@ -12,7 +12,7 @@ var final_dataset; var points = []; var cost = []; var cost_each; var beta_all =
var ArrayContainsDataFeaturesCleared = [ ] ; var ArrayContainsDataFeaturesClearedwithoutNull = [ ] ; var ArrayContainsDataFeaturesClearedwithoutNullKeys = [ ] ; var flagAnalysis = false ;
// The distances in the high dimensional space and in the 2D space. All the labels that were found in the selected data set.
var dists ; var dists2d ; var all _labels ; var dist _list = [ ] ; var dist _list2d = [ ] ; var InitialFormDists = [ ] ; var InitialFormDists2D = [ ] ;
var dists ; var dists2d ; var all _labels ; var dist _list = [ ] ; var dist _list2d = [ ] ; var InitialFormDists = [ ] ; var InitialFormDists2D = [ ] ; var IterationsList = [ ] ; var ArrayWithCostsList = [ ] ;
// These are the dimensions for the Overview view and the Main view
var dim = document . getElementById ( 'overviewRect' ) . offsetWidth - 2 ; var dimensions = document . getElementById ( 'modtSNEcanvas' ) . offsetWidth ;
@ -113,13 +113,13 @@ var getData = function() {
// Load an analysis and parse the previous points and parameters information.
AnalysisResults = JSON . parse ( lines ) ;
var length = ( AnalysisResults . length - 7 ) ;
var length = ( AnalysisResults . length - 9 ) ;
ParametersSet = AnalysisResults . slice ( length + 1 , AnalysisResults . length + 7 )
value = ParametersSet [ 0 ] ;
if ( ! isNaN ( parseInt ( value ) ) ) {
flagAnalysis = true ;
length = ( AnalysisResults . length - 9 ) ;
length = ( AnalysisResults . length - 11 ) ;
ParametersSet = AnalysisResults . slice ( length + 1 , length + 7 ) ;
value = ParametersSet [ 0 ] ;
@ -208,6 +208,7 @@ function setContinue(){ // This function allows the continuation of the analysis
function setReset ( ) { // Reset only the filters which were applied into the data points.
VisiblePoints = [ ] ;
emptyPCP ( ) ;
// Clear d3 SVGs
d3 . selectAll ( "#correlation > *" ) . remove ( ) ;
@ -502,11 +503,6 @@ function init(data, results_all, fields) {
d3 . select ( "#hider2" ) . style ( "z-index" , 2 ) ;
d3 . select ( "#PlotCost" ) . style ( "z-index" , 1 ) ;
// Clear the previous t-SNE overview canvas.
/ * v a r o l d c a n v O v e r = d o c u m e n t . g e t E l e m e n t B y I d ( ' t S N E c a n v a s ' ) ;
var contxOver = oldcanvOver . getContext ( 'experimental-webgl' ) ;
contxOver . clear ( contxOver . COLOR _BUFFER _BIT ) ; * /
// Clear the previously drawn main visualization canvas.
scene = new THREE . Scene ( ) ;
scene . background = new THREE . Color ( 0xffffff ) ;
@ -515,8 +511,9 @@ function init(data, results_all, fields) {
d3 . selectAll ( "#legend1 > *" ) . remove ( ) ;
d3 . selectAll ( "#legend2 > *" ) . remove ( ) ;
d3 . selectAll ( "#legend3 > *" ) . remove ( ) ;
d3 . selectAll ( "#legend4 > *" ) . remove ( ) ;
$ ( "#datasetDetails" ) . html ( '(Unknown number of features and i nstances.)' ) ;
$ ( "#datasetDetails" ) . html ( '(Unknown Number of Features and I nstances.)' ) ;
$ ( "#CategoryName" ) . html ( 'No Classification' ) ;
$ ( "#knnBarChartDetails" ) . html ( '(Number of Selected Points: 0/0)' ) ;
@ -844,10 +841,9 @@ function updateEmbedding(AnalysisResults) {
points [ i ] = extend ( points [ i ] , ArrayContainsDataFeaturesCleared [ i ] ) ;
points [ i ] = extend ( points [ i ] , dataFeatures [ i ] ) ;
}
OverallCostLineChart ( ) ;
} else {
if ( flagAnalysis ) {
var length = ( AnalysisResults . length - dataFeatures . length * 2 - 7 - 2 ) ;
var length = ( AnalysisResults . length - dataFeatures . length * 2 - 9 - 2 ) ;
points = AnalysisResults . slice ( 0 , dataFeatures . length ) ; // Load the points from the previous analysis
points2d = AnalysisResults . slice ( dataFeatures . length , 2 * dataFeatures . length ) ; // Load the 2D points
dist _list = AnalysisResults . slice ( 2 * dataFeatures . length , 2 * dataFeatures . length + length / 2 ) ; // Load the parameters and set the necessary values to the visualization of those parameters.
