter{float:left;width:100%} |
||||
.w3-col.s1{width:8.33333%}.w3-col.s2{width:16.66666%}.w3-col.s3{width:24.99999%}.w3-col.s4{width:33.33333%} |
||||
.w3-col.s5{width:41.66666%}.w3-col.s6{width:49.99999%}.w3-col.s7{width:58.33333%}.w3-col.s8{width:66.66666%} |
||||
.w3-col.s9{width:74.99999%}.w3-col.s10{width:83.33333%}.w3-col.s11{width:91.66666%}.w3-col.s12{width:99.99999%} |
||||
@media (min-width:601px){.w3-col.m1{width:8.33333%}.w3-col.m2{width:16.66666%}.w3-col.m3,.w3-quarter{width:24.99999%}.w3-col.m4,.w3-third{width:33.33333%} |
||||
.w3-col.m5{width:41.66666%}.w3-col.m6,.w3-half{width:49.99999%}.w3-col.m7{width:58.33333%}.w3-col.m8,.w3-twothird{width:66.66666%} |
||||
.w3-col.m9,.w3-threequarter{width:74.99999%}.w3-col.m10{width:83.33333%}.w3-col.m11{width:91.66666%}.w3-col.m12{width:99.99999%}} |
||||
@media (min-width:993px){.w3-col.l1{width:8.33333%}.w3-col.l2{width:16.66666%}.w3-col.l3{width:24.99999%}.w3-col.l4{width:33.33333%} |
||||
.w3-col.l5{width:41.66666%}.w3-col.l6{width:49.99999%}.w3-col.l7{width:58.33333%}.w3-col.l8{width:66.66666%} |
||||
.w3-col.l9{width:74.99999%}.w3-col.l10{width:83.33333%}.w3-col.l11{width:91.66666%}.w3-col.l12{width:99.99999%}} |
||||
.w3-rest{overflow:hidden}.w3-stretch{margin-left:-16px;margin-right:-16px} |
||||
.w3-content,.w3-auto{margin-left:auto;margin-right:auto}.w3-content{max-width:980px}.w3-auto{max-width:1140px} |
||||
.w3-cell-row{display:table;width:100%}.w3-cell{display:table-cell} |
||||
.w3-cell-top{vertical-align:top}.w3-cell-middle{vertical-align:middle}.w3-cell-bottom{vertical-align:bottom} |
||||
.w3-hide{display:none!important}.w3-show-block,.w3-show{display:block!important}.w3-show-inline-block{display:inline-block!important} |
||||
@media (max-width:1205px){.w3-auto{max-width:95%}} |
||||
@media (max-width:600px){.w3-modal-content{margin:0 10px;width:auto!important}.w3-modal{padding-top:30px} |
||||
.w3-dropdown-hover.w3-mobile .w3-dropdown-content,.w3-dropdown-click.w3-mobile .w3-dropdown-content{position:relative} |
||||
.w3-hide-small{display:none!important}.w3-mobile{display:block;width:100%!important}.w3-bar-item.w3-mobile,.w3-dropdown-hover.w3-mobile,.w3-dropdown-click.w3-mobile{text-align:center} |
||||
.w3-dropdown-hover.w3-mobile,.w3-dropdown-hover.w3-mobile .w3-btn,.w3-dropdown-hover.w3-mobile .w3-button,.w3-dropdown-click.w3-mobile,.w3-dropdown-click.w3-mobile .w3-btn,.w3-dropdown-click.w3-mobile .w3-button{width:100%}} |
||||
@media (max-width:768px){.w3-modal-content{width:500px}.w3-modal{padding-top:50px}} |
||||
@media (min-width:993px){.w3-modal-content{width:1050px}.w3-hide-large{display:none!important}.w3-sidebar.w3-collapse{display:block!important}} |
||||
@media (max-width:992px) and (min-width:601px){.w3-hide-medium{display:none!important}} |
||||
@media (max-width:992px){.w3-sidebar.w3-collapse{display:none}.w3-main{margin-left:0!important;margin-right:0!important}.w3-auto{max-width:100%}} |
||||
.w3-top,.w3-bottom{position:fixed;width:100%;z-index:1}.w3-top{top:0}.w3-bottom{bottom:0} |
||||
