parent 3106507614
commit b085ca19ee
  1. 51
      README.md

@ -1,7 +1,4 @@
This Git repository contains the code that accompanies a research publication so-called "t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections". The details are described in [this paper](https://arxiv.org/abs/2002.06910).
[![Build Status](https://travis-ci.org/lvdmaaten/bhtsne.svg)](https://travis-ci.org/lvdmaaten/bhtsne)
This software package contains a Barnes-Hut implementation of the t-SNE algorithm. The implementation is described in [this paper](http://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf).
**Note:** This repository is a version of t-SNE modified to support ongoing research. It may be slightly slower than the original. If you're just trying to run t-SNE, check the original repository that we forked from. **Note:** This repository is a version of t-SNE modified to support ongoing research. It may be slightly slower than the original. If you're just trying to run t-SNE, check the original repository that we forked from.
@ -41,50 +38,16 @@ The executable will be called `windows\bh_tsne.exe`.
The code comes with wrappers for Matlab and Python. These wrappers write your data to a file called `data.dat`, run the `bh_tsne` binary, and read the result file `result.dat` that the binary produces. There are also external wrappers available for [Torch](https://github.com/clementfarabet/manifold), [R](https://github.com/jkrijthe/Rtsne), and [Julia](https://github.com/zhmz90/BHTsne.jl). Writing your own wrapper should be straightforward; please refer to one of the existing wrappers for the format of the data and result files. The code comes with wrappers for Matlab and Python. These wrappers write your data to a file called `data.dat`, run the `bh_tsne` binary, and read the result file `result.dat` that the binary produces. There are also external wrappers available for [Torch](https://github.com/clementfarabet/manifold), [R](https://github.com/jkrijthe/Rtsne), and [Julia](https://github.com/zhmz90/BHTsne.jl). Writing your own wrapper should be straightforward; please refer to one of the existing wrappers for the format of the data and result files.
Demonstration of usage in Matlab:
```matlab
filename = websave('mnist_train.mat', 'https://github.com/awni/cs224n-pa4/blob/master/Simple_tSNE/mnist_train.mat?raw=true');
load(filename);
numDims = 2; pcaDims = 50; perplexity = 50; theta = .5; alg = 'svd';
map = fast_tsne(digits', numDims, pcaDims, perplexity, theta, alg);
gscatter(map(:,1), map(:,2), labels');
```
Demonstration of usage in Python: Demonstration of usage in Python:
```python
import numpy as np
import bhtsne
data = np.loadtxt("mnist2500_X.txt", skiprows=1)
embedding_array = bhtsne.run_bh_tsne(data, initial_dims=data.shape[1])
``` ```
# first terminal: hosting the visualization side (client)
python3 -m http.server # for Python3
#or
python -m SimpleHTTPServer 8000 # for Python2
### Python Wrapper # second terminal: hosting the computational side (server)
FLASK_APP=tsneGrid.py flask run
Usage:
```bash
python bhtsne.py [-h] [-d NO_DIMS] [-p PERPLEXITY] [-t THETA]
[-r RANDSEED] [-n INITIAL_DIMS] [-v] [-i INPUT]
[-o OUTPUT] [--use_pca] [--no_pca] [-m MAX_ITER]
``` ```
Below are the various options the wrapper program `bhtsne.py` expects:
- `-h, --help` show this help message and exit
- `-d NO_DIMS, --no_dims` NO_DIMS
- `-p PERPLEXITY, --perplexity` PERPLEXITY
- `-t THETA, --theta` THETA
- `-r RANDSEED, --randseed` RANDSEED
- `-n INITIAL_DIMS, --initial_dims` INITIAL_DIMS
- `-v, --verbose`
- `-i INPUT, --input` INPUT: the input file, expects a TSV with the first row as the header.
- `-o OUTPUT, --output` OUTPUT: A TSV file having each row as the `d` dimensional embedding.
- `--use_pca`
- `--no_pca`
- `-m MAX_ITER, --max_iter` MAX_ITER
# t-viSNE # t-viSNE

Loading…
Cancel
Save