// t-SNE Visualization and global variables
// This variable is used when a new file is upload by a user.
var new _file ;
// The basic variables in order to execute t-SNE (opt is perplexity and learning rate).
var tsne ; var opt ; var step _counter ; var max _counter ; var runner ;
// These variables are initialized here in order to store the final dataset, the points, the cost, the cost for each iteration, the beta values, the positions, the 2D points positions,
// In addition, there is an array which keeps the initial information of the points (i.e., initial state), the data features (with the label of the category plus the id of the point), the data features without the category (only numbers).
var final _dataset ; var points = [ ] ; var cost = [ ] ; var cost _each ; var beta _all = [ ] ; var x _position = [ ] ; var y _position = [ ] ; var points2d = [ ] ; var InitialStatePoints = [ ] ;
var ArrayContainsDataFeaturesCleared = [ ] ; var ArrayContainsDataFeaturesClearedwithoutNull = [ ] ; var ArrayContainsDataFeaturesClearedwithoutNullKeys = [ ] ; var flagAnalysis = false ;
// The distances in the high dimensional space and in the 2D space. All the labels that were found in the selected data set.
var dists ; var dists2d ; var all _labels ; var dist _list = [ ] ; var dist _list2d = [ ] ; var InitialFormDists = [ ] ; var InitialFormDists2D = [ ] ; var IterationsList = [ ] ; var ArrayWithCostsList = [ ] ;
// These are the dimensions for the Overview view and the Main view
var dim = document . getElementById ( 'overviewRect' ) . offsetWidth - 2 ; var dimensions = document . getElementById ( 'modtSNEcanvas' ) . offsetWidth ;
// Category = the name of the category if it exists. The user has to add an asterisk ("*") mark in order to let the program identify this feature as a label/category name.
// ColorsCategorical = the categorical colors (maximum value = 10).
var Category ; var ColorsCategorical ; var valCategExists = 0 ;
// This is for the removal of the distances cache.
var returnVal = false ;
var ArrayWithCosts = [ ] ; var Iterations = [ ] ;
var VisiblePoints = [ ] ;
// This variable is for the kNN Bar Chart in order to store the first execution.
var inside = 0 ;
var format ;
// Schema Investigation
// svgClick = Click a left mouse click in order to add a point.
// prevRightClick = When right click is pressed prevent any other action. Lock the current schema.
// if flagForSchema is false then send a message to the user that he/she has to: "Please, draw a schema first!");
var svgClick ; var prevRightClick ; var flagForSchema = false ; var PreComputFlagCorrelation = true ; var maxminTotal = [ ] ;
// Save the parameters for the current analysis, save the overallCost, and store in the "input" variable all the points and points2D.
var ParametersSet = [ ] ; var overallCost ; var input ;
// These parameters are initiated here for the annotations.
var ringNotes = [ ] ; var gAnnotationsAll = [ ] ; var AnnotationsAll = [ ] ; var draggable = [ ] ;
// These variables are set here in order to instatiate the very first Three.js scene.
var MainCanvas ; var Child ; var renderer ; var fov = 21 ; var near = 10 ; var far = 7000 ; var camera ; var scene ;
// Initialize the Schema Investigation variables.
var Arrayx = [ ] ; var Arrayy = [ ] ; var XYDistId = [ ] ; var Arrayxy = [ ] ; var DistanceDrawing1D = [ ] ; var allTransformPoints = [ ] ; var p ; var pFinal = [ ] ; var paths ; var path ; var ArrayLimit = [ ] ;
var minimum ; var correlationResults = [ ] ; var correlationResultsFinal = [ ] ; var ArrayContainsDataFeaturesLimit = [ ] ;
// This function is executed when the factory button is pressed in order to bring the visualization in the initial state.
function FactoryReset ( ) {
location . reload ( ) ;
}
// Returns if a value is a string
function isString ( value ) {
return typeof value === 'string' || value instanceof String ;
}
// Load a previously executed analysis function.
function loadAnalysis ( ) {
document . getElementById ( 'file-input' ) . click ( ) ;
document . getElementById ( "ExecuteBut" ) . innerHTML = "Execute previous t-SNE analysis" ;
}
// This function is being used when the user selects to upload a new data set.
function getfile ( file ) {
new _file = file ; //uploaded data file
}
// Read the previous analysis, which the user wants to upload.
function fetchVal ( callback ) {
var file , fr ;
file = input . files [ 0 ] ;
fr = new FileReader ( ) ;
fr . onload = function ( e ) {
lines = e . target . result ;
callback ( lines ) ;
} ;
fr . readAsText ( file ) ;
}
// Parse the analysis folder if requested or the csv file if we run a new execution.
var getData = function ( ) {
PreComputFlagCorrelation = true ;
let value ;
if ( typeof window . FileReader !== 'function' ) {
alert ( "The file API is not supported on this browser yet." ) ;
}
// Check if the input already exists, which means if we loaded a previous analysis
input = document . getElementById ( "file-input" ) ;
if ( ! input ) {
alert ( "Could not find the file input element." ) ;
} else if ( ! input . files ) {
alert ( "This browser does not seem to support the `files` property of file inputs." ) ;
} else if ( ! input . files [ 0 ] ) {
value = document . getElementById ( "param-dataset" ) . value ; // Get the value of the data set
format = value . split ( "." ) ; //Get the format (e.g., [iris, csv])
if ( format [ value . split ( "." ) . length - 1 ] == "csv" ) { // Parse the predefined files
parseData ( "./data/" + value ) ;
} else {
parseData ( new _file , init ) ; // Parse new files
}
} else {
fetchVal ( function ( lines ) {
// Load an analysis and parse the previous points and parameters information.
AnalysisResults = JSON . parse ( lines ) ;
var length = ( AnalysisResults . length - 9 ) ;
ParametersSet = AnalysisResults . slice ( length + 1 , AnalysisResults . length + 7 )
value = ParametersSet [ 0 ] ;
if ( ! isNaN ( parseInt ( value ) ) ) {
flagAnalysis = true ;
length = ( AnalysisResults . length - 11 ) ;
ParametersSet = AnalysisResults . slice ( length + 1 , length + 7 ) ;
value = ParametersSet [ 0 ] ;
} else {
flagAnalysis = false ;
}
format = value . split ( "." ) ; //Get the actual format
if ( format [ value . split ( "." ) . length - 1 ] == "csv" ) {
// Check if the file is in the right folder, i.e., ./data/{file}
$ . ajax ( {
type : 'HEAD' ,
url : './data/' + value ,
complete : function ( xhr ) {
if ( xhr . status == 404 ) {
alert ( xhr . statusText ) ; // Not found
alert ( "Please, place your new data set into the ./data folder of the implementation." ) ;
}
}
} ) ;
parseData ( "./data/" + value ) ;
}
} ) ;
}
}
// Parse the data set with the use of PapaParse.
function parseData ( url ) {
Papa . parse ( url , {
download : true ,
header : true ,
dynamicTyping : true ,
skipEmptyLines : true ,
complete : function ( results ) {
results . data = results . data . filter ( function ( el ) {
var counter = 0 ;
for ( key in el ) {
if ( el . hasOwnProperty ( key ) ) {
var value = el [ key ] ;
if ( key === "id" || key === "Version" || typeof ( value ) !== 'number' || value === undefined ) { // Add more limitations if needed in both areas. This is for the calculations so it needs more limitations!
delete el [ key ] ;
} else {
el [ counter ] = el [ key ] ;
delete el [ key ] ;
counter = counter + 1 ;
}
}
}
return el ;
} ) ;
Papa . parse ( url , {
download : true ,
header : true ,
dynamicTyping : true ,
skipEmptyLines : true ,
complete : function ( data ) {
doStuff ( data . data . filter ( function ( el ) {
var counter = 0 ;
for ( key in el ) {
if ( el . hasOwnProperty ( key ) ) {
var value = el [ key ] ;
if ( key === "id" || key === "Version" ) { // Add more limitations if needed in both areas. Key limitations here!
delete el [ key ] ;
}
}
}
return el ;
} ) ) ;
}
} ) ;
function doStuff ( results _all ) {
// results_all variable is all the columns multiplied by all the rows.
// results.data variable is all the columns except strings, undefined values, or "Version" plus beta and cost values."
// results.meta.fields variable is all the features (columns) plus beta and cost strings.
init ( results . data , results _all , results . meta . fields ) ; // Call the init() function that starts everything!
}
}
} ) ;
}
function setContinue ( ) { // This function allows the continuation of the analysis because it decreases the layer value of the annotator.
d3v3 . select ( "#SvgAnnotator" ) . style ( "z-index" , 1 ) ;
}
function setReset ( ) { // Reset only the filters which were applied into the data points.
VisiblePoints = [ ] ;
emptyPCP ( ) ;
// Clear d3 SVGs
d3 . selectAll ( "#correlation > *" ) . remove ( ) ;
d3 . selectAll ( "#modtSNEcanvas_svg > *" ) . remove ( ) ;
d3 . selectAll ( "#modtSNEcanvas_svg_Schema > *" ) . remove ( ) ;
d3 . select ( "#PCP" ) . selectAll ( 'g' ) . remove ( ) ;
// Enable lasso interaction
lassoEnable ( ) ;
// Disable Schema Investigation
flagForSchema = false ;
// Empty all the arrays that are related to Schema Investigation
Arrayx = [ ] ;
Arrayy = [ ] ;
XYDistId = [ ] ;
Arrayxy = [ ] ;
DistanceDrawing1D = [ ] ;
allTransformPoints = [ ] ;
pFinal = [ ] ;
ArrayLimit = [ ] ;
correlationResults = [ ] ;
ArrayContainsDataFeaturesLimit = [ ] ;
prevRightClick = false ;
//pcpInitialize();
// Reset the points into their initial state
for ( var i = 0 ; i < InitialStatePoints . length ; i ++ ) {
InitialStatePoints [ i ] . selected = true ;
InitialStatePoints [ i ] . pcp = false ;
InitialStatePoints [ i ] . schemaInv = false ;
InitialStatePoints [ i ] . DimON = null ;
}
redraw ( InitialStatePoints ) ;
}
function setReInitialize ( flag ) {
if ( flag ) {
// Change between color-encoding and size-encoding mapped to 1/sigma and KLD.
if ( document . getElementById ( 'selectionLabel' ) . innerHTML == 'Size-encoding' ) {
document . getElementById ( 'selectionLabel' ) . innerHTML = 'Color-encoding' ;
} else {
document . getElementById ( 'selectionLabel' ) . innerHTML = 'Size-encoding' ;
}
}
// Clear d3 SVGs
d3 . selectAll ( "#correlation > *" ) . remove ( ) ;
d3 . selectAll ( "#modtSNEcanvas_svg > *" ) . remove ( ) ;
d3 . selectAll ( "#modtSNEcanvas_svg_Schema > *" ) . remove ( ) ;
d3 . selectAll ( "#SvgAnnotator > *" ) . remove ( ) ;
// Clear d3 SVGs
d3 . selectAll ( "#correlation > *" ) . remove ( ) ;
d3 . selectAll ( "#modtSNEcanvas_svg > *" ) . remove ( ) ;
d3 . selectAll ( "#modtSNEcanvas_svg_Schema > *" ) . remove ( ) ;
d3 . selectAll ( "#SvgAnnotator > *" ) . remove ( ) ;
// Enable lasso interaction
lassoEnable ( ) ;
// Disable Schema Investigation
flagForSchema = false ;
// Empty all the arrays that are related to Schema Investigation
Arrayx = [ ] ;
Arrayy = [ ] ;
XYDistId = [ ] ;
Arrayxy = [ ] ;
DistanceDrawing1D = [ ] ;
allTransformPoints = [ ] ;
pFinal = [ ] ;
ArrayLimit = [ ] ;
correlationResults = [ ] ;
ArrayContainsDataFeaturesLimit = [ ] ;
prevRightClick = false ;
// Reset the points into their initial state
for ( var i = 0 ; i < InitialStatePoints . length ; i ++ ) {
InitialStatePoints [ i ] . selected = true ;
InitialStatePoints [ i ] . pcp = false ;
}
redraw ( InitialStatePoints ) ;
}
function setLayerProj ( ) { // The main Layer becomes the projection
VisiblePoints = [ ] ;
d3 . select ( "#modtSNEcanvas" ) . style ( "z-index" , 2 ) ;
d3 . select ( "#modtSNEcanvas_svg" ) . style ( "z-index" , 1 ) ;
d3 . select ( "#modtSNEcanvas_svg_Schema" ) . style ( "z-index" , 1 ) ;
d3 . select ( "#SvgAnnotator" ) . style ( "z-index" , 1 ) ;
}
function setLayerComp ( ) { // The main Layer becomes the comparison (pcp)
VisiblePoints = [ ] ;
d3 . selectAll ( "#modtSNEcanvas_svg > *" ) . remove ( ) ;
d3 . select ( "#modtSNEcanvas_svg" ) . style ( "z-index" , 2 ) ;
d3 . select ( "#modtSNEcanvas_svg_Schema" ) . style ( "z-index" , 1 ) ;
d3 . select ( "#modtSNEcanvas" ) . style ( "z-index" , 1 ) ;
d3 . select ( "#SvgAnnotator" ) . style ( "z-index" , 1 ) ;
if ( points . length ) {
lassoEnable ( ) ;
}
redraw ( points ) ;
}
function setLayerSche ( ) { // The main Layer becomes the correlation (barchart)
VisiblePoints = [ ] ;
d3 . select ( "#modtSNEcanvas_svg_Schema" ) . style ( "z-index" , 2 ) ;
d3 . select ( "#modtSNEcanvas" ) . style ( "z-index" , 1 ) ;
d3 . select ( "#modtSNEcanvas_svg" ) . style ( "z-index" , 1 ) ;
d3 . select ( "#SvgAnnotator" ) . style ( "z-index" , 1 ) ;
for ( var i = 0 ; i < points . length ; i ++ ) {
points [ i ] . selected = true ;
if ( points [ i ] . pcp == true ) {
points [ i ] . pcp = false ;
}
}
emptyPCP ( ) ;
redraw ( points ) ;
click ( ) ;
if ( prevRightClick == true ) {
flagForSchema = true ;
CalculateCorrel ( ) ;
}
}
function lassoEnable ( ) { // The main Layer becomes the correlation (barchart)
var interactionSvg = d3 . select ( "#modtSNEcanvas_svg" )
. attr ( "width" , dimensions )
. attr ( "height" , dimensions )
. style ( 'position' , 'absolute' )
. style ( 'top' , 0 )
. style ( 'left' , 0 ) ;
var lassoInstance = lasso ( )
. on ( 'end' , handleLassoEnd ) // Lasso ending point of the interaction
. on ( 'start' , handleLassoStart ) ; // Lasso starting point of the interaction
interactionSvg . call ( lassoInstance ) ;
}
function deleteAnnotations ( ) {
AnnotationsAll = [ ] ;
ringNotes = [ ] ;
d3 . selectAll ( "#SvgAnnotator > *" ) . remove ( ) ;
}
function setAnnotator ( ) { // Set a new annotation on top of the main visualization.
vw2 = dimensions ;
vh2 = dimensions ;
var textarea = document . getElementById ( "comment" ) . value ;
d3 . select ( "#SvgAnnotator" ) . style ( "z-index" , 3 ) ;
var annotations = [ // Initialize the draggable ringNote.
{
"cx" : 232 ,
"cy" : 123 ,
"r" : 103 ,
"text" : textarea ,
"textOffset" : [
114 ,
88
]
}
] ;
var ringNote = d3v3 . ringNote ( ) // Make it draggable.
. draggable ( true ) ;
var svgAnnotator = d3v3 . select ( "#SvgAnnotator" )
. attr ( "width" , vw2 )
. attr ( "height" , vh2 )
. style ( "z-index" , 3 ) ;
var gAnnotations = svgAnnotator . append ( "g" )
. attr ( "class" , "annotations" )
. call ( ringNote , annotations ) ;
// Styling individual annotations based on bound data
gAnnotations . selectAll ( ".annotation circle" )
. classed ( "shaded" , function ( d ) { return d . shaded ; } ) ;
ringNotes . push ( ringNote ) ; // Push all the ringNote and annotations and enable draggable property.
gAnnotationsAll . push ( gAnnotations ) ;
AnnotationsAll . push ( annotations ) ;
draggable . push ( true ) ;
}
// Hide or show the controls
d3 . select ( "#controls" )
. on ( "change" , function ( ) {
if ( ringNotes [ 0 ] ) { // If at least one ringNote exists, then enable or disable the draggable and radius changing controllers.
for ( var i = 0 ; i < ringNotes . length ; i ++ ) {
ringNotes [ i ] . draggable ( draggable [ i ] = ! draggable [ i ] ) ;
gAnnotationsAll [ i ]
. call ( ringNotes [ i ] , AnnotationsAll [ i ] )
. selectAll ( ".annotation circle" )
. classed ( "shaded" , function ( d ) { return d . shaded ; } ) ;
}
} else {
// Get the checkbox.
var checkBox = document . getElementById ( "controls" ) ;
// Unchecked!
checkBox . checked = false ;
// Print a message to the user.
alert ( "Cannot hide the annotators' controls because, currently, there are no annotations into the visual representation." )
}
} ) ;
$ ( document ) . ready ( function ( ) {
//set initial state.
$ ( '#downloadDists' ) . change ( function ( ) {
if ( ! this . checked ) {
returnVal = confirm ( "Are you sure that you want to store the points and the parameters without the distances?" ) ;
$ ( this ) . prop ( "checked" , ! returnVal ) ;
}
} ) ;
} ) ;
// Three.js render loop for the very first scene.
function animate ( ) {
requestAnimationFrame ( animate ) ;
renderer . render ( scene , camera ) ;
}
function MainVisual ( ) {
MainCanvas = document . getElementById ( 'modtSNEcanvas' ) ;
Child = document . getElementById ( 'modtSNEDiv' ) ;
// Add main canvas
renderer = new THREE . WebGLRenderer ( { canvas : MainCanvas } ) ;
renderer . setSize ( dimensions , dimensions ) ;
Child . append ( renderer . domElement ) ;
// Add a new empty (white) scene.
scene = new THREE . Scene ( ) ;
scene . background = new THREE . Color ( 0xffffff ) ;
// Set up camera.
camera = new THREE . PerspectiveCamera (
fov ,
dimensions / dimensions ,
near ,
far
) ;
// Animate the scene.
animate ( ) ;
if ( points . length > 0 ) {
BetatSNE ( points ) ;
}
}
// The following function executes exactly after the data is successfully loaded. New EXECUTION!