@ -856,6 +852,10 @@ function updateEmbedding(AnalysisResults) {
ParametersSet = AnalysisResults . slice ( 2 * dataFeatures . length + length + 1 , 2 * dataFeatures . length + length + 7 ) ; // Load the parameters and set the necessary values to the visualization of those parameters.
dists = AnalysisResults . slice ( 2 * dataFeatures . length + length + 7 , 2 * dataFeatures . length + length + 8 ) [ 0 ] ; // Load the parameters and set the necessary values to the visualization of those parameters.
dists2d = AnalysisResults . slice ( 2 * dataFeatures . length + length + 8 , 2 * dataFeatures . length + length + 9 ) [ 0 ] ; // Load the parameters and set the necessary values to the visualization of those parameters.
IterationsList = AnalysisResults . slice ( 2 * dataFeatures . length + length + 9 , 2 * dataFeatures . length + length + 10 ) ;
ArrayWithCostsList = AnalysisResults . slice ( 2 * dataFeatures . length + length + 10 , 2 * dataFeatures . length + length + 11 ) ;
Iterations = IterationsList [ 0 ] ;
ArrayWithCosts = ArrayWithCostsList [ 0 ] ;
$ ( "#cost" ) . html ( "(Number of Iteration: " + ParametersSet [ 3 ] + ", Overall Cost: " + overallCost + ")" ) ;
$ ( '#param-perplexity-value' ) . text ( ParametersSet [ 1 ] ) ;
$ ( '#param-learningrate-value' ) . text ( ParametersSet [ 2 ] ) ;
@ -863,11 +863,15 @@ function updateEmbedding(AnalysisResults) {
document . getElementById ( "param-distance" ) . value = ParametersSet [ 4 ] ;
document . getElementById ( "param-transform" ) . value = ParametersSet [ 5 ] ;
} else {
var length = ( AnalysisResults . length - 7 ) / 2 ;
var length = ( AnalysisResults . length - 9 ) / 2 ;
points = AnalysisResults . slice ( 0 , length ) ; // Load the points from the previous analysis
points2d = AnalysisResults . slice ( length , 2 * length ) ; // Load the 2D points
overallCost = AnalysisResults . slice ( 2 * length , 2 * length + 1 ) ; // Load the overall cost
ParametersSet = AnalysisResults . slice ( 2 * length + 1 , 2 * length + 7 ) ; // Load the parameters and set the necessary values to the visualization of those parameters.
IterationsList = AnalysisResults . slice ( 2 * length + 7 , 2 * length + 8 ) ;
ArrayWithCostsList = AnalysisResults . slice ( 2 * length + 8 , 2 * length + 9 ) ;
Iterations = IterationsList [ 0 ] ;
ArrayWithCosts = ArrayWithCostsList [ 0 ] ;
$ ( "#cost" ) . html ( "(Number of Iteration: " + ParametersSet [ 3 ] + ", Overall Cost: " + overallCost + ")" ) ;
$ ( '#param-perplexity-value' ) . text ( ParametersSet [ 1 ] ) ;
$ ( '#param-learningrate-value' ) . text ( ParametersSet [ 2 ] ) ;
@ -878,6 +882,8 @@ function updateEmbedding(AnalysisResults) {
$ ( "#data" ) . html ( ParametersSet [ 0 ] ) ; // Print on the screen the classification label.