.w3-overlay{position:fixed;display:none;width:100%;height:100%;top:0;left:0;right:0;bottom:0;background-color:rgba(0,0,0,0.5);z-index:2} |
||||
.w3-display-topleft{position:absolute;left:0;top:0}.w3-display-topright{position:absolute;right:0;top:0} |
||||
.w3-display-bottomleft{position:absolute;left:0;bottom:0}.w3-display-bottomright{position:absolute;right:0;bottom:0} |
||||
.w3-display-middle{position:absolute;top:50%;left:50%;transform:translate(-50%,-50%);-ms-transform:translate(-50%,-50%)} |
||||
.w3-display-left{position:absolute;top:50%;left:0%;transform:translate(0%,-50%);-ms-transform:translate(-0%,-50%)} |
||||
.w3-display-right{position:absolute;top:50%;right:0%;transform:translate(0%,-50%);-ms-transform:translate(0%,-50%)} |
||||
.w3-display-topmiddle{position:absolute;left:50%;top:0;transform:translate(-50%,0%);-ms-transform:translate(-50%,0%)} |
||||
.w3-display-bottommiddle{position:absolute;left:50%;bottom:0;transform:translate(-50%,0%);-ms-transform:translate(-50%,0%)} |
||||
.w3-display-container:hover .w3-display-hover{display:block}.w3-display-container:hover span.w3-display-hover{display:inline-block}.w3-display-hover{display:none} |
||||
.w3-display-position{position:absolute} |
||||
.w3-circle{border-radius:50%} |
||||
.w3-round-small{border-radius:2px}.w3-round,.w3-round-medium{border-radius:4px}.w3-round-large{border-radius:8px}.w3-round-xlarge{border-radius:16px}.w3-round-xxlarge{border-radius:32px} |
||||
.w3-row-padding,.w3-row-padding>.w3-half,.w3-row-padding>.w3-third,.w3-row-padding>.w3-twothird,.w3-row-padding>.w3-threequarter,.w3-row-padding>.w3-quarter,.w3-row-padding>.w3-col{padding:0 8px} |
||||
.w3-container,.w3-panel{padding:0.01em 16px}.w3-panel{margin-top:16px;margin-bottom:16px} |
||||
.w3-code,.w3-codespan{font-family:Consolas,"courier new";font-size:16px} |
||||
.w3-code{width:auto;background-color:#fff;padding:8px 12px;border-left:4px solid #4CAF50;word-wrap:break-word} |
||||
.w3-codespan{color:crimson;background-color:#f1f1f1;padding-left:4px;padding-right:4px;font-size:110%} |
||||
.w3-card,.w3-card-2{box-shadow:0 2px 5px 0 rgba(0,0,0,0.16),0 2px 10px 0 rgba(0,0,0,0.12)} |
||||
.w3-card-4,.w3-hover-shadow:hover{box-shadow:0 4px 10px 0 rgba(0,0,0,0.2),0 4px 20px 0 rgba(0,0,0,0.19)} |
||||
.w3-spin{animation:w3-spin 2s infinite linear}@keyframes w3-spin{0%{transform:rotate(0deg)}100%{transform:rotate(359deg)}} |
||||
.w3-animate-fading{animation:fading 10s infinite}@keyframes fading{0%{opacity:0}50%{opacity:1}100%{opacity:0}} |
||||
.w3-animate-opacity{animation:opac 0.8s}@keyframes opac{from{opacity:0} to{opacity:1}} |
||||
.w3-animate-top{position:relative;animation:animatetop 0.4s}@keyframes animatetop{from{top:-300px;opacity:0} to{top:0;opacity:1}} |
||||
.w3-animate-left{position:relative;animation:animateleft 0.4s}@keyframes animateleft{from{left:-300px;opacity:0} to{left:0;opacity:1}} |
||||
.w3-animate-right{position:relative;animation:animateright 0.4s}@keyframes animateright{from{right:-300px;opacity:0} to{right:0;opacity:1}} |