// results_all variable is all the columns multiplied by all the rows.
// data variable is all the columns except strings, undefined values, or "Version" plus beta and cost values."
// fields variable is all the features (columns) plus beta and cost strings.
function init ( data , results _all , fields ) {
ArrayWithCosts = [ ] ;
Iterations = [ ] ;
VisiblePoints = [ ] ;
points = [ ] ;
// Remove all previously drawn SVGs
d3 . selectAll ( "#correlation > *" ) . remove ( ) ;
d3 . selectAll ( "#modtSNEcanvas_svg > *" ) . remove ( ) ;
d3 . selectAll ( "#modtSNEcanvas_svg_Schema > *" ) . remove ( ) ;
d3 . selectAll ( "#SvgAnnotator > *" ) . remove ( ) ;
d3 . selectAll ( "#sheparheat > *" ) . remove ( ) ;
d3 . selectAll ( "#overviewRect > *" ) . remove ( ) ;
d3 . selectAll ( "#knnBarChart > *" ) . remove ( ) ;
d3 . selectAll ( "#costHist > *" ) . remove ( ) ;
d3 . select ( "#PCP" ) . selectAll ( 'g' ) . remove ( ) ;
MainVisual ( ) ;
//pcpInitialize();
d3 . select ( "#hider" ) . style ( "z-index" , 2 ) ;
d3 . select ( "#knnBarChart" ) . style ( "z-index" , 1 ) ;
d3 . select ( "#hider2" ) . style ( "z-index" , 2 ) ;
d3 . select ( "#PlotCost" ) . style ( "z-index" , 1 ) ;
// Clear the previously drawn main visualization canvas.
scene = new THREE . Scene ( ) ;
scene . background = new THREE . Color ( 0xffffff ) ;
// Clear all the legends that were drawn.
d3 . selectAll ( "#legend1 > *" ) . remove ( ) ;
d3 . selectAll ( "#legend2 > *" ) . remove ( ) ;
d3 . selectAll ( "#legend3 > *" ) . remove ( ) ;
d3 . selectAll ( "#legend4 > *" ) . remove ( ) ;
$ ( "#datasetDetails" ) . html ( '(Unknown Number of Features and Instances.)' ) ;
$ ( "#CategoryName" ) . html ( 'No Classification' ) ;
$ ( "#knnBarChartDetails" ) . html ( '(Number of Selected Points: 0/0)' ) ;
// Enable again the lasso interaction.
lassoEnable ( ) ;
emptyPCP ( ) ;
// Empty all the Schema Investigation arrays.
Arrayx = [ ] ;
Arrayy = [ ] ;
XYDistId = [ ] ;
Arrayxy = [ ] ;
DistanceDrawing1D = [ ] ;
allTransformPoints = [ ] ;
pFinal = [ ] ;
ArrayLimit = [ ] ;
correlationResults = [ ] ;
ArrayContainsDataFeaturesLimit = [ ] ;
prevRightClick = false ;
// Step counter set to 0
step _counter = 0 ;
// Get the new parameters from the t-SNE parameters panel.
max _counter = document . getElementById ( "param-maxiter-value" ) . value ;
opt = { } ;
var fields ;
fields . push ( "beta" ) ;
fields . push ( "cost" ) ;
opt . epsilon = document . getElementById ( "param-learningrate-value" ) . value ; // Epsilon is learning rate (10 = default)
opt . perplexity = document . getElementById ( "param-perplexity-value" ) . value ; // Roughly how many neighbors each point influences (30 = default)
// Put the input variables into more properly named variables and store them.
final _dataset = data ;
dataFeatures = results _all ;
if ( flagAnalysis ) {
} else {
tsne = new tsnejs . tSNE ( opt ) ; // Set new t-SNE with specific perplexity.
dists = [ ] ;
dists = computeDistances ( data , document . getElementById ( "param-distance" ) . value , document . getElementById ( "param-transform" ) . value ) ; // Compute the distances in the high-dimensional space.
InitialFormDists . push ( dists ) ;
tsne . initDataDist ( dists ) ; // Init t-SNE with dists.
for ( var i = 0 ; i < final _dataset . length ; i ++ ) { final _dataset [ i ] . beta = tsne . beta [ i ] ; beta _all [ i ] = tsne . beta [ i ] ; } // Calculate beta and bring it back from the t-SNE algorithm.
}
var object ;
all _labels = [ ] ;
// Get the dimension that contains an asterisk mark ("*"). This is our classification label.
dataFeatures . filter ( function ( obj ) {
var temp = [ ] ;
temp . push ( Object . keys ( obj ) ) ;
for ( var object in temp [ 0 ] ) {
if ( temp [ 0 ] [ object ] . indexOf ( "*" ) != - 1 ) {
Category = temp [ 0 ] [ object ] ;
return Category ;
}
}
} ) ;
ArrayContainsDataFeaturesCleared = [ ] ;
ArrayContainsDataFeaturesClearedwithoutNull = [ ] ;
ArrayContainsDataFeaturesClearedwithoutNullKeys = [ ] ;
for ( let k = 0 ; k < dataFeatures . length ; k ++ ) {
object = [ ] ;
object2 = [ ] ;
object3 = [ ] ;
for ( let j = 0 ; j < Object . keys ( dataFeatures [ k ] ) . length ; j ++ ) {
if ( ! isString ( ( Object . values ( dataFeatures [ k ] ) [ j ] ) ) && ( Object . keys ( dataFeatures [ k ] ) [ j ] != Category ) ) { // Only numbers and not the classification labels.
object . push ( Object . values ( dataFeatures [ k ] ) [ j ] ) ;
object2 . push ( Object . values ( dataFeatures [ k ] ) [ j ] ) ;
object3 . push ( Object . keys ( dataFeatures [ k ] ) [ j ] ) ;
} else {
object . push ( null ) ;
}
}
ArrayContainsDataFeaturesCleared . push ( object . concat ( k ) ) ; // The ArrayContainsDataFeaturesCleared contains only numbers without the categorization parameter even if it is a number.
ArrayContainsDataFeaturesClearedwithoutNull . push ( object2 ) ;
ArrayContainsDataFeaturesClearedwithoutNullKeys . push ( object3 ) ;
}
valCategExists = 0 ;
for ( var i = 0 ; i < Object . keys ( dataFeatures [ 0 ] ) . length ; i ++ ) {
if ( Object . keys ( dataFeatures [ 0 ] ) [ i ] == Category ) {
valCategExists = valCategExists + 1 ;
}
}
for ( var i = 0 ; i < dataFeatures . length ; i ++ ) {
if ( dataFeatures [ i ] [ Category ] != "" || dataFeatures [ i ] [ Category ] != "undefined" ) { // If a categorization label exist then add it into all_labels variable.
if ( format [ 0 ] == "diabetes" ) {
if ( dataFeatures [ i ] [ Category ] == 1 ) {
all _labels [ i ] = "Positive" ;
} else {
all _labels [ i ] = "Negative" ;
}
} else {
all _labels [ i ] = dataFeatures [ i ] [ Category ] ;
}
}
}
if ( typeof window . FileReader !== 'function' ) {
alert ( "The file API isn't supported on this browser yet." ) ;
}
// During the initialization check if we loaded a previous analysis.
input = document . getElementById ( "file-input" ) ;
if ( ! input ) {
alert ( "Um, couldn't find the fileinput element." ) ;
} else if ( ! input . files ) {
alert ( "This browser doesn't seem to support the `files` property of file inputs." ) ;
} else if ( ! input . files [ 0 ] ) { // If we execute a new analysis continue running with a step = 0.
AnalysisResults = [ ] ;
runner = setInterval ( step , 0 ) ;
} else {
fetchVal ( function ( lines ) { // If we uploaded a previous analysis file then parse the .txt file with JSON.parse.
AnalysisResults = JSON . parse ( lines ) ;
updateEmbedding ( AnalysisResults ) ;
} ) ;
}
}
// Initialize distance matrix
function initDist ( data ) {
var dist = new Array ( data . length ) ;
for ( var i = 0 ; i < data . length ; i ++ ) {
dist [ i ] = new Array ( data . length ) ;
}
for ( var i = 0 ; i < data . length ; i ++ ) {
for ( var j = 0 ; j < data . length ; j ++ ) {
dist [ i ] [ j ] = 0 ;
}
}
return dist ;
}
// Calculate euclidean distance
function euclideanDist ( data ) {
dist = initDist ( data ) ;
for ( var i = 0 ; i < data . length ; i ++ ) {
for ( var j = i + 1 ; j < data . length ; j ++ ) {
for ( var d in data [ 0 ] ) {
if ( d != Category ) {
dist [ i ] [ j ] += Math . pow ( data [ i ] [ d ] - data [ j ] [ d ] , 2 ) ;
}
}
dist [ i ] [ j ] = Math . sqrt ( dist [ i ] [ j ] ) ;
dist [ j ] [ i ] = dist [ i ] [ j ] ;
}
}
return dist ;
}
// Calculate jaccard dist
function jaccardDist ( data ) {
dist = initDist ( data ) ;
for ( var i = 0 ; i < data . length ; i ++ ) {
for ( var j = i + 1 ; j < data . length ; j ++ ) {
for ( var d in data [ 0 ] ) {
if ( d != Category ) {
x = data [ i ] [ d ] ;
y = data [ j ] [ d ] ;
if ( x == y ) {
dist [ i ] [ j ] += 1 ;
}
}
}
dist [ j ] [ i ] = dist [ i ] [ j ] ;
}
}
return dist ;
}
// Normalize distances to prevent numerical issues.
function normDist ( data , dist ) {
var max _dist = 0 ;
for ( var i = 0 ; i < data . length ; i ++ ) {
for ( var j = i + 1 ; j < data . length ; j ++ ) {
if ( dist [ i ] [ j ] > max _dist ) max _dist = dist [ i ] [ j ] ;
}
}
for ( var i = 0 ; i < data . length ; i ++ ) {
for ( var j = 0 ; j < data . length ; j ++ ) {
dist [ i ] [ j ] /= max _dist ;
}
}
return dist ;
}
// No tranformation
function noTrans ( data ) {
return data ;
}
// Log tranformation
function logTrans ( data ) {
for ( var i = 0 ; i < data . length ; i ++ ) {
for ( var d in data [ 0 ] ) {
if ( d != Category ) {
X = data [ i ] [ d ] ;
data [ i ] [ d ] = Math . log10 ( X + 1 ) ;
}
}
}
return data ;
}
// asinh tranformation
function asinhTrans ( data ) {
for ( var i = 0 ; i < data . length ; i ++ ) {
for ( var d in data [ 0 ] ) {
if ( d != Category ) {
X = data [ i ] [ d ] ;
data [ i ] [ d ] = Math . log ( X + Math . sqrt ( X * X + 1 ) ) ;
}
}
}
return data ;
}
// Binarize tranformation
function binTrans ( data ) {
for ( var i = 0 ; i < data . length ; i ++ ) {
for ( var d in data [ 0 ] ) {
if ( d != Category ) {
X = data [ i ] [ d ] ;
if ( X > 0 ) data [ i ] [ d ] = 1 ;
if ( X < 0 ) data [ i ] [ d ] = 0 ;
}
}
}
return data ;
}
// Compute the distances by applying the chosen distance functions and transformation functions.
function computeDistances ( data , distFunc , transFunc ) {
dist = eval ( distFunc ) ( eval ( transFunc ) ( data ) ) ;
dist = normDist ( data , dist ) ;
return dist ;
}
function OverallCostLineChart ( ) {
d3 . select ( "#hider2" ) . style ( "z-index" , - 1 ) ;
d3 . select ( "#PlotCost" ) . style ( "z-index" , 2 ) ;
var trace1 = {
x : Iterations ,
y : ArrayWithCosts ,
mode : 'lines' ,
connectgaps : true ,
marker : {
color : "rgb(0,128,0)" ,
line : {
color : "rgb(0, 0, 0)" ,
width : 0.5
}
}
}
var data = [ trace1 ] ;
var layout = {
showlegend : false ,
width : 285 ,
height : 80 ,
xaxis : { title : 'Iterations' ,
titlefont : {
size : 12 ,
color : 'black'
} } ,
yaxis : { title : 'Ov. Cost' ,
titlefont : {
size : 12 ,
color : 'black'
} } ,
margin : {
l : 40 ,
r : 15 ,
b : 26 ,
t : 5
} ,
} ;
Plotly . newPlot ( 'PlotCost' , data , layout , { displayModeBar : false } , { staticPlot : true } ) ;
}
// Function that updates embedding
function updateEmbedding ( AnalysisResults ) {
inside = 0 ;
points = [ ] ;
points2d = [ ] ;
if ( AnalysisResults == "" ) { // Check if the embedding does not need to load because we had a previous analysis uploaded.
var Y = tsne . getSolution ( ) ; // We receive the solution from the t-SNE
var xExt = d3 . extent ( Y , d => d [ 0 ] ) ;
var yExt = d3 . extent ( Y , d => d [ 1 ] ) ;
var maxExt = [ Math . min ( xExt [ 0 ] , yExt [ 0 ] ) , Math . max ( xExt [ 1 ] , yExt [ 1 ] ) ] ;
var x = d3 . scaleLinear ( ) // Scale the x points into the canvas width/height
. domain ( maxExt )
. range ( [ 10 , + dimensions - 10 ] ) ;
var y = d3 . scaleLinear ( ) // Scale the y points into the canvas width/height
. domain ( maxExt )
. range ( [ 10 , + dimensions - 10 ] ) ;
for ( var i = 0 ; i < final _dataset . length ; i ++ ) {
x _position [ i ] = x ( Y [ i ] [ 0 ] ) ; // x points position
y _position [ i ] = y ( Y [ i ] [ 1 ] ) ; // y points position
points [ i ] = { id : i , x : x _position [ i ] , y : y _position [ i ] , beta : final _dataset [ i ] . beta , cost : final _dataset [ i ] . cost , selected : true , schemaInv : false , DimON : null , pcp : false } ; // Create the points and points2D (2 dimensions)
points2d [ i ] = { x : x _position [ i ] , y : y _position [ i ] } ; // and add everything that we know about the points (e.g., selected = true, pcp = false in the beginning and so on)
points [ i ] = extend ( points [ i ] , ArrayContainsDataFeaturesCleared [ i ] ) ;
points [ i ] = extend ( points [ i ] , dataFeatures [ i ] ) ;
}
} else {
if ( flagAnalysis ) {
var length = ( AnalysisResults . length - dataFeatures . length * 2 - 9 - 2 ) ;
points = AnalysisResults . slice ( 0 , dataFeatures . length ) ; // Load the points from the previous analysis
points2d = AnalysisResults . slice ( dataFeatures . length , 2 * dataFeatures . length ) ; // Load the 2D points
dist _list = AnalysisResults . slice ( 2 * dataFeatures . length , 2 * dataFeatures . length + length / 2 ) ; // Load the parameters and set the necessary values to the visualization of those parameters.
dist _list2d = AnalysisResults . slice ( 2 * dataFeatures . length + length / 2 , 2 * dataFeatures . length + length ) ; // Load the parameters and set the necessary values to the visualization of those parameters.
overallCost = AnalysisResults . slice ( 2 * dataFeatures . length + length , 2 * dataFeatures . length + length + 1 ) ; // Load the overall cost
ParametersSet = AnalysisResults . slice ( 2 * dataFeatures . length + length + 1 , 2 * dataFeatures . length + length + 7 ) ; // Load the parameters and set the necessary values to the visualization of those parameters.
dists = AnalysisResults . slice ( 2 * dataFeatures . length + length + 7 , 2 * dataFeatures . length + length + 8 ) [ 0 ] ; // Load the parameters and set the necessary values to the visualization of those parameters.
dists2d = AnalysisResults . slice ( 2 * dataFeatures . length + length + 8 , 2 * dataFeatures . length + length + 9 ) [ 0 ] ; // Load the parameters and set the necessary values to the visualization of those parameters.
IterationsList = AnalysisResults . slice ( 2 * dataFeatures . length + length + 9 , 2 * dataFeatures . length + length + 10 ) ;
ArrayWithCostsList = AnalysisResults . slice ( 2 * dataFeatures . length + length + 10 , 2 * dataFeatures . length + length + 11 ) ;
Iterations = IterationsList [ 0 ] ;
ArrayWithCosts = ArrayWithCostsList [ 0 ] ;
$ ( "#cost" ) . html ( "(Number of Iteration: " + ParametersSet [ 3 ] + ", Overall Cost: " + overallCost + ")" ) ;
$ ( '#param-perplexity-value' ) . text ( ParametersSet [ 1 ] ) ;
$ ( '#param-learningrate-value' ) . text ( ParametersSet [ 2 ] ) ;
$ ( '#param-maxiter-value' ) . text ( ParametersSet [ 3 ] ) ;
document . getElementById ( "param-distance" ) . value = ParametersSet [ 4 ] ;
document . getElementById ( "param-transform" ) . value = ParametersSet [ 5 ] ;
} else {
var length = ( AnalysisResults . length - 9 ) / 2 ;
points = AnalysisResults . slice ( 0 , length ) ; // Load the points from the previous analysis
points2d = AnalysisResults . slice ( length , 2 * length ) ; // Load the 2D points
overallCost = AnalysisResults . slice ( 2 * length , 2 * length + 1 ) ; // Load the overall cost
ParametersSet = AnalysisResults . slice ( 2 * length + 1 , 2 * length + 7 ) ; // Load the parameters and set the necessary values to the visualization of those parameters.
IterationsList = AnalysisResults . slice ( 2 * length + 7 , 2 * length + 8 ) ;
ArrayWithCostsList = AnalysisResults . slice ( 2 * length + 8 , 2 * length + 9 ) ;
Iterations = IterationsList [ 0 ] ;
ArrayWithCosts = ArrayWithCostsList [ 0 ] ;
$ ( "#cost" ) . html ( "(Number of Iteration: " + ParametersSet [ 3 ] + ", Overall Cost: " + overallCost + ")" ) ;
$ ( '#param-perplexity-value' ) . text ( ParametersSet [ 1 ] ) ;
$ ( '#param-learningrate-value' ) . text ( ParametersSet [ 2 ] ) ;
$ ( '#param-maxiter-value' ) . text ( ParametersSet [ 3 ] ) ;
document . getElementById ( "param-distance" ) . value = ParametersSet [ 4 ] ;
document . getElementById ( "param-transform" ) . value = ParametersSet [ 5 ] ;
}
$ ( "#data" ) . html ( ParametersSet [ 0 ] ) ; // Print on the screen the classification label.