$ ( "#param-dataset" ) . html ( '-' ) ;
}
OverallCostLineChart ( ) ; // Cost plot
InitialStatePoints = points ; // Initial Points will not be modified!
function extend ( obj , src ) { // Call this function to add additional information to the points such as dataFeatures and Array which contains the data features without strings.
@ -1101,6 +1107,8 @@ function step() {
clearInterval ( runner ) ;
}
if ( step _counter == max _counter ) {
ArrayWithCostsList . push ( ArrayWithCosts ) ;
IterationsList . push ( Iterations ) ;
updateEmbedding ( AnalysisResults ) ;
}
}
@ -1270,7 +1278,6 @@ function CostHistogram(points){
for ( var i = 0 ; i < points . length ; i ++ ) {
frequency2 . push ( ( points [ i ] . beta - min2 ) / ( max2 - min2 ) ) ;
}
var trace1 = {
x : frequency2 ,
name : '1/sigma' ,
@ -1285,7 +1292,7 @@ function CostHistogram(points){
opacity : 0.5 ,
type : "histogram" ,
xbins : {
end : 1 ,
end : 1.0 1,
size : 0.01 ,
start : 0
}
@ -1293,11 +1300,9 @@ function CostHistogram(points){
var max = ( d3 . max ( points , function ( d ) { return d . cost ; } ) ) ;
var min = ( d3 . min ( points , function ( d ) { return d . cost ; } ) ) ;
for ( var i = 0 ; i < points . length ; i ++ ) {
frequency . push ( ( points [ i ] . cost - min ) / ( max - min ) ) ;
}
var trace2 = {
x : frequency ,
name : 'KLD(P||Q)' ,
@ -1313,7 +1318,7 @@ function CostHistogram(points){
opacity : 0.5 ,
type : "histogram" ,
xbins : {
end : 1 ,
end : 1.0 1,
size : 0.01 ,
start : 0
}
@ -1333,7 +1338,7 @@ function CostHistogram(points){
t : 10 ,
pad : 4
} ,
xaxis : { range : [ 0 , 1 ] , title : 'Normalized Bins from Min to Max Values.' ,
xaxis : { range : [ 0 , 1.0 1] , title : 'Normalized Bins from Min to Max Values.' ,
titlefont : {
size : 14 ,
color : 'black'
@ -1398,7 +1403,7 @@ function emptyPCP(){
var parcoords = d3v3 . parcoords ( ) ( "#PCP" )
. data ( wrapData )
. composite ( "darken" )
. margin ( { top : 20 , left : 0 , bottom : 5 , right : 0 } )
. margin ( { top : 20 , left : 0 , bottom : 10 , right : 0 } )
. mode ( "queue" )
. color ( function ( d , i ) { return colorScl ( IDS [ i ] ) ; } )
. render ( )
@ -2273,29 +2278,6 @@ var margin = {top: 40, right: 100, bottom: 40, left: 190}, // Set the margins fo
width = Math . min ( vw3 , window . innerWidth - 10 ) - margin . left - margin . right ,
height = Math . min ( width , window . innerHeight - margin . top - margin . bottom ) ;
/ * f u n c t i o n p c p I n i t i a l i z e ( ) {
var wrapData = [ ] ;
var radarChartOptions = { // pcp options
w : width ,
h : height ,
margin : margin ,
maxValue : 100 ,
roundStrokes : true
} ;
var colors ;
var IDS = [ ] ;
//////////////////////////////////////////////////////////////
//////////////////// Draw the Chart //////////////////////////
//////////////////////////////////////////////////////////////
//Call function to draw the Radar chart (pcp)
RadarChart ( "#PCP" , wrapData , colors , IDS , radarChartOptions ) ;
} * /
//pcpInitialize();
function BetatSNE ( points ) { // Run the main visualization
inside = inside + 1 ;
if ( points . length ) { // If points exist (at least 1 point)
@ -2321,7 +2303,7 @@ if (points.length) { // If points exist (at least 1 point)
var vw = viewport [ 0 ] * 0.5 ;
var vh = viewport [ 1 ] * 0.042 ;
var maxKNN = document . getElementById ( "param-perplexity-value" ) . value ; // Specify the amount of k neighborhoods that we are going to calculate. According to "perplexity."
var maxKNN = Math . round ( document . getElementById ( "param-perplexity-value" ) . value * 1.25 ) ; // Specify the amount of k neighborhoods that we are going to calculate. According to "perplexity."