||||
.w3-animate-bottom{position:relative;animation:animatebottom 0.4s}@keyframes animatebottom{from{bottom:-300px;opacity:0} to{bottom:0;opacity:1}} |
||||
.w3-animate-zoom {animation:animatezoom 0.6s}@keyframes animatezoom{from{transform:scale(0)} to{transform:scale(1)}} |
||||
.w3-animate-input{transition:width 0.4s ease-in-out}.w3-animate-input:focus{width:100%!important} |
||||
.w3-opacity,.w3-hover-opacity:hover{opacity:0.60}.w3-opacity-off,.w3-hover-opacity-off:hover{opacity:1} |
||||
.w3-opacity-max{opacity:0.25}.w3-opacity-min{opacity:0.75} |
||||
.w3-greyscale-max,.w3-grayscale-max,.w3-hover-greyscale:hover,.w3-hover-grayscale:hover{filter:grayscale(100%)} |
||||
.w3-greyscale,.w3-grayscale{filter:grayscale(75%)}.w3-greyscale-min,.w3-grayscale-min{filter:grayscale(50%)} |
||||
.w3-sepia{filter:sepia(75%)}.w3-sepia-max,.w3-hover-sepia:hover{filter:sepia(100%)}.w3-sepia-min{filter:sepia(50%)} |
||||
.w3-tiny{font-size:10px!important}.w3-small{font-size:12px!important}.w3-medium{font-size:15px!important}.w3-large{font-size:18px!important} |
||||
.w3-xlarge{font-size:24px!important}.w3-xxlarge{font-size:36px!important}.w3-xxxlarge{font-size:48px!important}.w3-jumbo{font-size:64px!important} |
||||
.w3-left-align{text-align:left!important}.w3-right-align{text-align:right!important}.w3-justify{text-align:justify!important}.w3-center{text-align:center!important} |
||||
.w3-border-0{border:0!important}.w3-border{border:1px solid #ccc!important} |
||||
.w3-border-top{border-top:1px solid #ccc!important}.w3-border-bottom{border-bottom:1px solid #ccc!important} |
||||
.w3-border-left{border-left:1px solid #ccc!important}.w3-border-right{border-right:1px solid #ccc!important} |
||||
.w3-topbar{border-top:6px solid #ccc!important}.w3-bottombar{border-bottom:6px solid #ccc!important} |
||||
.w3-leftbar{border-left:6px solid #ccc!important}.w3-rightbar{border-right:6px solid #ccc!important} |
||||
.w3-section,.w3-code{margin-top:16px!important;margin-bottom:16px!important} |
||||
.w3-margin{margin:16px!important}.w3-margin-top{margin-top:16px!important}.w3-margin-bottom{margin-bottom:16px!important} |
||||
.w3-margin-left{margin-left:16px!important}.w3-margin-right{margin-right:16px!important} |
||||
.w3-padding-small{padding:4px 8px!important}.w3-padding{padding:8px 16px!important}.w3-padding-large{padding:12px 24px!important} |
||||
.w3-padding-16{padding-top:16px!important;padding-bottom:16px!important}.w3-padding-24{padding-top:24px!important;padding-bottom:24px!important} |
||||
.w3-padding-32{padding-top:32px!important;padding-bottom:32px!important}.w3-padding-48{padding-top:48px!important;padding-bottom:48px!important} |
||||
.w3-padding-64{padding-top:64px!important;padding-bottom:64px!important} |
||||
.w3-left{float:left!important}.w3-right{float:right!important} |
||||
.w3-button:hover{color:#000!important;background-color:#ccc!important} |
||||
.w3-transparent,.w3-hover-none:hover{background-color:transparent!important} |
||||
.w3-hover-none:hover{box-shadow:none!important} |