$ ( "#param-dataset" ) . html ( '-' ) ;
}
OverallCostLineChart ( ) ; // Cost plot
InitialStatePoints = points ; // Initial Points will not be modified!
function extend ( obj , src ) { // Call this function to add additional information to the points such as dataFeatures and Array which contains the data features without strings.
for ( var key in src ) {
if ( src . hasOwnProperty ( key ) ) obj [ key ] = src [ key ] ;
}
return obj ; // Return the different forms of the same data that we eventually store on those points.
}
// Run all the main functions (Shepard Heatmap, Overview t-SNE, and Beta/Cost t-SNE) Beta = 1/sigma, Cost = KLD(Q||P).
OverviewtSNE ( points ) ;
ShepardHeatMap ( ) ;
BetatSNE ( points ) ;
CostHistogram ( points ) ;
}
function ShepardHeatMap ( ) {
// Remove any previous shepard heatmaps.
d3 . selectAll ( "#sheparheat > *" ) . remove ( ) ;
// Set the margin of the shepard heatmap
var margin = { top : 35 , right : 15 , bottom : 15 , left : 35 } ,
dim2 = Math . min ( parseInt ( d3 . select ( "#sheparheat" ) . style ( "width" ) ) , parseInt ( d3 . select ( "#sheparheat" ) . style ( "height" ) ) )
width = dim2 - margin . left - margin . right ,
height = dim2 - margin . top - margin . bottom ,
buckets = 10 , // Set the number of buckets.
gridSize = width / buckets ,
dim _1 = [ "0.0" , "0.2" , "0.4" , "0.6" , "0.8" , "1.0" ] , // Set the dimensions for the output and input distances.
dim _2 = [ "0.0" , "0.4" , "0.6" , "1.0" ] //I.e., the axes.
// Create the svg for the shepard heatmap
var svg = d3 . select ( "#sheparheat" )
. attr ( "width" , width + margin . left + margin . right )
. attr ( "height" , height + margin . top + margin . bottom )
. append ( "g" )
. attr ( "transform" , "translate(" + margin . left + "," + margin . top + ")" ) ;
if ( flagAnalysis ) {
} else {
dists2d = [ ] ;
dist _list2d = [ ] ; // Distances lists empty
dist _list = [ ] ;
// Calculate the 2D distances.
dists2d = computeDistances ( points2d , document . getElementById ( "param-distance" ) . value , document . getElementById ( "param-transform" ) . value ) ;
InitialFormDists2D . push ( dists2d ) ;
for ( var j = 0 ; j < dists2d . length ; j ++ ) { // Fill them with the distances 2D and high-dimensional, respectively.
dists2d [ j ] = dists2d [ j ] . slice ( 0 , j ) ;
dists [ j ] = dists [ j ] . slice ( 0 , j ) ;
}
for ( var i = 0 ; i < dists2d . length ; i ++ ) {
for ( var j = 0 ; j < dists2d . length ; j ++ ) {
let singleObj = { } ;
singleObj = dists2d [ i ] [ j ] ;
dist _list2d . push ( singleObj ) ;
let singleObj2 = { } ;
singleObj2 = dists [ i ] [ j ] ;
dist _list . push ( singleObj2 ) ;
}
}
dist _list2d = dist _list2d . sort ( ) ; // Sort the lists that contain the distances.
dist _list = dist _list . sort ( ) ;
dist _list2d = dist _list2d . filter ( function ( val ) { return val !== undefined ; } ) ; // Filter all undefined values
dist _list = dist _list . filter ( function ( val ) { return val !== undefined ; } ) ;
}
d3 . tsv ( "./modules/heat.tsv" ) . then ( function ( data ) { // Run the heat.tsv file and get the data from there. This file contains and ordering of the dimensions 1 and dimensions 2.
// For example: dim1 = 1 and the dim 2 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10... and then dim2 = 2 and the dim2=... (same)
data . forEach ( function ( d ) { // Get the data from the heat.tsv.
d . dim1 = + d . dim1 ;
d . dim2 = + d . dim2 ;
d . value = 0 ;
} ) ;
var counter = 0 ;
var counnum = [ ] ;
var temp _loop = 0 ;
for ( var l = 0 ; l < 100 ; l ++ ) { counnum [ l ] = 0 } ;
var dist _list _all = [ ] ;
dist _list _all = [ dist _list , dist _list2d ] ; // Combine the two lists.
for ( var l = 0 ; l < 100 ; l ++ ) { // Here we calculate the shepard diagram and then we add the colors! -> shepard heatmap
for ( k = 0 ; k < dist _list _all [ 0 ] . length ; k ++ ) {
if ( l == 0 ) {
if ( dist _list _all [ 0 ] [ k ] <= data [ l ] . dim1 / 10 && dist _list _all [ 1 ] [ k ] <= data [ l ] . dim2 / 10 ) {
counnum [ l ] = counnum [ l ] + 1 ;
}
} else if ( l <= 10 ) {
if ( dist _list _all [ 0 ] [ k ] < data [ l ] . dim1 / 10 && dist _list _all [ 1 ] [ k ] < data [ l ] . dim2 / 10 && dist _list _all [ 1 ] [ k ] > data [ l - 1 ] . dim2 / 10 ) {
counnum [ l ] = counnum [ l ] + 1 ;
}
} else if ( l % 10 == 1 ) {
temp _loop = data [ l ] . dim1 - 1 ;
if ( dist _list _all [ 0 ] [ k ] < data [ l ] . dim1 / 10 && dist _list _all [ 1 ] [ k ] < data [ l ] . dim2 / 10 && dist _list _all [ 0 ] [ k ] > temp _loop / 10 ) {
counnum [ l ] = counnum [ l ] + 1 ;
}
} else {
if ( dist _list _all [ 0 ] [ k ] <= data [ l ] . dim1 / 10 && dist _list _all [ 1 ] [ k ] <= data [ l ] . dim2 / 10 && dist _list _all [ 1 ] [ k ] >= data [ l - 1 ] . dim2 / 10 && dist _list _all [ 0 ] [ k ] > temp _loop / 10 ) {
counnum [ l ] = counnum [ l ] + 1 ;
}
}
}
counter = counter + counnum [ l ] ;
}
for ( var m = 0 ; m < data . length ; m ++ )
{
data [ m ] . value = counnum [ m ] ; // Count the number of data values.
}
// Color scale for minimum and maximum values for the shepard heatmap.
var maxNum = Math . round ( d3 . max ( data , function ( d ) { return d . value ; } ) ) ;
var minNum = Math . round ( d3 . min ( data , function ( d ) { return d . value ; } ) ) ;
var colors = [ '#ffffff' , '#f0f0f0' , '#d9d9d9' , '#bdbdbd' , '#969696' , '#737373' , '#525252' , '#252525' , '#000000' ] ;
let calcStep = ( maxNum - minNum ) / colors . length ;
var colorScale = d3 . scaleLinear ( )
. domain ( d3 . range ( 0 , maxNum + calcStep , calcStep ) )
. range ( colors ) ;
var tip = d3 . tip ( ) // This is for the tooltip that is being visible when you hover over a square on the shepard heatmap.
. attr ( 'class' , 'd3-tip' )
. style ( "visibility" , "visible" )
. offset ( [ - 10 , 36.5 ] )
. html ( function ( d ) {
return "Value: <span style='color:red'>" + Math . round ( d . value ) ;
} ) ;
tip ( svg . append ( "g" ) ) ;
var dim1Labels = svg . selectAll ( ".dim1Label" ) // Label
. data ( dim _1 )
. enter ( ) . append ( "text" )
. text ( function ( d ) { return d ; } )
. attr ( "x" , 0 )
. attr ( "y" , function ( d , i ) { return i * gridSize * 2 ; } )
. style ( "text-anchor" , "end" )
. style ( "font-size" , "10px" )
. attr ( "transform" , "translate(-6," + gridSize / 4 + ")" )
. attr ( "class" , "mono" ) ;
var title = svg . append ( "text" ) // Title = Input Distance
. attr ( "class" , "mono" )
. attr ( "x" , - ( gridSize * 8 ) )
. attr ( "y" , - 26 )
. style ( "font-size" , "12px" )
. attr ( "transform" , "rotate(-90)" )
. attr ( "class" , "mono" )
. text ( "N-Dimensional Distances" ) ;
var title = svg . append ( "text" ) // Title = Output Distance
. attr ( "class" , "mono" )
. attr ( "x" , gridSize * 2 )
. attr ( "y" , - 20 )
. style ( "font-size" , "12px" )
. text ( "2-Dimensional Distances" ) ;
var dim2Labels = svg . selectAll ( ".dim2Label" ) // Label
. data ( dim _2 )
. enter ( ) . append ( "text" )
. text ( function ( d ) { return d ; } )
. attr ( "x" , function ( d , i ) { return i * gridSize * 3.2 ; } )
. attr ( "y" , 0 )
. style ( "text-anchor" , "middle" )
. style ( "font-size" , "10px" )
. attr ( "transform" , "translate(" + gridSize / 4 + ", -6)" )
. attr ( "class" , "mono" ) ;
var heatMap = svg . selectAll ( ".dim2" ) // Combine the two dimensions and plot the shepard heatmap
. data ( data )
. enter ( ) . append ( "rect" )
. attr ( "x" , function ( d ) { return ( d . dim2 - 1 ) * gridSize ; } )
. attr ( "y" , function ( d ) { return ( d . dim1 - 1 ) * gridSize ; } )
. attr ( "rx" , 0.4 )
. attr ( "ry" , 0.4 )
. attr ( "class" , "dim2 bordered" )
. attr ( "width" , gridSize - 2 )
. attr ( "height" , gridSize - 2 )
. style ( "fill" , colors [ 0 ] )
. attr ( "class" , "square" )
. on ( 'mouseover' , tip . show )
. on ( 'mouseout' , tip . hide ) ;
heatMap . transition ( )
. style ( "fill" , function ( d ) { return colorScale ( d . value ) ; } ) ;
heatMap . append ( "title" ) . text ( function ( d ) { return d . value ; } ) ;
var heatleg = d3 . select ( "#legend3" ) ; // Legend3 = the legend of the shepard heatmap
heatleg . append ( "g" )
. attr ( "class" , "legendLinear" )
. attr ( "transform" , "translate(0,14)" ) ;
var legend = d3 . legendColor ( ) // Legend color and title!
. labelFormat ( d3 . format ( ",.0f" ) )
. cells ( 9 )
. title ( "Number of Points" )
. scale ( colorScale ) ;
heatleg . select ( ".legendLinear" )
. call ( legend ) ;
} ) ;
}
// perform single t-SNE iteration
function step ( ) {
step _counter ++ ;
if ( step _counter <= max _counter ) {
cost = tsne . step ( ) ;
cost _each = cost [ 1 ] ;
for ( var i = 0 ; i < final _dataset . length ; i ++ ) final _dataset [ i ] . cost = cost _each [ i ] ;
$ ( "#cost" ) . html ( "(Number of Iteration: " + tsne . iter + ", Overall Cost: " + cost [ 0 ] . toFixed ( 3 ) + ")" ) ;
ArrayWithCosts . push ( cost [ 0 ] . toFixed ( 3 ) ) ;
Iterations . push ( step _counter ) ;
}
else {
clearInterval ( runner ) ;
}
if ( step _counter == max _counter ) {
ArrayWithCostsList . push ( ArrayWithCosts ) ;
IterationsList . push ( Iterations ) ;
updateEmbedding ( AnalysisResults ) ;
}
}
function resize ( canvas ) { // This is being used in the WebGL t-SNE for the overview canvas
// Lookup the size the browser is displaying the canvas.
var displayWidth = canvas . clientWidth ;
var displayHeight = canvas . clientHeight ;
// Check if the canvas is not the same size.
if ( canvas . width != displayWidth || canvas . height != displayHeight ) {
// Make the canvas the same size
canvas . width = displayWidth ;
canvas . height = displayHeight ;
}
}
function OverviewtSNE ( points ) { // The overview t-SNE function
if ( format [ 0 ] == "diabetes" ) {
for ( var i = 0 ; i < dataFeatures . length ; i ++ ) {
if ( dataFeatures [ i ] [ Category ] != "" || dataFeatures [ i ] [ Category ] != "undefined" ) { // If a categorization label exist then add it into all_labels variable.
if ( dataFeatures [ i ] [ Category ] == 1 ) {
all _labels [ i ] = "Positive" ;
} else {
all _labels [ i ] = "Negative" ;
}
}
}
}
$ ( "#datasetDetails" ) . html ( "(Number of Features: " + ( Object . keys ( dataFeatures [ 0 ] ) . length - valCategExists ) + ", Number of Instances: " + final _dataset . length + ")" ) ; // Print on the screen the number of features and instances of the data set, which is being analyzed.
if ( Category == undefined ) {
$ ( "#CategoryName" ) . html ( "Classification label: No category" ) ; // Print on the screen the classification label.
} else {
$ ( "#CategoryName" ) . html ( "Classification label: " + Category . replace ( '*' , '' ) ) ; // Print on the screen the classification label.
}
//Make an SVG Container
d3 . selectAll ( "#overviewRect > *" ) . remove ( ) ;
if ( format [ 0 ] == "diabetes" ) {
ColorsCategorical = [ '#fb9a99' , '#a6cee3' , '#b2df8a' , '#33a02c' , '#1f78b4' , '#e31a1c' , '#fdbf6f' , '#ff7f00' , '#cab2d6' , '#6a3d9a' ] ; // Colors for the labels/categories if there are some!
} else {
ColorsCategorical = [ '#a6cee3' , '#fb9a99' , '#b2df8a' , '#33a02c' , '#1f78b4' , '#e31a1c' , '#fdbf6f' , '#ff7f00' , '#cab2d6' , '#6a3d9a' ] ; // Colors for the labels/categories if there are some!
}
if ( all _labels [ 0 ] == undefined ) {
var colorScale = d3 . scaleOrdinal ( ) . domain ( [ "No Category" ] ) . range ( [ "#00000" ] ) ; // If no category then grascale.
$ ( "#CategoryName" ) . html ( '' ) ;
} else {
var colorScale = d3 . scaleOrdinal ( ) . domain ( all _labels ) . range ( ColorsCategorical ) ; // We use the color scale here!
}
d3 . select ( "#legend2" ) . select ( "svg" ) . remove ( ) ; // Create the legend2 which is for the overview panel.
var svg = d3 . select ( "#legend2" ) . append ( "svg" ) ;
svg . append ( "g" )
. attr ( "class" , "legendOrdinal" )
. attr ( "transform" , "translate(8,5)" ) ;
var legendOrdinal = d3 . legendColor ( )
. shape ( "path" , d3 . legendSize ( 100 ) )
. shapePadding ( 15 )
. scale ( colorScale ) ;
svg . select ( ".legendOrdinal" )
. call ( legendOrdinal ) ;
// CREATE THE SVG
var svg = d3 . select ( '#overviewRect' ) . append ( 'svg' )
. attr ( 'width' , dim )
. attr ( 'height' , dim )
. append ( 'g' ) ;
// CREATE THE GROUP
var theGroup = svg . append ( 'g' )
. attr ( 'class' , 'the-group' ) ;
// CREATE ITS BOUNDING RECT
var theRect = theGroup . append ( 'rect' )
. attr ( 'class' , 'bounding-rect' ) ;
function updateRect ( ) {
// SELECT ALL CHILD NODES EXCEPT THE BOUNDING RECT
var AllSelectedChildNodes = [ ] ;
var allChildNodes = svg . selectAll ( ':not(.bounding-rect)' ) . _groups [ 0 ]
for ( var i = 0 ; i < VisiblePoints . length ; i ++ ) {
for ( var j = 1 ; j < allChildNodes . length ; j ++ ) {
if ( VisiblePoints [ i ] == allChildNodes [ j ] . id ) {
AllSelectedChildNodes . push ( allChildNodes [ j ] )
}
}
}
// `x` AND `y` ARE SIMPLY THE MIN VALUES OF ALL CHILD BBOXES
var x = d3 . min ( AllSelectedChildNodes , function ( d ) { return d . getBBox ( ) . x ; } ) ,
y = d3 . min ( AllSelectedChildNodes , function ( d ) { return d . getBBox ( ) . y ; } ) ,
// WIDTH AND HEIGHT REQUIRE A BIT OF CALCULATION
width = d3 . max ( AllSelectedChildNodes , function ( d ) {
var bb = d . getBBox ( ) ;
return ( bb . x + bb . width ) - x ;
} ) ,
height = d3 . max ( AllSelectedChildNodes , function ( d ) {
var bb = d . getBBox ( ) ;
return ( bb . y + bb . height ) - y ;
} ) ;
// UPDATE THE ATTRS FOR THE RECT
theRect . transition ( ) . duration ( 1000 )
. attr ( 'x' , x )
. attr ( 'y' , y )
. attr ( 'width' , width )
. attr ( 'height' , height ) ;
}
for ( var i = 0 ; i < points . length ; i ++ ) {
svg . selectAll ( "circle" )
. data ( points )
. enter ( ) . append ( "circle" )
. attr ( "fill" , function ( d ) {
if ( ! d . selected ) {
return "#D3D3D3" ;
} else {
if ( all _labels [ 0 ] != undefined ) {
if ( format [ 0 ] == "diabetes" ) {
if ( d [ Category ] == 1 ) {
return colorScale ( "Positive" ) ;
} else {
return colorScale ( "Negative" ) ;
}
} else {
return colorScale ( d [ Category ] ) ; // Normal color for the points that are selected
}
} else {
return "#00000" ;
}
}
} )
. attr ( "id" , function ( d ) { return d . id ; } )
. attr ( "r" , 2 )
. attr ( "cx" , function ( d ) { return ( ( d . x / dimensions ) * dim ) ; } )
. attr ( "cy" , function ( d ) { return ( ( d . y / dimensions ) * dim ) ; } ) ;
}
updateRect ( ) ;
}
function redraw ( repoints ) { // On redraw manipulate the points of the main and overview visualizations.