//var maxKNN = 3;
selectedPoints . sort ( function ( a , b ) { // Sort the points according to ID.
return parseFloat ( a . id ) - parseFloat ( b . id ) ;
@ -2361,7 +2343,6 @@ if (points.length) { // If points exist (at least 1 point)
}
return 0 ;
} ) ;
indexOrder [ i ] = indices [ i ] . map ( function ( value ) { return value [ 0 ] ; } ) ;
// Sorting the mapped array containing the reduced values
indices2d [ i ] . sort ( function ( a , b ) {
@ -2373,7 +2354,6 @@ if (points.length) { // If points exist (at least 1 point)
}
return 0 ;
} ) ;
indexOrder2d [ i ] = indices2d [ i ] . map ( function ( value ) { return value [ 0 ] ; } ) ;
}
indexOrderSliced [ i ] = indexOrder [ i ] . slice ( 0 , k ) ;
@ -2570,7 +2550,7 @@ if (points.length) { // If points exist (at least 1 point)
. alpha ( 0.1 )
. hideAxis ( [ "ID" ] )
. composite ( "darken" )
. margin ( { top : 20 , left : 0 , bottom : 5 , right : - 5 } )
. margin ( { top : 20 , left : 0 , bottom : 10 , right : - 5 } )
. mode ( "default" )
. color ( color )
. render ( )
@ -2647,15 +2627,14 @@ if (points.length) { // If points exist (at least 1 point)
}
var colorScaleCat = d3 . scaleOrdinal ( ) . domain ( all _labels ) . range ( ColorsCategorical ) ;
}
console . log ( wrapData2 ) ;
parcoords
. data ( AllPointsWrapData2 )
. alpha ( 0.95 )
. composite ( "darken" )
. margin ( { top : 20 , left : 0 , bottom : 5 , right : - 5 } )
. margin ( { top : 20 , left : 0 , bottom : 10 , right : - 5 } )
. mode ( "default" )
. color ( function ( d ) { if ( format [ 0 ] == "diabetes" ) { if ( d [ Category ] == "Negative" ) { return colorScaleCat ( "Positive" ) ; } else { return colorScaleCat ( "Negative" ) ; } } else { console . log ( d [ Category ] ) ; return colorScaleCat ( d [ Category ] ) ; } } )
. color ( function ( d ) { if ( format [ 0 ] == "diabetes" ) { if ( d [ Category ] == "Negative" ) { return colorScaleCat ( "Positive" ) ; } else { return colorScaleCat ( "Negative" ) ; } } else { return colorScaleCat ( d [ Category ] ) ; } } )
. render ( )
. highlight ( wrapData2 )
. createAxes ( ) ;
@ -2666,22 +2645,35 @@ if (points.length) { // If points exist (at least 1 point)
var ColSizeSelector = document . getElementById ( "param-neighborHood" ) . value ; // This is the mapping of the color/size in beta/KLD
d3 . selectAll ( "#legend4 > *" ) . remove ( ) ;
if ( ColSizeSelector == "color" ) { // If we have beta into color then calculate the color scales
var max = ( d3 . max ( points , function ( d ) { return d . beta ; } ) ) ;
var min = ( d3 . min ( points , function ( d ) { return d . beta ; } ) ) ;
// colors
var colorbrewer = [ "#fed976" , "#feb24c" , "#fd8d3c" , "#fc4e2a" , "#e31a1c" , "#bd0026" , "#800026" ] ;
var calcStep = ( max - min ) / 5 ;
var colorbrewer = [ "#ffffcc" , "#ffeda0" , "#f ed976" , "#feb24c" , "#fd8d3c" , "#fc4e2a" , "#e31a1c" , "#bd0026" , "#800026" ] ;
var calcStep = ( max ) / 8 ;
var colorScale = d3 . scaleLinear ( )