||||
/* Colors */ |
||||
.w3-amber,.w3-hover-amber:hover{color:#000!important;background-color:#ffc107!important} |
||||
.w3-aqua,.w3-hover-aqua:hover{color:#000!important;background-color:#00ffff!important} |
||||
.w3-blue,.w3-hover-blue:hover{color:#fff!important;background-color:#2196F3!important} |
||||
.w3-light-blue,.w3-hover-light-blue:hover{color:#000!important;background-color:#87CEEB!important} |
||||
.w3-brown,.w3-hover-brown:hover{color:#fff!important;background-color:#795548!important} |
||||
.w3-cyan,.w3-hover-cyan:hover{color:#000!important;background-color:#00bcd4!important} |
||||
.w3-blue-grey,.w3-hover-blue-grey:hover,.w3-blue-gray,.w3-hover-blue-gray:hover{color:#fff!important;background-color:#607d8b!important} |
||||
.w3-green,.w3-hover-green:hover{color:#fff!important;background-color:#4CAF50!important} |
||||
.w3-light-green,.w3-hover-light-green:hover{color:#000!important;background-color:#8bc34a!important} |
||||
.w3-indigo,.w3-hover-indigo:hover{color:#fff!important;background-color:#3f51b5!important} |
||||
.w3-khaki,.w3-hover-khaki:hover{color:#000!important;background-color:#f0e68c!important} |
||||
.w3-lime,.w3-hover-lime:hover{color:#000!important;background-color:#cddc39!important} |
||||
.w3-orange,.w3-hover-orange:hover{color:#000!important;background-color:#ff9800!important} |
||||
.w3-deep-orange,.w3-hover-deep-orange:hover{color:#fff!important;background-color:#ff5722!important} |
||||
.w3-pink,.w3-hover-pink:hover{color:#fff!important;background-color:#e91e63!important} |
||||
.w3-purple,.w3-hover-purple:hover{color:#fff!important;background-color:#9c27b0!important} |
||||
.w3-deep-purple,.w3-hover-deep-purple:hover{color:#fff!important;background-color:#673ab7!important} |
||||
.w3-red,.w3-hover-red:hover{color:#fff!important;background-color:#f44336!important} |
||||
.w3-sand,.w3-hover-sand:hover{color:#000!important;background-color:#fdf5e6!important} |
||||
.w3-teal,.w3-hover-teal:hover{color:#fff!important;background-color:#009688!important} |
||||
.w3-yellow,.w3-hover-yellow:hover{color:#000!important;background-color:#ffeb3b!important} |
||||
.w3-white,.w3-hover-white:hover{color:#000!important;background-color:#fff!important} |
||||
.w3-black,.w3-hover-black:hover{color:#fff!important;background-color:#000!important} |
||||
.w3-grey,.w3-hover-grey:hover,.w3-gray,.w3-hover-gray:hover{color:#000!important;background-color:#9e9e9e!important} |
||||
.w3-light-grey,.w3-hover-light-grey:hover,.w3-light-gray,.w3-hover-light-gray:hover{color:#000!important;background-color:#f1f1f1!important} |
||||
.w3-dark-grey,.w3-hover-dark-grey:hover,.w3-dark-gray,.w3-hover-dark-gray:hover{color:#fff!important;background-color:#616161!important} |
||||
.w3-pale-red,.w3-hover-pale-red:hover{color:#000!important;background-color:#ffdddd!important} |
||||
.w3-pale-green,.w3-hover-pale-green:hover{color:#000!important;background-color:#ddffdd!important} |
||||
.w3-pale-yellow,.w3-hover-pale-yellow:hover{color:#000!important;background-color:#ffffcc!important} |