OverviewtSNE ( repoints ) ;
BetatSNE ( repoints ) ; // Redraw the points!
}
function CostHistogram ( points ) {
var frequency = [ ] ;
var frequency2 = [ ] ;
points = points . sort ( function ( a , b ) { // Sort them according to importance (darker color!)
return a . id - b . id ;
} )
var max2 = ( d3 . max ( points , function ( d ) { return d . beta ; } ) ) ;
var min2 = ( d3 . min ( points , function ( d ) { return d . beta ; } ) ) ;
for ( var i = 0 ; i < points . length ; i ++ ) {
frequency2 . push ( ( points [ i ] . beta - min2 ) / ( max2 - min2 ) ) ;
}
var trace1 = {
x : frequency2 ,
name : '1/sigma' ,
autobinx : false ,
marker : {
color : "rgb(128,0,0)" ,
line : {
color : "rgb(0, 0, 0)" ,
width : 1
}
} ,
opacity : 0.5 ,
type : "histogram" ,
xbins : {
end : 1.01 ,
size : 0.01 ,
start : 0
}
} ;
var max = ( d3 . max ( points , function ( d ) { return d . cost ; } ) ) ;
var min = ( d3 . min ( points , function ( d ) { return d . cost ; } ) ) ;
for ( var i = 0 ; i < points . length ; i ++ ) {
frequency . push ( ( points [ i ] . cost - min ) / ( max - min ) ) ;
}
var trace2 = {
x : frequency ,
name : 'KLD(P||Q)' ,
autobinx : false ,
histnorm : "count" ,
marker : {
color : "rgb(0,128,0)" ,
line : {
color : "rgb(0, 0, 0)" ,
width : 1
}
} ,
opacity : 0.5 ,
type : "histogram" ,
xbins : {
end : 1.01 ,
size : 0.01 ,
start : 0
}
} ;
var data = [ trace1 , trace2 ] ;
var layout = {
barmode : "overlay" ,
bargroupgap : points . length ,
autosize : false ,
width : 560 ,
height : 250 ,
margin : {
l : 50 ,
r : 20 ,
b : 40 ,
t : 10 ,
pad : 4
} ,
xaxis : { range : [ 0 , 1.01 ] , title : 'Normalized Bins from Min to Max Values.' ,
titlefont : {
size : 14 ,
color : 'black'
} } ,
yaxis : { title : 'Number of Points (log)' ,
type : "log" ,
titlefont : {
size : 14 ,
color : 'black'
} }
} ;
Plotly . newPlot ( 'costHist' , data , layout , { displayModeBar : false } , { staticPlot : true } ) ;
}
function handleLassoEnd ( lassoPolygon ) { // This is for the lasso interaction
var countLassoFalse = 0 ;
KNNEnabled = true ;
for ( var i = 0 ; i < points . length ; i ++ ) {
x = points [ i ] . x ;
y = points [ i ] . y ;
if ( d3 . polygonContains ( lassoPolygon , [ x , y ] ) ) {
points [ i ] . selected = true ;
} else {
countLassoFalse = countLassoFalse + 1 ;
points [ i ] . selected = false ;
}
}
if ( countLassoFalse == points . length ) {
for ( var i = 0 ; i < points . length ; i ++ ) {
points [ i ] . selected = true ;
}
}
if ( points . length - countLassoFalse <= 10 && points . length - countLassoFalse != 0 ) {
for ( var i = 0 ; i < points . length ; i ++ ) {
if ( points [ i ] . selected == true ) {
points [ i ] . pcp = true ;
}
}
} else {
for ( var i = 0 ; i < points . length ; i ++ ) {
points [ i ] . pcp = false ;
}
}
redraw ( points ) ;
}
function emptyPCP ( ) {
wrapData = [ ] ;
IDS = [ ] ;
//////////////////////////////////////////////////////////////
//////////////////// Draw the Chart //////////////////////////
//////////////////////////////////////////////////////////////
var colors = [ '#a6cee3' , '#1f78b4' , '#b2df8a' , '#33a02c' , '#fb9a99' , '#e31a1c' , '#fdbf6f' , '#ff7f00' , '#cab2d6' , '#6a3d9a' ] ; // Colorscale for the pcp
var colorScl = d3v3 . scale . ordinal ( )
. domain ( IDS )
. range ( colors ) ;
var color = function ( d ) { return colors ( d . group ) ; } ;
var parcoords = d3v3 . parcoords ( ) ( "#PCP" )
. data ( wrapData )
. composite ( "darken" )
. margin ( { top : 20 , left : 0 , bottom : 10 , right : 0 } )
. mode ( "queue" )
. color ( function ( d , i ) { return colorScl ( IDS [ i ] ) ; } )
. render ( )
. brushMode ( "1D-axes" ) // enable brushing
. reorderable ( ) ;
parcoords . svg . selectAll ( "text" )
. style ( "font" , "14px" ) ;
}
function handleLassoStart ( lassoPolygon ) { // Empty we do not need to reset anything.
/ * e m p t y P C P ( ) ;
KNNEnabled = false ;
for ( var i = 0 ; i < points . length ; i ++ ) {
points [ i ] . selected = true ;
points [ i ] . pcp = false ;
}
redraw ( points ) ; * /
}
// Initialize the horizontal (correlations) barchart's variables
var svg , defs , gBrush , brush , main _xScale , mini _xScale , main _yScale , mini _yScale , main _xAxis , main _yAxis , mini _width , textScale ;
// Added only for the mouse wheel
var zoomer = d3v3 . behavior . zoom ( )
. on ( "zoom" , null ) ;
// Margin of the main barchart
var main _margin = { top : 8 , right : 10 , bottom : 30 , left : 100 } ,
main _width = 500 - main _margin . left - main _margin . right ,
main _height = 320 - main _margin . top - main _margin . bottom ;
// Margin of the mini barchart
var mini _margin = { top : 8 , right : 10 , bottom : 30 , left : 10 } ,
mini _height = 320 - mini _margin . top - mini _margin . bottom ;
mini _width = 100 - mini _margin . left - mini _margin . right ;
// Create the svg correlation component
svg = d3v3 . select ( "#correlation" ) . attr ( "class" , "svgWrapper" )
. attr ( "width" , main _width + main _margin . left + main _margin . right + mini _width + mini _margin . left + mini _margin . right )
. attr ( "height" , main _height + main _margin . top + main _margin . bottom )
. call ( zoomer )
. on ( "wheel.zoom" , scroll )
. on ( "mousedown.zoom" , null )
. on ( "touchstart.zoom" , null )
. on ( "touchmove.zoom" , null )
. on ( "touchend.zoom" , null ) ;
function click ( ) { // This is the click of the Schema Investigation scenario
svgClick = d3 . select ( '#modtSNEcanvas_svg_Schema' ) ; // Selecte the svg element
function drawCircle ( x , y , size ) {
svgClick . append ( "circle" )
. attr ( 'class' , 'click-circle' ) // Draw a small black circle
. attr ( "cx" , x )
. attr ( "cy" , y )
. attr ( "r" , size ) ;
Arrayx . push ( x ) ; // Get coordinates
Arrayy . push ( y ) ;
}
svgClick . on ( 'click' , function ( ) {
if ( prevRightClick == false ) { // Check the right click if it should be prevented or not.
var coords = d3 . mouse ( this ) ;
drawCircle ( coords [ 0 ] , coords [ 1 ] , 3 ) ;
}
for ( var k = 0 ; k < Arrayx . length ; k ++ ) {
Arrayxy [ k ] = [ Arrayx [ k ] , Arrayy [ k ] ] ; // Combine the coordinates into one array -> Arrayxy.
}
for ( var k = 0 ; k < Arrayxy . length - 1 ; k ++ ) { // Draw the line which connects two circles
d3 . select ( '#modtSNEcanvas_svg_Schema' ) . append ( 'line' )
. attr ( "x1" , Arrayxy [ k ] [ 0 ] )
. attr ( "y1" , Arrayxy [ k ] [ 1 ] )
. attr ( "x2" , Arrayxy [ k + 1 ] [ 0 ] )
. attr ( "y2" , Arrayxy [ k + 1 ] [ 1 ] )
. style ( "stroke" , "black" )
. style ( "stroke-width" , 1 ) ;
}
} ) ;
svgClick . on ( "contextmenu" , function ( d ) {
if ( prevRightClick == true ) { // Do not do anything because the right click should be prevented
} else {
var line = d3 . line ( ) . curve ( d3 . curveCardinal ) ;
for ( var k = 0 ; k < Arrayxy . length - 1 ; k ++ ) { // Define a path and check the schema.
path = svgClick . append ( "path" )
. datum ( Arrayxy . slice ( k , k + 2 ) )
. attr ( "class" , "SchemaCheck" )
. attr ( "d" , line ) ;
}
// Prevent the default mouse action. Allow right click to be used for the confirmation of our schema.
d3 . event . preventDefault ( ) ;
flagForSchema = true ; // Schema is activated.
CalculateCorrel ( flagForSchema ) ; // Calculate the correlations
}
} ) ;
}
function CalculateCorrel ( flagForSchema ) { // Calculate the correlation is a function which has all the computations for the schema ordering (investigation).
if ( flagForSchema == false ) {
alert ( "Please, draw a schema first!" ) ; // If no Schema is drawn then ask the user!
} else {
var correlLimit = document . getElementById ( "param-corr-value" ) . value ; // Get the threshold value with which the user set's the boundaries of the schema investigation
correlLimit = parseInt ( correlLimit ) ;
allTransformPoints = [ ] ;
for ( var loop = 0 ; loop < points . length ; loop ++ ) {
allTransformPoints [ loop ] = [ points [ loop ] . x , points [ loop ] . y , points [ loop ] . id , points [ loop ] . beta , points [ loop ] . cost , points [ loop ] . selected ] ;
}
var line = svgClick . append ( "line" ) ;
paths = svgClick . selectAll ( "path" ) . filter ( ".SchemaCheck" ) ;
XYDistId = [ ] ;
if ( paths . nodes ( ) . length == 0 ) { // We need more than 1 points
alert ( "Please, provide one more point in order to create a line (i.e., path)!" )
} else {
for ( var m = 0 ; m < paths . nodes ( ) . length ; m ++ ) {
for ( var j = 0 ; j < allTransformPoints . length ; j ++ ) {
p = closestPoint ( paths . nodes ( ) [ m ] , allTransformPoints [ j ] ) ; // Closest of each point to the paths that we have.
XYDistId . push ( p ) ; // Take the XY coordinates, Distance, and ID
}
}
for ( var j = 0 ; j < allTransformPoints . length ; j ++ ) {
for ( var m = 0 ; m < paths . nodes ( ) . length ; m ++ ) { // Find the minimum path distance for each point
if ( m == 0 ) {
minimum = XYDistId [ j ] . distance ;
}
else if ( minimum > XYDistId [ ( m * allTransformPoints . length ) + j ] . distance ) {
minimum = XYDistId [ ( m * allTransformPoints . length ) + j ] . distance ;
}
}
for ( var l = 0 ; l < paths . nodes ( ) . length ; l ++ ) {
if ( XYDistId [ ( l * allTransformPoints . length ) + j ] . distance == minimum ) {
allTransformPoints [ j ] . bucketID = l ; // Bucket ID in which each point belongs to...
}
}
}
var arrays = [ ] , size = allTransformPoints . length ;
while ( XYDistId . length > 0 ) { // For each path I have all the necessary information (all the IDs of the points etc..)
arrays . push ( XYDistId . splice ( 0 , size ) ) ;
}
var arraysCleared = [ ] ;
for ( var j = 0 ; j < allTransformPoints . length ; j ++ ) { // Now we have the XY coordinates values of the points, the IDs of the points, the xy coordinates on the line, the number of the path that they belong two times.
for ( var m = 0 ; m < arrays . length ; m ++ ) {
if ( allTransformPoints [ j ] . bucketID == m ) {
arraysCleared . push ( arrays [ m ] [ j ] . concat ( allTransformPoints [ j ] . bucketID , Arrayxy [ m ] , arrays [ m ] [ j ] . distance , arrays [ m ] [ j ] . id ) ) ;
}
}
}
ArrayLimit = [ ] ;
for ( var i = 0 ; i < arraysCleared . length ; i ++ ) {
if ( arraysCleared [ i ] [ 5 ] < correlLimit ) { // Now we add a limit to the distance that we search according to the thresholder which the user changes through a slider.
ArrayLimit . push ( arraysCleared [ i ] ) ;
}
}
var temparray = [ ] ;
var count = new Array ( paths . nodes ( ) . length ) . fill ( 0 ) ;
for ( var m = 0 ; m < paths . nodes ( ) . length ; m ++ ) { // Sort the arrays from the smaller distance to the highest distance
for ( var i = 0 ; i < ArrayLimit . length ; i ++ ) {
if ( ArrayLimit [ i ] [ 2 ] == m ) { // Match the bucket IDs
count [ m ] = count [ m ] + 1 ;
temparray . push ( ArrayLimit [ i ] ) ;
}
}
}
var arraysSplitted = [ ] ;
for ( var m = 0 ; m < paths . nodes ( ) . length ; m ++ ) {
arraysSplitted . push ( temparray . splice ( 0 , count [ m ] ) ) ; // Separate the combined array according to the number of points in each path.
}
for ( var m = 0 ; m < paths . nodes ( ) . length ; m ++ ) { // Compare the distances and find the minimum values. Connect the paths afterwards.
arraysSplitted [ m ] = arraysSplitted [ m ] . sort ( function ( a , b ) {
var dist = ( a [ 0 ] - a [ 3 ] ) * ( a [ 0 ] - a [ 3 ] ) + ( a [ 1 ] - a [ 4 ] ) * ( a [ 1 ] - a [ 4 ] ) ;
var distAgain = ( b [ 0 ] - b [ 3 ] ) * ( b [ 0 ] - b [ 3 ] ) + ( b [ 1 ] - b [ 4 ] ) * ( b [ 1 ] - b [ 4 ] ) ;
// Compare the 2 dates
if ( dist < distAgain ) return - 1 ;
if ( distAgain > dist ) return 1 ;
return 0 ;
} ) ;
}
// This is how we gain the order.
var arraysConnected = [ ] ;
if ( paths . nodes ( ) . length == 1 ) {
arraysConnected = arraysSplitted [ 0 ] ;
} else {
for ( var m = 0 ; m < paths . nodes ( ) . length - 1 ; m ++ ) {
arraysConnected = arraysSplitted [ m ] . concat ( arraysSplitted [ m + 1 ] ) ;
}
}
var Order = [ ] ;
for ( var temp = 0 ; temp < arraysConnected . length ; temp ++ ) {
Order . push ( arraysConnected [ temp ] [ 6 ] ) ; // We have the order now for the entire path.
}
for ( var i = 0 ; i < points . length ; i ++ ) {
points [ i ] . selected = false ;
points [ i ] . schemaInv = false ;
for ( var j = 0 ; j < ArrayLimit . length ; j ++ ) {
if ( ArrayLimit [ j ] [ ArrayLimit [ 0 ] . length - 1 ] == points [ i ] . id ) {
points [ i ] . selected = true ;
points [ i ] . schemaInv = true ;
}
}
}
redraw ( points ) ; // Redraw the points and leave only the selected points with a color (else gray color)
ArrayContainsDataFeaturesCleared = [ ] ; // Recalculate that because we want dimensions + 1 (the id) elements in columns.
for ( let k = 0 ; k < dataFeatures . length ; k ++ ) {
object = [ ] ;
for ( let j = 0 ; j < Object . keys ( dataFeatures [ k ] ) . length ; j ++ ) {
if ( ! isString ( Object . values ( dataFeatures [ k ] ) [ j ] ) && Object . keys ( dataFeatures [ k ] ) [ j ] != Category ) { // Only numbers and not the classification labels.
object . push ( Object . values ( dataFeatures [ k ] ) [ j ] ) ;
} else {
object . push ( null ) ;
}
}
ArrayContainsDataFeaturesCleared . push ( object . concat ( k ) ) ; // The ArrayContainsDataFeaturesCleared contains only numbers without the categorization parameter even if it is a number.
}
ArrayContainsDataFeaturesCleared = mapOrder ( ArrayContainsDataFeaturesCleared , Order , ArrayContainsDataFeaturesCleared [ 0 ] . length - 1 ) ; // Order the features according to the order.
ArrayContainsDataFeaturesLimit = [ ] ;
for ( var i = 0 ; i < ArrayContainsDataFeaturesCleared . length ; i ++ ) {
for ( var j = 0 ; j < arraysConnected . length ; j ++ ) {
if ( ArrayContainsDataFeaturesCleared [ i ] [ ArrayContainsDataFeaturesCleared [ 0 ] . length - 1 ] == arraysConnected [ j ] [ 6 ] ) {
ArrayContainsDataFeaturesLimit . push ( ArrayContainsDataFeaturesCleared [ i ] ) ; // These are the selected points in an order from the higher id (the previous local id) to the lower.
}
}
}
if ( ArrayContainsDataFeaturesLimit . length == 0 ) { // If no points were selected then send a message to the user! And set everything again to the initial state.
d3 . selectAll ( "#correlation > *" ) . remove ( ) ;
d3 . selectAll ( "#modtSNEcanvas_svg > *" ) . remove ( ) ;
d3 . selectAll ( "#modtSNEcanvas_svg_Schema > *" ) . remove ( ) ;
flagForSchema = false ;
Arrayx = [ ] ;
Arrayy = [ ] ;
XYDistId = [ ] ;
Arrayxy = [ ] ;
DistanceDrawing1D = [ ] ;
allTransformPoints = [ ] ;
pFinal = [ ] ;
ArrayLimit = [ ] ;
correlationResults = [ ] ;
ArrayContainsDataFeaturesLimit = [ ] ;
prevRightClick = false ;
for ( var i = 0 ; i < InitialStatePoints . length ; i ++ ) {
InitialStatePoints [ i ] . selected = true ;
InitialStatePoints [ i ] . pcp = false ;
}
redraw ( InitialStatePoints ) ;
alert ( "No points selected! Please, try to increase the correlation threshold." ) ;
} else {
for ( var loop = 0 ; loop < ArrayContainsDataFeaturesLimit . length ; loop ++ ) {
ArrayContainsDataFeaturesLimit [ loop ] . push ( loop ) ;
}
var SignStore = [ ] ;
correlationResults = [ ] ;
const arrayColumn = ( arr , n ) => arr . map ( x => x [ n ] ) ;
for ( var temp = 0 ; temp < ArrayContainsDataFeaturesLimit [ 0 ] . length - 2 ; temp ++ ) {
if ( ArrayContainsDataFeaturesLimit [ 0 ] [ temp ] == null ) { // Match the data features with every dimension, which is a number!