. domain ( d3 . range ( 0 , max + calcStep , calcStep ) )
. range ( colorbrewer ) ;
var maxSize1 = ( d3 . max ( points , function ( d ) { return d . cost ; } ) ) ;
var minSize1 = ( d3 . min ( points , function ( d ) { return d . cost ; } ) ) ;
var rscale1 = d3 . scaleLinear ( )
. domain ( [ minSize1 , maxSize1 ] )
. range ( [ 5 , parseInt ( 12 - ( 1 - document . getElementById ( "param-costlim" ) . value ) * 7 ) ] ) ;
var calcStepSize1 = ( maxSize1 - minSize1 ) ;
var limitdist = document . getElementById ( "param-lim-value" ) . value ;
limitdist = parseFloat ( limitdist ) . toFixed ( 1 ) ;
var legendScale1 = d3 . scaleLinear ( )
. domain ( d3 . range ( minSize1 , maxSize1 + calcStepSize1 , calcStepSize1 ) )
. range ( [ 5 * limitdist / 2 , ( parseInt ( 12 - ( 1 - document . getElementById ( "param-costlim" ) . value ) * 7 ) ) * limitdist / 2 ] ) ;
var colorScale = d3 . scaleLinear ( )
. domain ( d3 . range ( 0 , max + calcStep , calcStep ) )
. range ( colorbrewer ) ;
@ -2690,8 +2682,9 @@ if (points.length) { // If points exist (at least 1 point)
} )
var labels _beta = [ ] ;
var abbr _labels _beta = [ ] ;
var calcStep = ( max ) / 8 ;
labels _beta = d3 . range ( 0 , max + calcStep , calcStep ) ;
for ( var i = 0 ; i < 7 ; i ++ ) {
for ( var i = 0 ; i < 9 ; i ++ ) {
labels _beta [ i ] = parseInt ( labels _beta [ i ] ) ;
abbr _labels _beta [ i ] = abbreviateNumber ( labels _beta [ i ] ) ;
}
@ -2703,20 +2696,55 @@ if (points.length) { // If points exist (at least 1 point)
var legend = d3 . legendColor ( )
. labelFormat ( d3 . format ( ",.0f" ) )
. cells ( 7 )
. labels ( [ abbr _labels _beta [ 0 ] , abbr _labels _beta [ 1 ] , abbr _labels _beta [ 2 ] , abbr _labels _beta [ 3 ] , abbr _labels _beta [ 4 ] , abbr _labels _beta [ 5 ] , abbr _labels _beta [ 6 ] ] )
. cells ( 9 )
. labels ( [ abbr _labels _beta [ 0 ] , abbr _labels _beta [ 1 ] , abbr _labels _beta [ 2 ] , abbr _labels _beta [ 3 ] , abbr _labels _beta [ 4 ] , abbr _labels _beta [ 5 ] , abbr _labels _beta [ 6 ] , abbr _labels _beta [ 7 ] , abbr _labels _beta [ 8 ] ] )
. title ( "1/sigma" )
. scale ( colorScale ) ;
svg . select ( ".legendLinear" )
. call ( legend ) ;
var svg = d3 . select ( "#legend4" ) ;
svg . append ( "g" )
. attr ( "class" , "legendSize" )
. attr ( "transform" , "translate(10,20)" ) ;
var SizeRange1 = [ ] ;
SizeRange1 . push ( ( minSize1 ) . toFixed ( 3 ) ) ;
SizeRange1 . push ( ( ( maxSize1 - minSize1 ) / 2 ) . toFixed ( 3 ) ) ;
SizeRange1 . push ( ( maxSize1 ) . toFixed ( 3 ) ) ;
var legendSize1 = d3 . legendSize ( )
. scale ( legendScale1 )
. labelFormat ( d3 . format ( ",.5f" ) )
. cells ( 3 )
. shape ( 'circle' )
. labels ( [ SizeRange1 [ 0 ] , SizeRange1 [ 1 ] , SizeRange1 [ 2 ] ] )
. shapePadding ( 10 )
. labelOffset ( 5 )
. title ( "KLD(P||Q)" )
. orient ( 'vertical' ) ;
svg . select ( ".legendSize" )
. call ( legendSize1 ) ;
