@ -138,7 +138,7 @@ def continuity(D_high, D_low, k):
return float ( ( 1 - ( 2 / ( n * k * ( 2 * n - 3 * k - 1 ) ) * sum_i ) ) . squeeze ( ) )
def normalized_stress ( D_high , D_low ) :
return np . sum ( ( D_high - D_low ) * * 2 ) / np . sum ( D_high * * 2 ) / 100
return ( - 1 ) * ( np . sum ( ( D_high - D_low ) * * 2 ) / np . sum ( D_high * * 2 ) / 100 )
def shepard_diagram_correlation ( D_high , D_low ) :
if len ( D_high . shape ) > 1 :
@ -180,7 +180,7 @@ def procrustesFun(projections):
def Clustering ( similarity ) :
similarityNP = np . array ( similarity )
n_clusters = 36
n_clusters = 25 # change that to send less diverse projections
kmedoids = KMedoids ( n_clusters = n_clusters , random_state = 0 , metric = ' precomputed ' ) . fit ( similarityNP )
global dataProc
clusterIndex = [ ]
@ -267,6 +267,7 @@ def calculateGrid():
metricCont = [ ]
metricStress = [ ]
metricShepCorr = [ ]
metricsAverage = [ ]
global convertLabels
convertLabels = [ ]
@ -338,10 +339,14 @@ def calculateGrid():
valueNeigh = ( metricNeigh [ index ] - min_value_neigh ) / ( max_value_neigh - min_value_neigh )
valueTrust = ( metricTrust [ index ] - min_value_trust ) / ( max_value_trust - min_value_trust )
valueCont = ( metricCont [ index ] - min_value_cont ) / ( max_value_cont - min_value_cont )
valueStress = ( metricStress [ index ] - min_value_stress ) / ( max_value_stress - min_value_stress )
valueStress = 1 - ( ( metricStress [ index ] * ( - 1 ) - max_value_stress * ( - 1 ) ) / ( min_value_stress * ( - 1 ) - max_value_stress * ( - 1 ) ) ) # we need the opposite
valueShep = ( metricShepCorr [ index ] - min_value_shep ) / ( max_value_shep - min_value_shep )
metricsMatrixEntire . append ( [ valueNeigh , valueTrust , valueCont , valueStress , valueShep ] )
average = ( valueNeigh + valueTrust + valueCont + valueStress + valueShep ) / 5
metricsAverage . append ( average )
metricsMatrixEntire . append ( [ average , valueNeigh , valueTrust , valueCont , valueStress , valueShep ] )
sortMetricsAverage = sorted ( range ( len ( metricsAverage ) ) , key = lambda k : metricsAverage [ k ] , reverse = True )
sortNeigh = sorted ( range ( len ( metricNeigh ) ) , key = lambda k : metricNeigh [ k ] , reverse = True )
sortTrust = sorted ( range ( len ( metricTrust ) ) , key = lambda k : metricTrust [ k ] , reverse = True )
sortCont = sorted ( range ( len ( metricCont ) ) , key = lambda k : metricCont [ k ] , reverse = True )
@ -351,6 +356,7 @@ def calculateGrid():
global metricsMatrix
metricsMatrix = [ ]
metricsMatrix . append ( sortMetricsAverage )
metricsMatrix . append ( sortNeigh )
metricsMatrix . append ( sortTrust )
metricsMatrix . append ( sortCont )
@ -385,6 +391,7 @@ def OptimizeSelection():
metricCont = [ ]
metricStress = [ ]
metricShepCorr = [ ]
metricsAverage = [ ]
for index , loop in enumerate ( clusterIndex ) :
resultNeigh = neighborhood_hit ( np . array ( projectionsAll [ index ] ) , convertLabels , KeepKs [ index ] , dataSelected )
@ -392,7 +399,9 @@ def OptimizeSelection():
resultContinuity = continuity ( D_highSpace [ dataSelected , : ] , D_lowSpaceList [ index ] [ dataSelected , : ] , KeepKs [ index ] )
resultStress = normalized_stress ( D_highSpace [ dataSelected , : ] , D_lowSpaceList [ index ] [ dataSelected , : ] )
resultShep = shepard_diagram_correlation ( D_highSpace [ dataSelected ] [ : , dataSelected ] , D_lowSpaceList [ index ] [ dataSelected ] [ : , dataSelected ] )
resultAverage = ( resultNeigh + resultTrust + resultContinuity + resultStress + resultShep ) / 5
print ( resultAverage )
metricsAverage . append ( resultAverage )
metricNeigh . append ( resultNeigh )
metricTrust . append ( resultTrust )
metricCont . append ( resultContinuity )
@ -423,17 +432,22 @@ def OptimizeSelection():
valueCont = ( metricCont [ index ] - min_value_cont ) / ( max_value_cont - min_value_cont )
valueStress = ( metricStress [ index ] - min_value_stress ) / ( max_value_stress - min_value_stress )
valueShep = ( metricShepCorr [ index ] - min_value_shep ) / ( max_value_shep - min_value_shep )
metricsMatrixEntireSel . append ( [ valueNeigh , valueTrust , valueCont , valueStress , valueShep ] )
average = ( valueNeigh + valueTrust + valueCont + valueStress + valueShep ) / 5
metricsMatrixEntireSel . append ( [ average , valueNeigh , valueTrust , valueCont , valueStress , valueShep ] )
sortMetricsAverage = sorted ( range ( len ( metricsAverage ) ) , key = lambda k : metricsAverage [ k ] , reverse = True )
print ( sortMetricsAverage )
print ( metricsAverage )
sortNeigh = sorted ( range ( len ( metricNeigh ) ) , key = lambda k : metricNeigh [ k ] , reverse = True )
sortTrust = sorted ( range ( len ( metricTrust ) ) , key = lambda k : metricTrust [ k ] , reverse = True )
sortCont = sorted ( range ( len ( metricCont ) ) , key = lambda k : metricCont [ k ] , reverse = True )
sortStress = sorted ( range ( len ( metricStress ) ) , key = lambda k : metricStress [ k ] , reverse = Tru e)
sortStress = sorted ( range ( len ( metricStress ) ) , key = lambda k : metricStress [ k ] , reverse = Fals e)
sortShepCorr = sorted ( range ( len ( metricShepCorr ) ) , key = lambda k : metricShepCorr [ k ] , reverse = True )
global metricsMatrixSel
metricsMatrixSel = [ ]
metricsMatrixSel . append ( sortMetricsAverage )
metricsMatrixSel . append ( sortNeigh )
metricsMatrixSel . append ( sortTrust )
metricsMatrixSel . append ( sortCont )