} else {
var tempData = new Array (
arrayColumn ( ArrayContainsDataFeaturesLimit , temp ) ,
arrayColumn ( ArrayContainsDataFeaturesLimit , ArrayContainsDataFeaturesLimit [ 0 ] . length - 1 )
) ;
if ( isNaN ( pearsonCorrelation ( tempData , 0 , 1 ) ) ) {
} else {
SignStore . push ( [ temp , pearsonCorrelation ( tempData , 0 , 1 ) ] ) ; // Keep the sign
correlationResults . push ( [ Object . keys ( dataFeatures [ 0 ] ) [ temp ] + " (" + temp + ")" , Math . abs ( pearsonCorrelation ( tempData , 0 , 1 ) ) , temp ] ) ; // Find the pearson correlations
//correlationResults.push([Object.keys(dataFeatures[0])[temp] + " (" + temp + ")", Math.pow(pearsonCorrelation(tempData, 0, 1),2),temp]); // Find the pearson correlations (MAYBE!)
}
}
}
function getMinMaxOf2DIndex ( arr , idx ) {
return {
min : Math . min . apply ( null , arr . map ( function ( e ) { return e [ idx ] } ) ) ,
max : Math . max . apply ( null , arr . map ( function ( e ) { return e [ idx ] } ) )
}
}
var maxminArea = [ ] ;
for ( var i = 0 ; i < ArrayContainsDataFeaturesLimit [ 0 ] . length ; i ++ ) {
maxminArea . push ( getMinMaxOf2DIndex ( ArrayContainsDataFeaturesLimit , i ) ) ;
}
if ( PreComputFlagCorrelation ) {
maxminTotal = [ ] ;
for ( var i = 0 ; i < ArrayContainsDataFeaturesCleared [ 0 ] . length ; i ++ ) {
maxminTotal . push ( getMinMaxOf2DIndex ( ArrayContainsDataFeaturesCleared , i ) ) ;
}
PreComputFlagCorrelation = false ;
}
correlationResultsFinal = [ ] ;
for ( var i = 0 ; i < correlationResults . length ; i ++ ) {
if ( parseFloat ( document . getElementById ( "param-corlim-value" ) . value ) < Math . abs ( ( maxminArea [ correlationResults [ i ] [ 2 ] ] . max - maxminArea [ correlationResults [ i ] [ 2 ] ] . min ) / ( maxminTotal [ correlationResults [ i ] [ 2 ] ] . max - maxminTotal [ correlationResults [ i ] [ 2 ] ] . min ) * correlationResults [ i ] [ 1 ] ) ) {
correlationResultsFinal . push ( [ correlationResults [ i ] [ 0 ] , Math . abs ( ( maxminArea [ correlationResults [ i ] [ 2 ] ] . max - maxminArea [ correlationResults [ i ] [ 2 ] ] . min ) / ( maxminTotal [ correlationResults [ i ] [ 2 ] ] . max - maxminTotal [ correlationResults [ i ] [ 2 ] ] . min ) * correlationResults [ i ] [ 1 ] ) , correlationResults [ i ] [ 2 ] ] ) ;
}
}
correlationResultsFinal = correlationResultsFinal . sort ( // Sort the correlations from the biggest to the lowest value (absolute values)
function ( a , b ) {
if ( a [ 1 ] == b [ 1 ] )
return a [ 0 ] < b [ 0 ] ? - 1 : 1 ;
return a [ 1 ] < b [ 1 ] ? 1 : - 1 ;
}
) ;
correlationResults = correlationResults . sort ( // Sort the correlations from the biggest to the lowest value (absolute values)
function ( a , b ) {
if ( a [ 1 ] == b [ 1 ] )
return a [ 0 ] < b [ 0 ] ? - 1 : 1 ;
return a [ 1 ] < b [ 1 ] ? 1 : - 1 ;
}
) ;
for ( var j = 0 ; j < correlationResultsFinal . length ; j ++ ) {
for ( var i = 0 ; i < SignStore . length ; i ++ ) {
if ( SignStore [ i ] [ 1 ] * ( - 1 ) == correlationResults [ j ] [ 1 ] ) {
correlationResultsFinal [ j ] [ 1 ] = parseFloat ( ( correlationResultsFinal [ j ] [ 1 ] ) ) . toFixed ( 2 ) * ( - 1 ) ; // Give the negative sign if needed and multiply by 100
}
if ( SignStore [ i ] [ 1 ] == correlationResults [ j ] [ 1 ] ) {
correlationResultsFinal [ j ] [ 1 ] = parseFloat ( ( correlationResultsFinal [ j ] [ 1 ] ) ) . toFixed ( 2 ) ; // Give a positive sign and multiply by 100
}
}
}
}
drawBarChart ( ) ; // Draw the horizontal barchart with the correlations.
}
}
}
function drawBarChart ( ) { // Draw the horizontal barchart with the correlations.
// Remove any previous barchart.
d3 . selectAll ( "#correlation > *" ) . remove ( ) ;
/////////////////////////////////////////////////////////////
///////////////// Set-up SVG and wrappers ///////////////////
/////////////////////////////////////////////////////////////
var mainGroup = svg . append ( "g" )
. attr ( "class" , "mainGroupWrapper" )
. attr ( "transform" , "translate(" + main _margin . left + "," + main _margin . top + ")" )
. append ( "g" ) //another one for the clip path - due to not wanting to clip the labels
. attr ( "clip-path" , "url(#clip)" )
. style ( "clip-path" , "url(#clip)" )
. attr ( "class" , "mainGroup" ) ;
var miniGroup = svg . append ( "g" )
. attr ( "class" , "miniGroup" )
. attr ( "transform" , "translate(" + ( main _margin . left + main _width + main _margin . right + mini _margin . left ) + "," + mini _margin . top + ")" ) ;
var brushGroup = svg . append ( "g" )
. attr ( "class" , "brushGroup" )
. attr ( "transform" , "translate(" + ( main _margin . left + main _width + main _margin . right + mini _margin . left ) + "," + mini _margin . top + ")" ) ;
/////////////////////////////////////////////////////////////
////////////////////// Initiate scales //////////////////////
/////////////////////////////////////////////////////////////
main _xScale = d3v3 . scale . linear ( ) . range ( [ 0 , main _width ] ) ;
mini _xScale = d3v3 . scale . linear ( ) . range ( [ 0 , mini _width ] ) ;
main _yScale = d3v3 . scale . ordinal ( ) . rangeBands ( [ 0 , main _height ] , 0.4 , 0 ) ;
mini _yScale = d3v3 . scale . ordinal ( ) . rangeBands ( [ 0 , mini _height ] , 0.4 , 0 ) ;
//Based on the idea from: http://stackoverflow.com/questions/21485339/d3-brushing-on-grouped-bar-chart
main _yZoom = d3v3 . scale . linear ( )
. range ( [ 0 , main _height ] )
. domain ( [ 0 , main _height ] ) ;
//Create x axis object
main _xAxis = d3v3 . svg . axis ( )
. scale ( main _xScale )
. orient ( "bottom" )
. ticks ( 8 )
. outerTickSize ( 0 ) ;
//Add group for the x axis
d3v3 . select ( ".mainGroupWrapper" ) . append ( "g" )
. attr ( "class" , "x axis" )
. attr ( "transform" , "translate(" + 0 + "," + ( main _height + 5 ) + ")" ) ;
//Create y axis object
main _yAxis = d3v3 . svg . axis ( )
. scale ( main _yScale )
. orient ( "left" )
. tickSize ( 0 )
. outerTickSize ( 0 ) ;
//Add group for the y axis
mainGroup . append ( "g" )
. attr ( "class" , "y axis" )
. attr ( "transform" , "translate(-5,0)" ) ;
/////////////////////////////////////////////////////////////
/////////////////////// Update scales ///////////////////////
/////////////////////////////////////////////////////////////
//Update the scales
main _xScale . domain ( [ - 1 , 1 ] ) ;
mini _xScale . domain ( [ - 1 , 1 ] ) ;
main _yScale . domain ( correlationResultsFinal . map ( function ( d ) { return d [ 0 ] ; } ) ) ;
mini _yScale . domain ( correlationResultsFinal . map ( function ( d ) { return d [ 0 ] ; } ) ) ;
//Create the visual part of the y axis
d3v3 . select ( ".mainGroup" ) . select ( ".y.axis" ) . call ( main _yAxis ) ;
d3v3 . select ( ".mainGroupWrapper" ) . select ( ".x.axis" ) . call ( main _xAxis ) ;
/////////////////////////////////////////////////////////////
///////////////////// Label axis scales /////////////////////
/////////////////////////////////////////////////////////////
textScale = d3v3 . scale . linear ( )
. domain ( [ 15 , 50 ] )
. range ( [ 12 , 6 ] )
. clamp ( true ) ;
/////////////////////////////////////////////////////////////
///////////////////////// Create brush //////////////////////
/////////////////////////////////////////////////////////////
//What should the first extent of the brush become - a bit arbitrary this
brush = d3v3 . svg . brush ( )
. y ( mini _yScale )
. extent ( [ mini _yScale ( correlationResultsFinal [ 0 ] [ 0 ] ) , main _height ] )
. on ( "brush" , brushmove )
//Set up the visual part of the brush
gBrush = d3v3 . select ( ".brushGroup" ) . append ( "g" )
. attr ( "class" , "brush" )
. call ( brush ) ;
gBrush . selectAll ( ".resize" )
. append ( "line" )
. attr ( "x2" , mini _width ) ;
gBrush . selectAll ( ".resize" )
. append ( "path" )
. attr ( "d" , d3v3 . svg . symbol ( ) . type ( "triangle-up" ) . size ( 20 ) )
. attr ( "transform" , function ( d , i ) {
return i ? "translate(" + ( mini _width / 2 ) + "," + 4 + ") rotate(180)" : "translate(" + ( mini _width / 2 ) + "," + - 4 + ") rotate(0)" ;
} ) ;
gBrush . selectAll ( "rect" )
. attr ( "width" , mini _width ) ;
//On a click recenter the brush window
gBrush . select ( ".background" )
. on ( "mousedown.brush" , brushcenter )
. on ( "touchstart.brush" , brushcenter ) ;
///////////////////////////////////////////////////////////////////////////
/////////////////// Create a rainbow gradient - for fun ///////////////////
///////////////////////////////////////////////////////////////////////////
defs = svg . append ( "defs" )
//Create two separate gradients for the main and mini bar - just because it looks fun
createGradient ( "gradient-main" , "60%" ) ;
createGradient ( "gradient-mini" , "13%" ) ;
//Add the clip path for the main bar chart
defs . append ( "clipPath" )
. attr ( "id" , "clip" )
. append ( "rect" )
. attr ( "x" , - main _margin . left )
. attr ( "width" , main _width + main _margin . left )
. attr ( "height" , main _height ) ;
/////////////////////////////////////////////////////////////
/////////////// Set-up the mini bar chart ///////////////////
/////////////////////////////////////////////////////////////
//The mini brushable bar
//DATA JOIN
var mini _bar = d3v3 . select ( ".miniGroup" ) . selectAll ( ".bar" )
. data ( correlationResultsFinal , function ( d ) { return + d [ 2 ] ; } ) ;
//UDPATE
mini _bar
. attr ( "width" , function ( d ) { return Math . abs ( mini _xScale ( d [ 1 ] ) - mini _xScale ( 0 ) ) ; } )
. attr ( "y" , function ( d , i ) { return mini _yScale ( d [ 0 ] ) ; } )
. attr ( "height" , mini _yScale . rangeBand ( ) )
//ENTER
mini _bar . enter ( ) . append ( "rect" )
. attr ( "class" , "bar" )
. attr ( "x" , function ( d ) { return mini _xScale ( Math . min ( 0 , d [ 1 ] ) ) ; } )
. attr ( "width" , function ( d ) { return Math . abs ( mini _xScale ( d [ 1 ] ) - mini _xScale ( 0 ) ) ; } )
. attr ( "y" , function ( d , i ) { return mini _yScale ( d [ 0 ] ) ; } )
. attr ( "height" , mini _yScale . rangeBand ( ) )
. style ( "fill" , "url(#gradient-mini)" ) ;
//EXIT
mini _bar . exit ( )
. remove ( ) ;
//Start the brush
//gBrush.call(brush.event);
gBrush . call ( brush . event ) ;
prevRightClick = true ;
}
//Function runs on a brush move - to update the big bar chart
function updateBarChart ( ) {
/////////////////////////////////////////////////////////////
////////// Update the bars of the main bar chart ////////////
/////////////////////////////////////////////////////////////
var bar = d3v3 . select ( ".mainGroup" ) . selectAll ( ".bar" )
. data ( correlationResultsFinal , function ( d ) { return + d [ 2 ] ; } )
//, function(d) { return d.key; });
bar
. attr ( "x" , function ( d ) { return main _xScale ( Math . min ( 0 , d [ 1 ] ) ) ; } )
. attr ( "width" , function ( d ) { return Math . abs ( main _xScale ( d [ 1 ] ) - main _xScale ( 0 ) ) ; } )
. attr ( "y" , function ( d , i ) { return main _yScale ( d [ 0 ] ) ; } )
. attr ( "height" , main _yScale . rangeBand ( ) ) ;
//ENTER
bar . enter ( ) . append ( "rect" )
. attr ( "class" , "bar" )
. style ( "fill" , "url(#gradient-main)" )
. attr ( "x" , function ( d ) { return main _xScale ( Math . min ( 0 , d [ 1 ] ) ) ; } )
. attr ( "width" , function ( d ) { return Math . abs ( main _xScale ( d [ 1 ] ) - main _xScale ( 0 ) ) ; } )
. attr ( "y" , function ( d , i ) { return main _yScale ( d [ 0 ] ) ; } )
. attr ( "height" , main _yScale . rangeBand ( ) )
. on ( "mouseover" , ( ) => {
svg . select ( '.tooltip' ) . style ( 'display' , 'none' ) ;
} )
. on ( "click" , function ( d ) {
var flag = false ;
points . forEach ( function ( p ) {
if ( p . DimON == d [ 0 ] )
{
flag = true ;
}
} ) ;
if ( flag == false ) {
correlationResultsFinal . forEach ( function ( corr ) {
var str2 = corr [ 0 ] ;
var elements2 = $ ( "*:contains('" + str2 + "')" ) . filter (
function ( ) {
return $ ( this ) . find ( "*:contains('" + str2 + "')" ) . length == 0
}
) ;
elements2 [ 0 ] . style . fontWeight = 'normal' ;
if ( typeof elements2 [ 1 ] != "undefined" ) {
elements2 [ 1 ] . style . fontWeight = 'normal' ;
}
} ) ;
points . forEach ( function ( p ) {
if ( p . schemaInv == true ) {
p . DimON = d [ 0 ] ;
var str = p . DimON ;
var elements = $ ( "*:contains('" + str + "')" ) . filter (
function ( ) {
return $ ( this ) . find ( "*:contains('" + str + "')" ) . length == 0
}
) ;
elements [ 0 ] . style . fontWeight = 'bold' ;
}
} )
} else {
correlationResultsFinal . forEach ( function ( corr ) {
var str2 = corr [ 0 ] ;
var elements2 = $ ( "*:contains('" + str2 + "')" ) . filter (
function ( ) {
return $ ( this ) . find ( "*:contains('" + str2 + "')" ) . length == 0
}
) ;
elements2 [ 0 ] . style . fontWeight = 'normal' ;
if ( typeof elements2 [ 1 ] != "undefined" ) {
elements2 [ 1 ] . style . fontWeight = 'normal' ;
}
} ) ;
points . forEach ( function ( p ) {
p . DimON = null ;
} ) ;
}
BetatSNE ( points ) ;
} ) ;
//EXIT
bar . exit ( )
. remove ( ) ;
} //update
/////////////////////////////////////////////////////////////
////////////////////// Brush functions //////////////////////
/////////////////////////////////////////////////////////////
//First function that runs on a brush move
function brushmove ( ) {
var extent = brush . extent ( ) ;
//Reset the part that is visible on the big chart
var originalRange = main _yZoom . range ( ) ;
main _yZoom . domain ( extent ) ;
//Update the domain of the x & y scale of the big bar chart
main _yScale . domain ( correlationResultsFinal . map ( function ( d ) { return d [ 0 ] ; } ) ) ;
main _yScale . rangeBands ( [ main _yZoom ( originalRange [ 0 ] ) , main _yZoom ( originalRange [ 1 ] ) ] , 0.4 , 0 ) ;
//Update the y axis of the big chart
d3v3 . select ( ".mainGroup" )
. select ( ".y.axis" )
. select ( "textLength" , "10" )
. call ( main _yAxis ) ;
//Which bars are still "selected"
var selected = mini _yScale . domain ( )
. filter ( function ( d ) { return ( extent [ 0 ] - mini _yScale . rangeBand ( ) + 1e-2 <= mini _yScale ( d ) ) && ( mini _yScale ( d ) <= extent [ 1 ] - 1e-2 ) ; } ) ;
//Update the colors of the mini chart - Make everything outside the brush grey
d3 . select ( ".miniGroup" ) . selectAll ( ".bar" )
. style ( "fill" , function ( d , i ) { return selected . indexOf ( d [ 0 ] ) > - 1 ? "url(#gradient-mini)" : "#e0e0e0" ; } ) ;
//Update the label size
d3v3 . selectAll ( ".y.axis text" )
. style ( "font-size" , textScale ( selected . length ) ) ;
//Update the big bar chart
updateBarChart ( ) ;
} //brushmove
/////////////////////////////////////////////////////////////
////////////////////// Click functions //////////////////////
/////////////////////////////////////////////////////////////
//Based on http://bl.ocks.org/mbostock/6498000
//What to do when the user clicks on another location along the brushable bar chart
function brushcenter ( ) {
var target = d3v3 . event . target ,
extent = brush . extent ( ) ,
size = extent [ 1 ] - extent [ 0 ] ,
range = mini _yScale . range ( ) ,
y0 = d3v3 . min ( range ) + size / 2 ,
y1 = d3 . max ( range ) + mini _yScale . rangeBand ( ) - size / 2 ,
center = Math . max ( y0 , Math . min ( y1 , d3 . mouse ( target ) [ 1 ] ) ) ;
d3v3 . event . stopPropagation ( ) ;
gBrush
. call ( brush . extent ( [ center - size / 2 , center + size / 2 ] ) )
. call ( brush . event ) ;
} //brushcenter
function scroll ( ) {
//Mouse scroll on the mini chart
var extent = brush . extent ( ) ,
size = extent [ 1 ] - extent [ 0 ] ,
range = mini _yScale . range ( ) ,
y0 = d3v3 . min ( range ) ,
y1 = d3v3 . max ( range ) + mini _yScale . rangeBand ( ) ,
dy = d3v3 . event . deltaY ,
topSection ;
if ( extent [ 0 ] - dy < y0 ) { topSection = y0 ; }
else if ( extent [ 1 ] - dy > y1 ) { topSection = y1 - size ; }
else { topSection = extent [ 0 ] - dy ; }
//Make sure the page doesn't scroll as well
d3v3 . event . stopPropagation ( ) ;
d3v3 . event . preventDefault ( ) ;
gBrush
. call ( brush . extent ( [ topSection , topSection + size ] ) )
. call ( brush . event ) ;
} //scroll
/////////////////////////////////////////////////////////////
///////////////////// Helper functions //////////////////////
/////////////////////////////////////////////////////////////
//Create a gradient
function createGradient ( idName , endPerc ) {
var colorsBarChart = [ '#919191' ] ;
colorsBarChart . reverse ( ) ;
defs . append ( "linearGradient" )
. attr ( "id" , idName )
. attr ( "gradientUnits" , "userSpaceOnUse" )
. attr ( "x1" , "0%" ) . attr ( "y1" , "0%" )
. attr ( "x2" , endPerc ) . attr ( "y2" , "0%" )
. selectAll ( "stop" )
. data ( colorsBarChart )
. enter ( ) . append ( "stop" )
. attr ( "offset" , function ( d , i ) { return i / ( colorsBarChart . length - 1 ) ; } )
. attr ( "stop-color" , function ( d ) { return d ; } ) ;
} //createGradient
function mapOrder ( array , order , key ) { // Order an array according to a key.