var circles = document . getElementsByClassName ( "swatch" ) ;
for ( var i = 0 ; i < circles . length ; i ++ ) {
if ( circles [ i ] . localName == "circle" ) {
circles [ i ] . style . fill = "rgb(0,128,0)" ;
}
}
} else { // If we have cost into color then calculate the color scales
var max = ( d3 . max ( points , function ( d ) { return d . cost ; } ) ) ;
var min = ( d3 . min ( points , function ( d ) { return d . cost ; } ) ) ;
var maxSize2 = ( d3 . max ( points , function ( d ) { return d . beta ; } ) ) ;
var minSize2 = ( d3 . min ( points , function ( d ) { return d . beta ; } ) ) ;
var rscale2 = d3 . scaleLinear ( )
. domain ( [ minSize2 , maxSize2 ] )
. domain ( [ 0 , maxSize2 ] )
. range ( [ 5 , 12 ] ) ;
d3 . selectAll ( "#legend1 > *" ) . remove ( ) ;
@ -2741,10 +2769,11 @@ if (points.length) { // If points exist (at least 1 point)
svg . select ( ".legendOrdinal" )
. call ( legendOrdinal ) ;
} else {
var colorbrewer = [ '#d9f0a3' , '#addd8e' , '#78c679' , '#41ab5d' , '#238443' , '#006837' , '#004529' ] ;
var calcStep = ( max - min ) / 7 ;
var calcStep = ( max - min ) / 6 ;
var colorScale = d3 . scaleLinear ( )
. domain ( d3 . range ( min , max , calcStep ) )
. domain ( d3 . range ( min , max + calcStep , calcStep ) )
. range ( colorbrewer ) ;
points = points . sort ( function ( a , b ) { // Sort them according to importance (darker color!)
@ -2753,7 +2782,7 @@ if (points.length) { // If points exist (at least 1 point)
var labels _cost = [ ] ;
var abbr _labels _cost = [ ] ;
labels _cost = d3 . range ( min , max , calcStep ) ;
labels _cost = d3 . range ( min , max + calcStep , calcStep ) ;
for ( var i = 0 ; i < 7 ; i ++ ) {
labels _cost [ i ] = labels _cost [ i ] . toFixed ( 5 ) ;
abbr _labels _cost [ i ] = abbreviateNumber ( labels _cost [ i ] ) ;
@ -2774,6 +2803,52 @@ if (points.length) { // If points exist (at least 1 point)
svg . select ( ".legendLinear" )
. call ( legend ) ;
}
var calcStepSize2 = parseInt ( maxSize2 / 2 ) ;
var limitdist = document . getElementById ( "param-lim-value" ) . value ;
limitdist = parseFloat ( limitdist ) . toFixed ( 1 ) ;
var legendScale2 = d3 . scaleLinear ( )
. domain ( d3 . range ( 0 , abbreviateNumber ( parseInt ( maxSize2 ) ) , calcStepSize2 ) )
. range ( [ 5 * limitdist / 2 , 12 * limitdist / 2 ] ) ;
var svg = d3 . select ( "#legend4" ) ;
svg . append ( "g" )
. attr ( "class" , "legendSize" )
. attr ( "transform" , "translate(10,20)" ) ;
var SizeRange2 = [ ] ;
SizeRange2 . push ( 0 ) ;
var temporalvalue = parseInt ( maxSize2 / 2 ) ;
SizeRange2 . push ( abbreviateNumber ( temporalvalue ) ) ;
SizeRange2 . push ( abbreviateNumber ( parseInt ( maxSize2 ) ) ) ;
var legendSize2 = d3 . legendSize ( )
. scale ( legendScale2 )
. labelFormat ( d3 . format ( ",.0f" ) )
. cells ( 3 )
. shape ( 'circle' )
. labels ( [ SizeRange2 [ 0 ] , SizeRange2 [ 1 ] , SizeRange2 [ 2 ] ] )
. shapePadding ( 10 )
. labelOffset ( 5 )
. title ( "1/sigma" )