||||
.w3-pale-blue,.w3-hover-pale-blue:hover{color:#000!important;background-color:#ddffff!important} |
||||
.w3-text-amber,.w3-hover-text-amber:hover{color:#ffc107!important} |
||||
.w3-text-aqua,.w3-hover-text-aqua:hover{color:#00ffff!important} |
||||
.w3-text-blue,.w3-hover-text-blue:hover{color:#2196F3!important} |
||||
.w3-text-light-blue,.w3-hover-text-light-blue:hover{color:#87CEEB!important} |
||||
.w3-text-brown,.w3-hover-text-brown:hover{color:#795548!important} |
||||
.w3-text-cyan,.w3-hover-text-cyan:hover{color:#00bcd4!important} |
||||
.w3-text-blue-grey,.w3-hover-text-blue-grey:hover,.w3-text-blue-gray,.w3-hover-text-blue-gray:hover{color:#607d8b!important} |
||||
.w3-text-green,.w3-hover-text-green:hover{color:#4CAF50!important} |
||||
.w3-text-light-green,.w3-hover-text-light-green:hover{color:#8bc34a!important} |
||||
.w3-text-indigo,.w3-hover-text-indigo:hover{color:#3f51b5!important} |
||||
.w3-text-khaki,.w3-hover-text-khaki:hover{color:#b4aa50!important} |
||||
.w3-text-lime,.w3-hover-text-lime:hover{color:#cddc39!important} |
||||
.w3-text-orange,.w3-hover-text-orange:hover{color:#ff9800!important} |
||||
.w3-text-deep-orange,.w3-hover-text-deep-orange:hover{color:#ff5722!important} |
||||
.w3-text-pink,.w3-hover-text-pink:hover{color:#e91e63!important} |
||||
.w3-text-purple,.w3-hover-text-purple:hover{color:#9c27b0!important} |
||||
.w3-text-deep-purple,.w3-hover-text-deep-purple:hover{color:#673ab7!important} |
||||
.w3-text-red,.w3-hover-text-red:hover{color:#f44336!important} |
||||
.w3-text-sand,.w3-hover-text-sand:hover{color:#fdf5e6!important} |
||||
.w3-text-teal,.w3-hover-text-teal:hover{color:#009688!important} |
||||
.w3-text-yellow,.w3-hover-text-yellow:hover{color:#d2be0e!important} |
||||
.w3-text-white,.w3-hover-text-white:hover{color:#fff!important} |
||||
.w3-text-black,.w3-hover-text-black:hover{color:#000!important} |
||||
.w3-text-grey,.w3-hover-text-grey:hover,.w3-text-gray,.w3-hover-text-gray:hover{color:#757575!important} |
||||
.w3-text-light-grey,.w3-hover-text-light-grey:hover,.w3-text-light-gray,.w3-hover-text-light-gray:hover{color:#f1f1f1!important} |
||||
.w3-text-dark-grey,.w3-hover-text-dark-grey:hover,.w3-text-dark-gray,.w3-hover-text-dark-gray:hover{color:#3a3a3a!important} |
||||
.w3-border-amber,.w3-hover-border-amber:hover{border-color:#ffc107!important} |
||||
.w3-border-aqua,.w3-hover-border-aqua:hover{border-color:#00ffff!important} |
||||
.w3-border-blue,.w3-hover-border-blue:hover{border-color:#2196F3!important} |
||||
.w3-border-light-blue,.w3-hover-border-light-blue:hover{border-color:#87CEEB!important} |
||||
.w3-border-brown,.w3-hover-border-brown:hover{border-color:#795548!important} |
||||
.w3-border-cyan,.w3-hover-border-cyan:hover{border-color:#00bcd4!important} |
||||
.w3-border-blue-grey,.w3-hover-border-blue-grey:hover,.w3-border-blue-gray,.w3-hover-border-blue-gray:hover{border-color:#607d8b!important} |
||||
.w3-border-green,.w3-hover-border-green:hover{border-color:#4CAF50!important} |