array . sort ( function ( a , b ) {
var A = a [ key ] , B = b [ key ] ;
if ( order . indexOf ( A ) > order . indexOf ( B ) ) {
return 1 ;
} else {
return - 1 ;
}
} ) ;
return array ;
} ;
/ * *
* Calculate the person correlation score between two items in a dataset .
*
* @ param { object } prefs The dataset containing data about both items that
* are being compared .
* @ param { string } p1 Item one for comparison .
* @ param { string } p2 Item two for comparison .
* @ return { float } The pearson correlation score .
* /
function pearsonCorrelation ( prefs , p1 , p2 ) {
var si = [ ] ;
for ( var key in prefs [ p1 ] ) {
if ( prefs [ p2 ] [ key ] ) si . push ( key ) ;
}
var n = si . length ;
if ( n == 0 ) return 0 ;
var sum1 = 0 ;
for ( var i = 0 ; i < si . length ; i ++ ) sum1 += prefs [ p1 ] [ si [ i ] ] ;
var sum2 = 0 ;
for ( var i = 0 ; i < si . length ; i ++ ) sum2 += prefs [ p2 ] [ si [ i ] ] ;
var sum1Sq = 0 ;
for ( var i = 0 ; i < si . length ; i ++ ) {
sum1Sq += Math . pow ( prefs [ p1 ] [ si [ i ] ] , 2 ) ;
}
var sum2Sq = 0 ;
for ( var i = 0 ; i < si . length ; i ++ ) {
sum2Sq += Math . pow ( prefs [ p2 ] [ si [ i ] ] , 2 ) ;
}
var pSum = 0 ;
for ( var i = 0 ; i < si . length ; i ++ ) {
pSum += prefs [ p1 ] [ si [ i ] ] * prefs [ p2 ] [ si [ i ] ] ;
}
var num = pSum - ( sum1 * sum2 / n ) ;
var den = Math . sqrt ( ( sum1Sq - Math . pow ( sum1 , 2 ) / n ) *
( sum2Sq - Math . pow ( sum2 , 2 ) / n ) ) ;
if ( den == 0 ) return 0 ;
return num / den ;
}
function closestPoint ( pathNode , point ) {
var pathLength = pathNode . getTotalLength ( ) ,
precision = 8 ,
best ,
bestLength ,
bestDistance = Infinity ;
// linear scan for coarse approximation
for ( var scan , scanLength = 0 , scanDistance ; scanLength <= pathLength ; scanLength += precision ) {
if ( ( scanDistance = distance2 ( scan = pathNode . getPointAtLength ( scanLength ) ) ) < bestDistance ) {
best = scan , bestLength = scanLength , bestDistance = scanDistance ;
}
}
// binary search for precise estimate
precision /= 2 ;
while ( precision > 0.5 ) {
var before ,
after ,
beforeLength ,
afterLength ,
beforeDistance ,
afterDistance ;
if ( ( beforeLength = bestLength - precision ) >= 0 && ( beforeDistance = distance2 ( before = pathNode . getPointAtLength ( beforeLength ) ) ) < bestDistance ) {
best = before , bestLength = beforeLength , bestDistance = beforeDistance ;
} else if ( ( afterLength = bestLength + precision ) <= pathLength && ( afterDistance = distance2 ( after = pathNode . getPointAtLength ( afterLength ) ) ) < bestDistance ) {
best = after , bestLength = afterLength , bestDistance = afterDistance ;
} else {
precision /= 2 ;
}
}
best = [ best . x , best . y ] ;
best . distance = Math . sqrt ( bestDistance ) ;
best . id = point [ 2 ] ;
return best ;
function distance2 ( p ) {
var dx = p . x - point [ 0 ] ,
dy = p . y - point [ 1 ] ;
return dx * dx + dy * dy ;
}
}
function abbreviateNumber ( value ) { // Abbreviate the numbers for the main visualization legend!
var newValue = value ;
if ( value >= 1000 ) {
var suffixes = [ "" , "k" , "m" , "b" , "t" ] ;
var suffixNum = Math . floor ( ( "" + value ) . length / 3 ) ;
var shortValue = '' ;
for ( var precision = 2 ; precision >= 1 ; precision -- ) {
shortValue = parseFloat ( ( suffixNum != 0 ? ( value / Math . pow ( 1000 , suffixNum ) ) : value ) . toPrecision ( precision ) ) ;
var dotLessShortValue = ( shortValue + '' ) . replace ( /[^a-zA-Z 0-9]+/g , '' ) ;
if ( dotLessShortValue . length <= 2 ) { break ; }
}
if ( shortValue % 1 != 0 ) shortNum = shortValue . toFixed ( 1 ) ;
newValue = shortValue + suffixes [ suffixNum ] ;
}
return newValue ;
}
function clearThree ( obj ) { // Clear three.js object!
while ( obj . children . length > 0 ) {
clearThree ( obj . children [ 0 ] )
obj . remove ( obj . children [ 0 ] ) ;
}
if ( obj . geometry ) obj . geometry . dispose ( )
if ( obj . material ) obj . material . dispose ( )
if ( obj . texture ) obj . texture . dispose ( )
}
var viewport3 = getViewport ( ) ; // Get the width and height of the main visualization
var vw3 = viewport3 [ 0 ] * 0.2 ;
var margin = { top : 40 , right : 100 , bottom : 40 , left : 190 } , // Set the margins for the pcp
width = Math . min ( vw3 , window . innerWidth - 10 ) - margin . left - margin . right ,
height = Math . min ( width , window . innerHeight - margin . top - margin . bottom ) ;
function BetatSNE ( points ) { // Run the main visualization
inside = inside + 1 ;
if ( points . length ) { // If points exist (at least 1 point)
selectedPoints = [ ] ;
var findNearestTable = [ ] ;
var howManyPoints = 0 ;
for ( let m = 0 ; m < points . length ; m ++ ) {
//if (points[m].id == 257){
if ( points [ m ] . selected == true ) {
howManyPoints = howManyPoints + 1 ;
selectedPoints . push ( points [ m ] ) ; // Add the selected points in to a new variable
}
}
var indexOrder = [ ] ;
var indexOrder2d = [ ] ;
var indices = new Array ( selectedPoints . length ) ;
var indices2d = new Array ( selectedPoints . length ) ;
var findNearest ;
var viewport = getViewport ( ) ; // Get the main viewport width height
var vw = viewport [ 0 ] * 0.5 ;
var vh = viewport [ 1 ] * 0.042 ;
var maxKNN = Math . round ( document . getElementById ( "param-perplexity-value" ) . value * 1.25 ) ; // Specify the amount of k neighborhoods that we are going to calculate. According to "perplexity."
//var maxKNN = 1;
selectedPoints . sort ( function ( a , b ) { // Sort the points according to ID.
return parseFloat ( a . id ) - parseFloat ( b . id ) ;
} ) ;
for ( k = maxKNN ; k > 0 ; k -- ) { // Start from the maximum k value and go to the minimum (k=2).
var findNearest = [ ] ;
var indexOrderSliced = [ ] ;
var indexOrderSliced2d = [ ] ;
var count = [ ] ;
var findNearestAVG = 0 ;
var sumIntersection = [ ] ;
var sumUnion = [ ] ;
for ( var i = 0 ; i < selectedPoints . length ; i ++ ) {
count [ i ] = 0 ;
var id = selectedPoints [ i ] . id ;
// Temporary array holds objects with position and sort-value
indices [ i ] = dists [ id ] . map ( function ( el , j ) {
return [ j , el ] ;
} )
indices2d [ i ] = dists2d [ id ] . map ( function ( el , j ) {
return [ j , el ] ;
} )
if ( k == maxKNN ) {
for ( var j = id + 1 ; j < points . length ; j ++ ) { // For the selected points check the purity of the cluster.
indices [ i ] . push ( [ j , dists [ j ] [ id ] ] ) ;
indices2d [ i ] . push ( [ j , dists2d [ j ] [ id ] ] ) ;
}
// Sorting the mapped array containing the reduced values
indices [ i ] . sort ( function ( a , b ) {
if ( a [ 1 ] > b [ 1 ] ) {
return 1 ;
}
if ( a [ 1 ] < b [ 1 ] ) {
return - 1 ;
}
return 0 ;
} ) ;
indexOrder [ i ] = indices [ i ] . map ( function ( value ) { return value [ 0 ] ; } ) ;
// Sorting the mapped array containing the reduced values
indices2d [ i ] . sort ( function ( a , b ) {
if ( a [ 1 ] > b [ 1 ] ) {
return 1 ;
}
if ( a [ 1 ] < b [ 1 ] ) {
return - 1 ;
}
return 0 ;
} ) ;
indexOrder2d [ i ] = indices2d [ i ] . map ( function ( value ) { return value [ 0 ] ; } ) ;
}
indexOrderSliced [ i ] = indexOrder [ i ] . slice ( 0 , k ) ;
indexOrderSliced2d [ i ] = indexOrder2d [ i ] . slice ( 0 , k ) ;
for ( var m = 0 ; m < indexOrderSliced2d [ i ] . length ; m ++ ) {
if ( indexOrderSliced [ i ] . includes ( indexOrderSliced2d [ i ] [ m ] ) ) { // Union
count [ i ] = count [ i ] + 1 ;
}
}
sumIntersection . push ( count [ i ] ) ;
sumUnion . push ( ( k * 2 - sumIntersection [ i ] ) ) ;
}
for ( var i = 0 ; i < selectedPoints . length ; i ++ ) {
findNearest [ i ] = sumIntersection [ i ] / sumUnion [ i ] ;
findNearestAVG = findNearestAVG + findNearest [ i ] ;
}
findNearestAVG = findNearestAVG / selectedPoints . length ; // Nearest neighbor!
if ( isNaN ( findNearestAVG ) ) {
findNearestAVG = 0 ; // If kNN is fully uncorrelated then we say that the value is 0.
}
findNearestTable . push ( findNearestAVG . toFixed ( 2 ) ) ; // These values are multiplied by the height of the viewport because we need to draw the bins of the barchart representation
}
findNearestTable . reverse ( ) ;
d3 . select ( "#hider" ) . style ( "z-index" , 1 ) ;
d3 . select ( "#knnBarChart" ) . style ( "z-index" , 2 ) ;
var data = [ ] ;
var layout = [ ] ;
var kValuesLegend = [ ] ;
for ( var i = 1 ; i <= maxKNN ; i ++ ) {
kValuesLegend . push ( i ) ;
}
if ( inside == 1 ) {
StoreInitialFindNearestTable = findNearestTable ;
}
var trace1 = {
x : kValuesLegend ,
y : StoreInitialFindNearestTable ,
name : 'Entire Projection' ,
type : 'bar' ,
marker : {
color : 'rgb(0,0,0)'
}
} ;
var trace2 = {
x : kValuesLegend ,
y : findNearestTable ,
name : 'Lasso Selected Cluster' ,
type : 'bar' ,
marker : {
color : 'rgb(0, 187, 187)'
}
} ;
var LimitXaxis = Number ( maxKNN ) + 1 ;
data = [ trace1 , trace2 ] ;
layout = {
barmode : 'group' , autosize : false ,
width : dimensions * 0.97 ,
height : vh * 1.38 ,
margin : {
l : 50 ,
r : 30 ,
b : 30 ,
t : 5 ,
pad : 4
} ,
xaxis : { range : [ 0 , LimitXaxis ] ,
title : 'K Values for K-NN' ,
titlefont : {
size : 12 ,
color : 'black'
} } ,
yaxis : {
title : 'Cl. Purity' ,
titlefont : {
size : 12 ,
color : 'black'
} } } ;
$ ( "#knnBarChartDetails" ) . html ( "(Number of Selected Points: " + howManyPoints + "/" + dataFeatures . length + ")" ) ;
Plotly . newPlot ( 'knnBarChart' , data , layout , { displayModeBar : false } , { staticPlot : true } ) ;
// Here we have the code for the pcp
d3 . select ( "#PCP" ) . selectAll ( 'g' ) . remove ( ) ; // Remove the pcp if there was one before
var coun = 0 ;
for ( var i = 0 ; i < selectedPoints . length ; i ++ ) {
if ( selectedPoints [ i ] . pcp == true ) { // Count the selected points
coun = coun + 1 ;
}
}
var FeatureWise = [ ] ;
for ( var j = 0 ; j < Object . values ( dataFeatures [ 0 ] ) . length ; j ++ ) { // Get the features of the data set.
for ( var i = 0 ; i < dataFeatures . length ; i ++ ) {
if ( ! isNaN ( Object . values ( dataFeatures [ i ] ) [ j ] ) ) {
FeatureWise . push ( Object . values ( dataFeatures [ i ] ) [ j ] ) ;
}
}
}
var max = [ ] ;
var min = [ ] ;
var vectors = [ ] ;
var FeatureWiseSlicedArray = [ ] ;
for ( var j = 0 ; j < Object . values ( dataFeatures [ 0 ] ) . length ; j ++ ) {
var FeatureWiseSliced = FeatureWise . slice ( 0 + ( j * dataFeatures . length ) , dataFeatures . length + j * dataFeatures . length ) ;
if ( FeatureWiseSliced != "" ) {
FeatureWiseSlicedArray . push ( FeatureWiseSliced ) ;
}
max [ j ] = FeatureWiseSliced [ 0 ] ;
min [ j ] = FeatureWiseSliced [ 0 ] ;
for ( var i = 0 ; i < FeatureWiseSliced . length ; i ++ ) {
if ( max [ j ] < FeatureWiseSliced [ i ] ) {
max [ j ] = FeatureWiseSliced [ i ] ;
}
if ( min [ j ] > FeatureWiseSliced [ i ] ) {
min [ j ] = FeatureWiseSliced [ i ] ;
}
}
}
var vectors = PCA . getEigenVectors ( ArrayContainsDataFeaturesClearedwithoutNull ) ; // Run a local PCA!
var PCAResults = PCA . computeAdjustedData ( ArrayContainsDataFeaturesClearedwithoutNull , vectors [ 0 ] ) ; // Get the results for individual dimension.
var PCASelVec = [ ] ;
PCASelVec = PCAResults . selectedVectors [ 0 ] ;
var len = PCASelVec . length ;
var indices = new Array ( len ) ;
for ( var i = 0 ; i < len ; ++ i ) indices [ i ] = i ;
indices = indices . sort ( function ( a , b ) { return PCASelVec [ a ] < PCASelVec [ b ] ? - 1 : PCASelVec [ a ] > PCASelVec [ b ] ? 1 : 0 ; } ) ; // Get the most important features first! Clockwise ordering
if ( len > 8 ) {
indices = indices . slice ( 0 , 8 ) ;
}
emptyPCP ( ) ;
var parcoords = d3v3 . parcoords ( ) ( "#PCP" ) ;
// Remove or add that if you want to achieve a different effect when you have less than 10 points.