. orient ( 'vertical' ) ;
svg . select ( ".legendSize" )
. call ( legendSize2 ) ;
var circles = document . getElementsByClassName ( "swatch" ) ;
console . log ( circles ) ;
for ( var i = 0 ; i < circles . length ; i ++ ) {
if ( circles [ i ] . localName == "circle" ) {
console . log ( "test" ) ;
circles [ i ] . style . fill = "rgb(128,0,0)" ;
}
}
}
@ -2860,8 +2935,8 @@ if (points.length) { // If points exist (at least 1 point)
var maxDim = ( d3 . max ( points , function ( d ) { if ( d . schemaInv == true ) { return d [ temp ] } ; } ) ) ;
var minDim = ( d3 . min ( points , function ( d ) { if ( d . schemaInv == true ) { return d [ temp ] } ; } ) ) ;
let colorsBarChart = [ '#efedf5' , '# dadaeb' , '#bcbddc' , '#9e9ac8' , '#807dba' , '#6a51a3' , '#54278f' , '#3f007d' ] ;
var calcStepDim = ( maxDim - minDim ) / 8 ;
let colorsBarChart = [ '#dadaeb' , '#bcbddc' , '#9e9ac8' , '#807dba' , '#6a51a3' , '#54278f' , '#3f007d' ] ;
var calcStepDim = ( maxDim - minDim ) / 6 ;
var colorScale = d3 . scaleLinear ( )
. domain ( d3 . range ( minDim , maxDim + calcStepDim , calcStepDim ) )
. range ( colorsBarChart ) ;
@ -2952,8 +3027,8 @@ if (points.length) { // If points exist (at least 1 point)
var legend = d3 . legendColor ( )
. labelFormat ( d3 . format ( ",.0f" ) )
. cells ( 7 )
. labels ( [ abbr _labels _beta [ 0 ] , abbr _labels _beta [ 1 ] , abbr _labels _beta [ 2 ] , abbr _labels _beta [ 3 ] , abbr _labels _beta [ 4 ] , abbr _labels _beta [ 5 ] , abbr _labels _beta [ 6 ] ] )
. cells ( 9 )
. labels ( [ abbr _labels _beta [ 0 ] , abbr _labels _beta [ 1 ] , abbr _labels _beta [ 2 ] , abbr _labels _beta [ 3 ] , abbr _labels _beta [ 4 ] , abbr _labels _beta [ 5 ] , abbr _labels _beta [ 6 ] , abbr _labels _beta [ 7 ] , abbr _labels _beta [ 8 ] ] )
. title ( "1/sigma" )
. scale ( colorScale ) ;
@ -2963,11 +3038,9 @@ if (points.length) { // If points exist (at least 1 point)
} else {
var max = ( d3 . max ( points , function ( d ) { return d . cost ; } ) ) ;
var min = ( d3 . min ( points , function ( d ) { return d . cost ; } ) ) ;
var maxSize2 = ( d3 . max ( points , function ( d ) { return d . beta ; } ) ) ;
var minSize2 = ( d3 . min ( points , function ( d ) { return d . beta ; } ) ) ;
var rscale2 = d3 . scaleLinear ( )
. domain ( [ minSize2 , maxSize2 ] )
. range ( [ 5 , 12 ] ) ;
d3 . selectAll ( "#legend1 > *" ) . remove ( ) ;
@ -2991,9 +3064,9 @@ if (points.length) { // If points exist (at least 1 point)
. call ( legendOrdinal ) ;
} else {
var colorbrewer = [ "#d9f0a3" , "#addd8e" , "#78c679" , "#41ab5d" , "#238443" , "#006837" , "#004529" ] ;
var calcStep = ( max - min ) / 7 ;
var calcStep = ( max - min ) / 6 ;
var colorScale = d3 . scaleLinear ( )
. domain ( d3 . range ( min , max , calcStep ) )
. domain ( d3 . range ( min , max + calcStep , calcStep ) )
. range ( colorbrewer ) ;
points = points . sort ( function ( a , b ) { // Sort them according to importance (darker color!)