||||
.w3-border-light-green,.w3-hover-border-light-green:hover{border-color:#8bc34a!important} |
||||
.w3-border-indigo,.w3-hover-border-indigo:hover{border-color:#3f51b5!important} |
||||
.w3-border-khaki,.w3-hover-border-khaki:hover{border-color:#f0e68c!important} |
||||
.w3-border-lime,.w3-hover-border-lime:hover{border-color:#cddc39!important} |
||||
.w3-border-orange,.w3-hover-border-orange:hover{border-color:#ff9800!important} |
||||
.w3-border-deep-orange,.w3-hover-border-deep-orange:hover{border-color:#ff5722!important} |
||||
.w3-border-pink,.w3-hover-border-pink:hover{border-color:#e91e63!important} |
||||
.w3-border-purple,.w3-hover-border-purple:hover{border-color:#9c27b0!important} |
||||
.w3-border-deep-purple,.w3-hover-border-deep-purple:hover{border-color:#673ab7!important} |
||||
.w3-border-red,.w3-hover-border-red:hover{border-color:#f44336!important} |
||||
.w3-border-sand,.w3-hover-border-sand:hover{border-color:#fdf5e6!important} |
||||
.w3-border-teal,.w3-hover-border-teal:hover{border-color:#009688!important} |
||||
.w3-border-yellow,.w3-hover-border-yellow:hover{border-color:#ffeb3b!important} |
||||
.w3-border-white,.w3-hover-border-white:hover{border-color:#fff!important} |
||||
.w3-border-black,.w3-hover-border-black:hover{border-color:#000!important} |
||||
.w3-border-grey,.w3-hover-border-grey:hover,.w3-border-gray,.w3-hover-border-gray:hover{border-color:#9e9e9e!important} |
||||
.w3-border-light-grey,.w3-hover-border-light-grey:hover,.w3-border-light-gray,.w3-hover-border-light-gray:hover{border-color:#f1f1f1!important} |
||||
.w3-border-dark-grey,.w3-hover-border-dark-grey:hover,.w3-border-dark-gray,.w3-hover-border-dark-gray:hover{border-color:#616161!important} |
||||
.w3-border-pale-red,.w3-hover-border-pale-red:hover{border-color:#ffe7e7!important}.w3-border-pale-green,.w3-hover-border-pale-green:hover{border-color:#e7ffe7!important} |
||||
.w3-border-pale-yellow,.w3-hover-border-pale-yellow:hover{border-color:#ffffcc!important}.w3-border-pale-blue,.w3-hover-border-pale-blue:hover{border-color:#e7ffff!important} |
@ -0,0 +1,18 @@ |
||||
<template> |
||||
<div id="ExportResults">Results go here</div> |
||||
</template> |
||||
|
||||
<script> |
||||
|
||||
import { EventBus } from '../main.js' |
||||
|
||||
export default { |
||||
name: 'Export', |
||||
data () { |
||||
return { |
||||
} |
||||
}, |
||||
methods: { |
||||
} |
||||
} |
||||
</script> |
@ -0,0 +1,27 @@ |
||||
<template> |
||||
<button style="float: right;" |
||||
id="know" |
||||
v-on:click="knowClass"> |
||||
<font-awesome-icon icon="file-export" /> |
||||
{{ valueKnowE }} |
||||
</button> |
||||
</template> |
||||
|
||||
<script> |
||||
|
||||
import { EventBus } from '../main.js' |
||||
|
||||
export default { |
||||
name: 'Knowledge', |
||||
data () { |
||||
return { |
||||
valueKnowE: 'Knowledge Extraction' |
||||
} |
||||
}, |
||||
methods: { |
||||
knowClass () { |
||||
EventBus.$emit('OpenModal') |
||||
} |
||||
} |
||||
} |
||||
</script> |
Loading…
Reference in new issue