var wrapData2 = [ ] ;
for ( var i = 0 ; i < selectedPoints . length ; i ++ ) {
var data = [ ] ;
for ( var j = 0 ; j < Object . keys ( dataFeatures [ selectedPoints [ i ] . id ] ) . length ; j ++ ) {
for ( m = 0 ; m < len ; m ++ ) {
if ( j == Object . keys ( dataFeatures [ selectedPoints [ i ] . id ] ) . length - 1 ) {
if ( format [ 0 ] == "diabetes" ) {
if ( Object . values ( dataFeatures [ selectedPoints [ i ] . id ] ) [ j ] == 1 ) {
Object . assign ( data , { [ Object . keys ( dataFeatures [ selectedPoints [ i ] . id ] ) [ j ] . replace ( "*" , "" ) ] : "Positive" } ) ; // Push the values into the pcp
} else {
Object . assign ( data , { [ Object . keys ( dataFeatures [ selectedPoints [ i ] . id ] ) [ j ] . replace ( "*" , "" ) ] : "Negative" } ) ; // Push the values into the pcp
}
} else {
Object . assign ( data , { [ Object . keys ( dataFeatures [ selectedPoints [ i ] . id ] ) [ j ] . replace ( "*" , "" ) ] : ( Object . values ( dataFeatures [ selectedPoints [ i ] . id ] ) [ j ] ) } ) ; // Push the values into the pcp
}
} else {
if ( indices [ m ] == j ) {
Object . assign ( data , { [ Object . keys ( dataFeatures [ selectedPoints [ i ] . id ] ) [ m ] ] : parseFloat ( Object . values ( dataFeatures [ selectedPoints [ i ] . id ] ) [ m ] ) . toFixed ( 1 ) } ) ; // Push the values into the pcp
}
}
}
}
wrapData2 . push ( data ) ;
}
var CategoryReplaced = Category . replace ( "*" , "" ) ;
wrapData2 . sort ( function ( a , b ) {
if ( a [ CategoryReplaced ] < b [ CategoryReplaced ] ) { return - 1 ; }
if ( a [ CategoryReplaced ] > b [ CategoryReplaced ] ) { return 1 ; }
return 0 ;
} )
function sortByFrequency ( array ) {
var frequency = { } ;
var CategoryReplaced = Category . replace ( "*" , "" ) ;
array . forEach ( function ( value ) { frequency [ value [ CategoryReplaced ] ] = 0 ; } ) ;
var uniques = array . filter ( function ( value ) {
return ++ frequency [ value [ CategoryReplaced ] ] == 1 ;
} ) ;
var result = uniques . map ( function ( value ) {
return frequency [ value [ CategoryReplaced ] ] ;
} ) ;
return result ;
}
var lessmore = sortByFrequency ( wrapData2 ) ;
if ( lessmore [ 0 ] < lessmore [ 1 ] ) {
wrapData2 . reverse ( ) ;
}
var AllPointsWrapData2 = [ ] ;
for ( var i = 0 ; i < points . length ; i ++ ) {
var data = [ ] ;
for ( var j = 0 ; j < Object . keys ( dataFeatures [ points [ i ] . id ] ) . length ; j ++ ) {
for ( m = 0 ; m < len ; m ++ ) {
if ( j == Object . keys ( dataFeatures [ points [ i ] . id ] ) . length - 1 ) {
if ( format [ 0 ] == "diabetes" ) {
if ( Object . values ( dataFeatures [ points [ i ] . id ] ) [ j ] == 1 ) {
Object . assign ( data , { [ Object . keys ( dataFeatures [ points [ i ] . id ] ) [ j ] . replace ( "*" , "" ) ] : "Positive" } ) ; // Push the values into the pcp
} else {
Object . assign ( data , { [ Object . keys ( dataFeatures [ points [ i ] . id ] ) [ j ] . replace ( "*" , "" ) ] : "Negative" } ) ; // Push the values into the pcp
}
} else {
Object . assign ( data , { [ Object . keys ( dataFeatures [ points [ i ] . id ] ) [ j ] . replace ( "*" , "" ) ] : ( Object . values ( dataFeatures [ points [ i ] . id ] ) [ j ] ) } ) ; // Push the values into the pcp
}
} else {
if ( indices [ m ] == j ) {
Object . assign ( data , { [ Object . keys ( dataFeatures [ points [ i ] . id ] ) [ m ] ] : parseFloat ( Object . values ( dataFeatures [ points [ i ] . id ] ) [ m ] ) . toFixed ( 1 ) } ) ; // Push the values into the pcp
}
}
}
}
AllPointsWrapData2 . push ( data ) ;
}
AllPointsWrapData2 . sort ( function ( a , b ) {
if ( a [ CategoryReplaced ] < b [ CategoryReplaced ] ) { return - 1 ; }
if ( a [ CategoryReplaced ] > b [ CategoryReplaced ] ) { return 1 ; }
return 0 ;
} )
if ( all _labels [ 0 ] == undefined ) {
var colorScaleCat = d3 . scaleOrdinal ( ) . domain ( [ "No Category" ] ) . range ( [ "#C0C0C0" ] ) ;
}
else {
if ( format [ 0 ] == "diabetes" ) {
for ( var i = 0 ; i < all _labels . length ; i ++ ) {
if ( all _labels [ i ] == 1 ) {
all _labels [ i ] = "Positive" ;
} else {
all _labels [ i ] = "Negative" ;
}
}
}
var colorScaleCat = d3 . scaleOrdinal ( ) . domain ( all _labels ) . range ( ColorsCategorical ) ;
}
if ( AllPointsWrapData2 . length == wrapData2 . length ) {
parcoords
. data ( AllPointsWrapData2 )
. alpha ( 0.35 )
. composite ( "darken" )
. margin ( { top : 20 , left : 0 , bottom : 10 , right : - 5 } )
. mode ( "default" )
. color ( function ( d ) { if ( format [ 0 ] == "diabetes" ) { if ( d [ Category . replace ( "*" , "" ) ] == "Negative" ) { return colorScaleCat ( "Positive" ) ; } else { return colorScaleCat ( "Negative" ) ; } } else { return colorScaleCat ( d [ Category . replace ( "*" , "" ) ] ) ; } } )
. render ( )
. createAxes ( ) ;
parcoords . svg . selectAll ( "text" )
. style ( "font" , "14px" ) ;
} else {
parcoords
. data ( AllPointsWrapData2 )
. composite ( "darken" )
. margin ( { top : 20 , left : 0 , bottom : 10 , right : - 5 } )
. mode ( "default" )
. color ( function ( d ) { if ( format [ 0 ] == "diabetes" ) { if ( d [ Category . replace ( "*" , "" ) ] == "Negative" ) { return colorScaleCat ( "Positive" ) ; } else { return colorScaleCat ( "Negative" ) ; } } else { return colorScaleCat ( d [ Category . replace ( "*" , "" ) ] ) ; } } )
. render ( )
. highlight ( wrapData2 )
. createAxes ( ) ;
}
//}
var ColSizeSelector = document . getElementById ( "param-neighborHood" ) . value ; // This is the mapping of the color/size in beta/KLD
d3 . selectAll ( "#legend4 > *" ) . remove ( ) ;
if ( ColSizeSelector == "color" ) { // If we have beta into color then calculate the color scales
var max = ( d3 . max ( points , function ( d ) { return d . beta ; } ) ) ;
var min = ( d3 . min ( points , function ( d ) { return d . beta ; } ) ) ;
// colors
var colorbrewer = [ "#ffffcc" , "#ffeda0" , "#fed976" , "#feb24c" , "#fd8d3c" , "#fc4e2a" , "#e31a1c" , "#bd0026" , "#800026" ] ;
var calcStep = ( max ) / 8 ;
var colorScale = d3 . scaleLinear ( )
. domain ( d3 . range ( 0 , max + calcStep , calcStep ) )
. range ( colorbrewer ) ;
var costLimiter = document . getElementById ( "param-costlim" ) . value ;
var maxSize1 = ( d3 . max ( points , function ( d ) { return d . cost ; } ) ) ;
points = points . sort ( function ( a , b ) { // Sort them according to importance (darker color!)
return a . cost - b . cost ;
} )
var temp = parseInt ( ( 1 - costLimiter ) * points . length ) ;
var minSize1 = points [ temp ] . cost ;
for ( var i = temp + 1 ; i < points . length ; i ++ ) {
if ( minSize1 > points [ i ] . cost ) {
minSize1 = points [ i ] . cost ;
}
}
var rscale1 = d3 . scaleLinear ( )
. domain ( [ minSize1 , maxSize1 ] )
. range ( [ 5 , parseInt ( 12 - ( 1 - document . getElementById ( "param-costlim" ) . value ) * 7 ) ] ) ;
var calcStepSize1 = ( maxSize1 - minSize1 ) ;
var limitdist = document . getElementById ( "param-lim-value" ) . value ;
limitdist = parseFloat ( limitdist ) . toFixed ( 1 ) ;
var legendScale1 = d3 . scaleLinear ( )
. domain ( d3 . range ( minSize1 , maxSize1 + calcStepSize1 , calcStepSize1 ) )
. range ( [ 5 * limitdist / 2 , ( parseInt ( 12 - ( 1 - document . getElementById ( "param-costlim" ) . value ) * 7 ) ) * limitdist / 2 ] ) ;
var colorScale = d3 . scaleLinear ( )
. domain ( d3 . range ( 0 , max + calcStep , calcStep ) )
. range ( colorbrewer ) ;
points = points . sort ( function ( a , b ) { // Sort them according to importance (darker color!)
return a . beta - b . beta ;
} )
var labels _beta = [ ] ;
var abbr _labels _beta = [ ] ;
var calcStep = ( max ) / 8 ;
labels _beta = d3 . range ( 0 , max + calcStep , calcStep ) ;
for ( var i = 0 ; i < 9 ; i ++ ) {
labels _beta [ i ] = parseInt ( labels _beta [ i ] ) ;
abbr _labels _beta [ i ] = abbreviateNumber ( labels _beta [ i ] ) ;
}
var svg = d3 . select ( "#legend1" ) ;
svg . append ( "g" )
. attr ( "class" , "legendLinear" )
. attr ( "transform" , "translate(10,15)" ) ;
var legend = d3 . legendColor ( )
. labelFormat ( d3 . format ( ",.0f" ) )
. cells ( 9 )
. labels ( [ abbr _labels _beta [ 0 ] , abbr _labels _beta [ 1 ] , abbr _labels _beta [ 2 ] , abbr _labels _beta [ 3 ] , abbr _labels _beta [ 4 ] , abbr _labels _beta [ 5 ] , abbr _labels _beta [ 6 ] , abbr _labels _beta [ 7 ] , abbr _labels _beta [ 8 ] ] )
. title ( "1/sigma" )
. scale ( colorScale ) ;
svg . select ( ".legendLinear" )
. call ( legend ) ;
var svg = d3 . select ( "#legend4" ) ;
svg . append ( "g" )
. attr ( "class" , "legendSize" )
. attr ( "transform" , "translate(10,20)" ) ;
var SizeRange1 = [ ] ;
SizeRange1 . push ( ( minSize1 ) . toFixed ( 3 ) ) ;
SizeRange1 . push ( ( ( maxSize1 - minSize1 ) / 2 ) . toFixed ( 3 ) ) ;
SizeRange1 . push ( ( maxSize1 ) . toFixed ( 3 ) ) ;
var legendSize1 = d3 . legendSize ( )
. scale ( legendScale1 )
. labelFormat ( d3 . format ( ",.5f" ) )
. cells ( 3 )
. shape ( 'circle' )
. labels ( [ SizeRange1 [ 0 ] , SizeRange1 [ 1 ] , SizeRange1 [ 2 ] ] )
. shapePadding ( 10 )
. labelOffset ( 5 )
. title ( "KLD(P||Q)" )
. orient ( 'vertical' ) ;
svg . select ( ".legendSize" )
. call ( legendSize1 ) ;
var circles = document . getElementsByClassName ( "swatch" ) ;
for ( var i = 0 ; i < circles . length ; i ++ ) {
if ( circles [ i ] . localName == "circle" ) {
circles [ i ] . style . fill = "rgb(0,128,0)" ;
}
}
} else { // If we have cost into color then calculate the color scales
var costLimiter = document . getElementById ( "param-costlim" ) . value ;
points = points . sort ( function ( a , b ) { // Sort them according to importance (darker color!)
return a . cost - b . cost ;
} )
var temp = parseInt ( ( 1 - costLimiter ) * points . length ) ;
var min = points [ temp ] . cost ;
for ( var i = temp + 1 ; i < points . length ; i ++ ) {
if ( min > points [ i ] . cost ) {
min = points [ i ] . cost ;
}
}
var max = ( d3 . max ( points , function ( d ) { return d . cost ; } ) ) ;
var maxSize2 = ( d3 . max ( points , function ( d ) { return d . beta ; } ) ) ;
var minSize2 = ( d3 . min ( points , function ( d ) { return d . beta ; } ) ) ;
var rscale2 = d3 . scaleLinear ( )
. domain ( [ 0 , maxSize2 ] )
. range ( [ 5 , 12 ] ) ;
d3 . selectAll ( "#legend1 > *" ) . remove ( ) ;
var colorbrewer = [ '#d9f0a3' , '#addd8e' , '#78c679' , '#41ab5d' , '#238443' , '#006837' , '#004529' ] ;
var calcStep = ( ( max - min ) / 6 ) ;
var colorScale = d3 . scaleLinear ( )
. domain ( d3 . range ( min , max + calcStep , calcStep ) )
. range ( colorbrewer ) ;
var labels _cost = [ ] ;
var abbr _labels _cost = [ ] ;
labels _cost = d3 . range ( min , max + calcStep , calcStep ) ;
for ( var i = 0 ; i < 7 ; i ++ ) {
labels _cost [ i ] = labels _cost [ i ] . toFixed ( 5 ) ;
abbr _labels _cost [ i ] = abbreviateNumber ( labels _cost [ i ] ) ;
}
var svg = d3 . select ( "#legend1" ) ; // Add the legend for the beta/cost
svg . append ( "g" )
. attr ( "class" , "legendLinear" )
. attr ( "transform" , "translate(10,15)" ) ;
var legend = d3 . legendColor ( )
. labelFormat ( d3 . format ( ",.5f" ) )
. cells ( 7 )
. labels ( [ abbr _labels _cost [ 0 ] , abbr _labels _cost [ 1 ] , abbr _labels _cost [ 2 ] , abbr _labels _cost [ 3 ] , abbr _labels _cost [ 4 ] , abbr _labels _cost [ 5 ] , abbr _labels _cost [ 6 ] ] )
. title ( "KLD(P||Q)" )
. scale ( colorScale ) ;
svg . select ( ".legendLinear" )
. call ( legend ) ;
var calcStepSize2 = parseInt ( maxSize2 / 2 ) ;
var limitdist = document . getElementById ( "param-lim-value" ) . value ;
limitdist = parseFloat ( limitdist ) . toFixed ( 1 ) ;
var legendScale2 = d3 . scaleLinear ( )
. domain ( d3 . range ( 0 , parseInt ( maxSize2 ) , calcStepSize2 ) )
. range ( [ 5 * limitdist / 2 , 12 * limitdist / 2 ] ) ;
var svg = d3 . select ( "#legend4" ) ;
svg . append ( "g" )
. attr ( "class" , "legendSize" )
. attr ( "transform" , "translate(10,10)" ) ;
var SizeRange2 = [ ] ;
SizeRange2 . push ( 0 ) ;
var temporalvalue = parseInt ( maxSize2 / 2 ) ;
SizeRange2 . push ( abbreviateNumber ( temporalvalue ) ) ;
SizeRange2 . push ( abbreviateNumber ( parseInt ( maxSize2 ) ) ) ;
var legendSize2 = d3 . legendSize ( )
. scale ( legendScale2 )
. labelFormat ( d3 . format ( ",.0f" ) )
. cells ( 3 )
. shape ( 'circle' )
. labels ( [ SizeRange2 [ 0 ] , SizeRange2 [ 1 ] , SizeRange2 [ 2 ] ] )
. shapePadding ( 10 )
. labelOffset ( 5 )
. title ( "1/sigma" )
. orient ( 'vertical' ) ;
svg . select ( ".legendSize" )
. call ( legendSize2 ) ;
var circles = document . getElementsByClassName ( "swatch" ) ;
for ( var i = 0 ; i < circles . length ; i ++ ) {
if ( circles [ i ] . localName == "circle" ) {
circles [ i ] . style . fill = "rgb(128,0,0)" ;
}
}
}
let tempSort = - 1 ;
for ( var i = 0 ; i < points . length ; i ++ ) { // Sort according to dimension on hover on top of a dimension of the correlation barchart.