@ -3002,7 +3075,7 @@ if (points.length) { // If points exist (at least 1 point)
var labels _cost = [ ] ;
var abbr _labels _cost = [ ] ;
labels _cost = d3 . range ( min , max , calcStep ) ;
labels _cost = d3 . range ( min , max + calcStep , calcStep ) ;
for ( var i = 0 ; i < 7 ; i ++ ) {
labels _cost [ i ] = labels _cost [ i ] . toFixed ( 5 ) ;
abbr _labels _cost [ i ] = abbreviateNumber ( labels _cost [ i ] ) ;
@ -3016,7 +3089,7 @@ if (points.length) { // If points exist (at least 1 point)
var legend = d3 . legendColor ( )
. labelFormat ( d3 . format ( ",.5f" ) )
. cells ( 7 )
. labels ( [ abbr _labels _cost [ 0 ] , abbr _labels _cost [ 1 ] , abbr _labels _cost [ 2 ] , abbr _labels _cost [ 3 ] , abbr _labels _cost [ 4 ] , abbr _labels _cost [ 5 ] , abbr _labels _cost [ 6 ] , abbr _labels _cost [ 7 ] , abbr _labels _cost [ 8 ] ] )
. labels ( [ abbr _labels _cost [ 0 ] , abbr _labels _cost [ 1 ] , abbr _labels _cost [ 2 ] , abbr _labels _cost [ 3 ] , abbr _labels _cost [ 4 ] , abbr _labels _cost [ 5 ] , abbr _labels _cost [ 6 ] ] )
. title ( "KLD(P||Q)" )
. scale ( colorScale ) ;
@ -3296,16 +3369,16 @@ function SaveAnalysis(){ // Save the analysis into a .txt file
Parameters . push ( parTrans ) ;
AllData = [ ] ;
if ( cost [ 0 ] != undefined ) {
if ( ! returnVal ) {
AllData = points . concat ( points2d ) . concat ( dist _list ) . concat ( dist _list2d ) . concat ( cost [ 0 ] . toFixed ( 3 ) ) . concat ( Parameters ) . concat ( InitialFormDists ) . concat ( InitialFormDists2D ) ;
if ( ! returnVal ) { // Add here if you want to save more parameters from a previous execution.
AllData = points . concat ( points2d ) . concat ( dist _list ) . concat ( dist _list2d ) . concat ( cost [ 0 ] . toFixed ( 3 ) ) . concat ( Parameters ) . concat ( InitialFormDists ) . concat ( InitialFormDists2D ) . concat ( IterationsList ) . concat ( ArrayWithCostsList ) ;
} else {
AllData = points . concat ( points2d ) . concat ( cost [ 0 ] . toFixed ( 3 ) ) . concat ( Parameters ) ;
AllData = points . concat ( points2d ) . concat ( cost [ 0 ] . toFixed ( 3 ) ) . concat ( Parameters ) . concat ( IterationsList ) . concat ( ArrayWithCostsList ) ;
}
} else {
if ( ! returnVal ) {
AllData = points . concat ( points2d ) . concat ( dist _list ) . concat ( dist _list2d ) . concat ( overallCost ) . concat ( Parameters ) . concat ( InitialFormDists ) . concat ( InitialFormDists2D ) ;
AllData = points . concat ( points2d ) . concat ( dist _list ) . concat ( dist _list2d ) . concat ( overallCost ) . concat ( Parameters ) . concat ( InitialFormDists ) . concat ( InitialFormDists2D ) . concat ( IterationsList ) . concat ( ArrayWithCostsList ) ;
} else {
AllData = points . concat ( points2d ) . concat ( overallCost ) . concat ( Parameters ) ;
AllData = points . concat ( points2d ) . concat ( overallCost ) . concat ( Parameters ) . concat ( IterationsList ) . concat ( ArrayWithCostsList ) ;
}
}
download ( JSON . stringify ( AllData ) , 'Analysis' + measureSaves + '.txt' , 'text/plain' ) ;