if ( points [ i ] . DimON != null ) {
tempSort = points [ i ] . DimON . match ( /\d+/ ) [ 0 ] ;
}
}
if ( tempSort != - 1 ) {
points = points . sort ( function ( a , b ) {
return a [ tempSort ] - b [ tempSort ] ;
} )
}
var temp = 0 ;
let zoom = d3 . zoom ( )
. scaleExtent ( [ getScaleFromZ ( far ) , getScaleFromZ ( near ) ] )
. on ( 'zoom' , ( ) => {
temp = temp + 1 ;
let d3 _transform = d3 . event . transform ;
zoomHandler ( d3 _transform ) ;
if ( temp > 2 ) {
var frustum = new THREE . Frustum ( ) ;
var cameraViewProjectionMatrix = new THREE . Matrix4 ( ) ;
// every time the camera or objects change position (or every frame)
camera . updateMatrixWorld ( ) ; // make sure the camera matrix is updated
camera . matrixWorldInverse . getInverse ( camera . matrixWorld ) ;
cameraViewProjectionMatrix . multiplyMatrices ( camera . projectionMatrix , camera . matrixWorldInverse ) ;
frustum . setFromMatrix ( cameraViewProjectionMatrix ) ;
// frustum is now ready to check all the objects you need
VisiblePoints = [ ] ;
for ( var l = 0 ; l < scene . children . length - 1 ; l ++ ) {
if ( frustum . intersectsObject ( scene . children [ l ] ) ) {
VisiblePoints . push ( scene . children [ l ] . geometry . name ) ;
}
}
OverviewtSNE ( points ) ;
}
} ) ;
view = d3 . select ( renderer . domElement ) ;
function setUpZoom ( ) {
view . call ( zoom ) ;
let initial _scale = getScaleFromZ ( far ) ;
var initial _transform = d3 . zoomIdentity . translate ( dimensions / 2 , dimensions / 2 ) . scale ( initial _scale ) ;
zoom . transform ( view , initial _transform ) ;
camera . position . set ( 0 , 0 , far ) ;
}
setUpZoom ( ) ;
var circle _sprite = new THREE . TextureLoader ( ) . load ( // Add the circle effect
"./textures/circle-sprite.png"
)
clearThree ( scene ) ; // Clear previous scenes
// Increase/reduce size factor selected by the user
var limitdist = document . getElementById ( "param-lim-value" ) . value ;
limitdist = parseFloat ( limitdist ) . toFixed ( 1 ) ;
let pointsMaterial ;
let factorPlusSize ;
let geometry = new THREE . Geometry ( ) ;
for ( var i = 0 ; i < points . length ; i ++ ) {
let pointsGeometry = new THREE . Geometry ( ) ;
let vertex = new THREE . Vector3 ( ( ( ( points [ i ] . x / dimensions ) * 2 ) - 1 ) * dimensions , ( ( ( points [ i ] . y / dimensions ) * 2 ) - 1 ) * dimensions * - 1 , 0 ) ;
pointsGeometry . vertices . push ( vertex ) ;
pointsGeometry . name = points [ i ] . id ;
geometry . vertices . push ( vertex ) ;
if ( points [ i ] . DimON != null ) {
let temp = points [ i ] . DimON . match ( /\d+/ ) [ 0 ] ;
var maxDim = ( d3 . max ( points , function ( d ) { if ( d . schemaInv == true ) { return d [ temp ] } ; } ) ) ;
var minDim = ( d3 . min ( points , function ( d ) { if ( d . schemaInv == true ) { return d [ temp ] } ; } ) ) ;
let colorsBarChart = [ '#dadaeb' , '#bcbddc' , '#9e9ac8' , '#807dba' , '#6a51a3' , '#54278f' , '#3f007d' ] ;
var calcStepDim = ( maxDim - minDim ) / 6 ;
var colorScale = d3 . scaleLinear ( )
. domain ( d3 . range ( minDim , maxDim + calcStepDim , calcStepDim ) )
. range ( colorsBarChart ) ;
var color = new THREE . Color ( colorScale ( points [ i ] [ temp ] ) ) ;
} else if ( points [ i ] . selected == false && points [ i ] . schemaInv == false ) {
var color = new THREE . Color ( "rgb(211, 211, 211)" ) ;
} else if ( points [ i ] . selected == false && points [ i ] . schemaInv == true ) {
var color = new THREE . Color ( "rgb(145, 145, 145)" ) ;
} else if ( ColSizeSelector == "color" ) {
var color = new THREE . Color ( colorScale ( points [ i ] . beta ) ) ;
}
else {
if ( points [ i ] . cost < min ) {
var color = new THREE . Color ( "rgb(240,240,240)" ) ;
} else {
var color = new THREE . Color ( colorScale ( points [ i ] . cost ) ) ;
}
}
if ( ColSizeSelector == "color" ) {
if ( points [ i ] . cost < minSize1 ) {
var sizePoint = 1 ;
} else {
var sizePoint = rscale1 ( points [ i ] . cost ) ;
}
factorPlusSize = limitdist * sizePoint ;
pointsGeometry . colors . push ( color ) ;
pointsMaterial = new THREE . PointsMaterial ( {
sizeAttenuation : false ,
size : Number ( factorPlusSize . toFixed ( 1 ) ) ,
vertexColors : THREE . VertexColors ,
map : circle _sprite ,
transparent : true
} ) ;
} else {
let sizePoint = rscale2 ( points [ i ] . beta ) ;
factorPlusSize = limitdist * sizePoint ;
pointsGeometry . colors . push ( color ) ;
pointsMaterial = new THREE . PointsMaterial ( {
sizeAttenuation : false ,
size : Number ( factorPlusSize . toFixed ( 1 ) ) ,
vertexColors : THREE . VertexColors ,
map : circle _sprite ,
transparent : true
} ) ;
}
var particlesDuplic = new THREE . Points ( geometry , pointsMaterial ) ;
var particles = new THREE . Points ( pointsGeometry , pointsMaterial ) ;
scene . add ( particles ) ;
}
// This is for the legend
var temporal = 0 ;
for ( var j = 0 ; j < points . length ; j ++ ) {
if ( points [ j ] . DimON != null ) {
temporal = temporal + 1 ;
var labels _dim = [ ] ;
var abbr _labels _dim = [ ] ;
labels _dim = d3 . range ( minDim , maxDim + calcStepDim , calcStepDim ) ;
for ( var i = 0 ; i < 7 ; i ++ ) {
labels _dim [ i ] = labels _dim [ i ] . toFixed ( 2 ) ;
abbr _labels _dim [ i ] = abbreviateNumber ( labels _dim [ i ] ) ;
}
d3 . select ( "#legend1" ) . selectAll ( '*' ) . remove ( ) ;
var svg = d3 . select ( "#legend1" ) ;
svg . append ( "g" )
. attr ( "class" , "legendLinear" )
. attr ( "transform" , "translate(10,15)" ) ;
var legend = d3 . legendColor ( )
. labelFormat ( d3 . format ( ",.0f" ) )
. cells ( 7 )
. labels ( [ abbr _labels _dim [ 0 ] , abbr _labels _dim [ 1 ] , abbr _labels _dim [ 2 ] , abbr _labels _dim [ 3 ] , abbr _labels _dim [ 4 ] , abbr _labels _dim [ 5 ] , abbr _labels _dim [ 6 ] ] )
. title ( points [ j ] . DimON )
. scale ( colorScale ) ;
svg . select ( ".legendLinear" )
. call ( legend ) ;
break ;
}
}
for ( var j = 0 ; j < points . length ; j ++ ) {
if ( temporal == 0 && points [ j ] . DimON == null ) {
if ( ColSizeSelector == "color" ) {
d3 . select ( "#legend1" ) . selectAll ( '*' ) . remove ( ) ;
var svg = d3 . select ( "#legend1" ) ;
svg . append ( "g" )
. attr ( "class" , "legendLinear" )
. attr ( "transform" , "translate(10,15)" ) ;
var legend = d3 . legendColor ( )
. labelFormat ( d3 . format ( ",.0f" ) )
. cells ( 9 )
. labels ( [ abbr _labels _beta [ 0 ] , abbr _labels _beta [ 1 ] , abbr _labels _beta [ 2 ] , abbr _labels _beta [ 3 ] , abbr _labels _beta [ 4 ] , abbr _labels _beta [ 5 ] , abbr _labels _beta [ 6 ] , abbr _labels _beta [ 7 ] , abbr _labels _beta [ 8 ] ] )
. title ( "1/sigma" )
. scale ( colorScale ) ;
svg . select ( ".legendLinear" )
. call ( legend ) ;
break ;
} else {
var max = ( d3 . max ( points , function ( d ) { return d . cost ; } ) ) ;
var costLimiter = document . getElementById ( "param-costlim" ) . value ;
points = points . sort ( function ( a , b ) { // Sort them according to importance (darker color!)
return a . cost - b . cost ;
} )
var temp = parseInt ( ( 1 - costLimiter ) * points . length ) ;
var min = points [ temp ] . cost ;
for ( var i = temp + 1 ; i < points . length ; i ++ ) {
if ( min > points [ i ] . cost ) {
min = points [ i ] . cost ;
}
}
var maxSize2 = ( d3 . max ( points , function ( d ) { return d . beta ; } ) ) ;
d3 . selectAll ( "#legend1 > *" ) . remove ( ) ;
var colorbrewer = [ "#d9f0a3" , "#addd8e" , "#78c679" , "#41ab5d" , "#238443" , "#006837" , "#004529" ] ;
var calcStep = ( max - min ) / 6 ;
var colorScale = d3 . scaleLinear ( )
. domain ( d3 . range ( min , max + calcStep , calcStep ) )
. range ( colorbrewer ) ;
points = points . sort ( function ( a , b ) { // Sort them according to importance (darker color!)
return a . cost - b . cost ;
} )
var labels _cost = [ ] ;
var abbr _labels _cost = [ ] ;
labels _cost = d3 . range ( min , max + calcStep , calcStep ) ;
for ( var i = 0 ; i < 7 ; i ++ ) {
labels _cost [ i ] = labels _cost [ i ] . toFixed ( 5 ) ;
abbr _labels _cost [ i ] = abbreviateNumber ( labels _cost [ i ] ) ;
}
var svg = d3 . select ( "#legend1" ) ; // Add the legend for the beta/cost
svg . append ( "g" )
. attr ( "class" , "legendLinear" )
. attr ( "transform" , "translate(10,15)" ) ;
var legend = d3 . legendColor ( )
. labelFormat ( d3 . format ( ",.5f" ) )
. cells ( 7 )
. labels ( [ abbr _labels _cost [ 0 ] , abbr _labels _cost [ 1 ] , abbr _labels _cost [ 2 ] , abbr _labels _cost [ 3 ] , abbr _labels _cost [ 4 ] , abbr _labels _cost [ 5 ] , abbr _labels _cost [ 6 ] ] )
. title ( "KLD(P||Q)" )
. scale ( colorScale ) ;
svg . select ( ".legendLinear" )
. call ( legend ) ;
}
}
}
function zoomHandler ( d3 _transform ) {
let scale = d3 _transform . k ;
let x = - ( d3 _transform . x - dimensions / 2 ) / scale ;
let y = ( d3 _transform . y - dimensions / 2 ) / scale ;
let z = getZFromScale ( scale ) ;
camera . position . set ( x , y , z ) ;
}
function getScaleFromZ ( camera _z _position ) {
let half _fov = fov / 2 ;
let half _fov _radians = toRadians ( half _fov ) ;
let half _fov _height = Math . tan ( half _fov _radians ) * camera _z _position ;
let fov _height = half _fov _height * 2 ;
let scale = dimensions / fov _height ; // Divide visualization height by height derived from field of view
return scale ;
}
function getZFromScale ( scale ) {
let half _fov = fov / 2 ;
let half _fov _radians = toRadians ( half _fov ) ;
let scale _height = dimensions / scale ;
let camera _z _position = scale _height / ( 2 * Math . tan ( half _fov _radians ) ) ;
return camera _z _position ;
}
function toRadians ( angle ) {
return angle * ( Math . PI / 180 ) ;
}
// Hover and tooltip interaction
raycaster = new THREE . Raycaster ( ) ;
raycaster . params . Points . threshold = 10 ;
view . on ( "mousemove" , ( ) => {
let [ mouseX , mouseY ] = d3 . mouse ( view . node ( ) ) ;
let mouse _position = [ mouseX , mouseY ] ;
checkIntersects ( mouse _position ) ;
} ) ;
function mouseToThree ( mouseX , mouseY ) {
return new THREE . Vector3 (
mouseX / dimensions * 2 - 1 ,
- ( mouseY / dimensions ) * 2 + 1 ,
1
) ;
}
function checkIntersects ( mouse _position ) {
let mouse _vector = mouseToThree ( ... mouse _position ) ;
raycaster . setFromCamera ( mouse _vector , camera ) ;
let intersects = raycaster . intersectObject ( particlesDuplic ) ;
if ( intersects [ 0 ] ) {
if ( ColSizeSelector == "color" ) {
points = points . sort ( function ( a , b ) {
return a . beta - b . beta ;
} )
} else {
points = points . sort ( function ( a , b ) {
return a . cost - b . cost ;
} )
}
let sorted _intersects = sortIntersectsByDistanceToRay ( intersects ) ;
let intersect = sorted _intersects [ 0 ] ;
let index = intersect . index ;
let datum = points [ index ] ;
highlightPoint ( datum ) ;
showTooltip ( mouse _position , datum ) ;
} else {
removeHighlights ( ) ;
hideTooltip ( ) ;
}
}
function sortIntersectsByDistanceToRay ( intersects ) {
return _ . sortBy ( intersects , "distanceToRay" ) ;
}
hoverContainer = new THREE . Object3D ( )
scene . add ( hoverContainer ) ;
function highlightPoint ( datum ) {
removeHighlights ( ) ;
let geometry = new THREE . Geometry ( ) ;
geometry . vertices . push (
new THREE . Vector3 (
( ( ( datum . x / dimensions ) * 2 ) - 1 ) * dimensions ,
( ( ( datum . y / dimensions ) * 2 ) - 1 ) * dimensions * - 1 ,
0
)
) ;
if ( all _labels [ 0 ] == undefined ) {
var colorScaleCat = d3 . scaleOrdinal ( ) . domain ( [ "No Category" ] ) . range ( [ "#C0C0C0" ] ) ;
}
else {
if ( format [ 0 ] == "diabetes" ) {
for ( var i = 0 ; i < all _labels . length ; i ++ ) {
if ( all _labels [ i ] == "Positive" ) {
all _labels [ i ] = 0 ;
} else {
all _labels [ i ] = 1 ;
}
}
}
var colorScaleCat = d3 . scaleOrdinal ( ) . domain ( all _labels ) . range ( ColorsCategorical ) ;
}
geometry . colors = [ new THREE . Color ( colorScaleCat ( datum [ Category ] ) ) ] ;
let material = new THREE . PointsMaterial ( {
size : 35 ,
sizeAttenuation : false ,
vertexColors : THREE . VertexColors ,
map : circle _sprite ,
transparent : true
} ) ;
let point = new THREE . Points ( geometry , material ) ;
hoverContainer . add ( point ) ;
}
function removeHighlights ( ) {
hoverContainer . remove ( ... hoverContainer . children ) ;
}
view . on ( "mouseleave" , ( ) => {
removeHighlights ( )
} ) ;
// Initial tooltip state
let tooltip _state = { display : "none" }
let tooltip _dimensions ;
let tooltip _template = document . createRange ( ) . createContextualFragment ( ` <div id="tooltip" style="display: none; z-index: 2; position: absolute; pointer-events: none; font-size: 13px; width: 240px; text-align: center; line-height: 1; padding: 6px; background: white; font-family: sans-serif;">
< div id = "point_tip" style = "padding: 4px; margin-bottom: 4px;" > < / d i v >
< div id = "group_tip" style = "padding: 4px;" > < / d i v >
< / d i v > ` ) ;
document . body . append ( tooltip _template ) ;
let $tooltip = document . querySelector ( '#tooltip' ) ;
let $point _tip = document . querySelector ( '#point_tip' ) ;
let $group _tip = document . querySelector ( '#group_tip' ) ;
function updateTooltip ( ) {
if ( all _labels [ 0 ] == undefined ) {
var colorScaleCat = d3 . scaleOrdinal ( ) . domain ( [ "No Category" ] ) . range ( [ "#C0C0C0" ] ) ;
}
else {
var colorScaleCat = d3 . scaleOrdinal ( ) . domain ( all _labels ) . range ( ColorsCategorical ) ;
}
$tooltip . style . display = tooltip _state . display ;
$tooltip . style . left = tooltip _state . left + 'px' ;
$tooltip . style . top = tooltip _state . top + 'px' ;
$point _tip . innerText = tooltip _state [ Category ] ;
$point _tip . style . background = colorScaleCat ( tooltip _state . color ) ;
var tooltipComb = [ ] ;
tooltipComb = "Data set's features: " + "\n" ;
if ( tooltip _dimensions ) {
for ( var i = 0 ; i < tooltip _dimensions [ 0 ] . length ; i ++ ) {
if ( tooltip _dimensions [ 0 ] [ i ] [ 0 ] == Category ) {
} else {
tooltipComb = tooltipComb + tooltip _dimensions [ 0 ] [ i ] ;
tooltipComb = tooltipComb + "\n" ;
}
}
} else {
tooltipComb = "-" ;
}
$group _tip . innerText = tooltipComb ;
}
function showTooltip ( mouse _position , datum ) {
let tooltip _width = 240 ;
let x _offset = tooltip _width + tooltip _width ;
let y _offset = 30 ;
tooltip _state . display = "block" ;
tooltip _state . left = mouse _position [ 0 ] + x _offset ;
tooltip _state . top = mouse _position [ 1 ] + y _offset ;
if ( all _labels [ 0 ] == undefined ) {
tooltip _state [ Category ] = "Point ID: " + datum . id ;
tooltip _state . color = datum . id ;
} else {
if ( format [ 0 ] == "diabetes" ) {
if ( datum [ Category ] == "1" ) {
tooltip _state [ Category ] = "Positive" + "(Point ID: " + datum . id + ")" ;
} else {
tooltip _state [ Category ] = "Negative" + " (Point ID: " + datum . id + ")" ;
}
} else {
tooltip _state [ Category ] = datum [ Category ] + " (Point ID: " + datum . id + ")" ;
}
tooltip _state . color = datum [ Category ] ;
}
tooltip _dimensions = [ ] ;
for ( var i = 0 ; i < dataFeatures . length - 1 ; i ++ ) {
if ( datum . id == i ) {
tooltip _dimensions . push ( Object . entries ( dataFeatures [ i ] ) ) ;
}
}
updateTooltip ( ) ;
}
function hideTooltip ( ) {
tooltip _state . display = "none" ;
updateTooltip ( ) ;
}
}
}
function getViewport ( ) { // Return the width and height of the main visualization
var viewPortWidth ;
var viewPortHeight ;
// the more standards compliant browsers (mozilla/netscape/opera/IE7) use window.innerWidth and window.innerHeight
if ( typeof window . innerWidth != 'undefined' ) {
viewPortWidth = window . innerWidth ,
viewPortHeight = window . innerHeight
}
// IE6 in standards compliant mode (i.e. with a valid doctype as the first line in the document)
else if ( typeof document . documentElement != 'undefined'
&& typeof document . documentElement . clientWidth !=
'undefined' && document . documentElement . clientWidth != 0 ) {
viewPortWidth = document . documentElement . clientWidth ,
viewPortHeight = document . documentElement . clientHeight
}
// older versions of IE
else {
viewPortWidth = document . getElementsByTagName ( 'body' ) [ 0 ] . clientWidth ,
viewPortHeight = document . getElementsByTagName ( 'body' ) [ 0 ] . clientHeight
}
return [ viewPortWidth , viewPortHeight ] ;
}
function download ( contentP , fileName , contentType ) { // Download the file into the local disk.
var a = document . createElement ( "a" ) ;
var file = new Blob ( [ contentP ] , { type : contentType } ) ;
a . href = URL . createObjectURL ( file ) ;
a . download = fileName ;
a . click ( ) ;
}
var measureSaves = 0 ; // Discrete id for each file
function SaveAnalysis ( ) { // Save the analysis into a .txt file
// Put their the points, the 2D points, and the parameters (plus the overall cost).
measureSaves = measureSaves + 1 ;
let dataset = document . getElementById ( "param-dataset" ) . value ;
let perplexity = document . getElementById ( "param-perplexity-value" ) . value ;
let learningRate = document . getElementById ( "param-learningrate-value" ) . value ;
let IterValue = document . getElementById ( "param-maxiter-value" ) . value ;
let parDist = document . getElementById ( "param-distance" ) . value ;
let parTrans = document . getElementById ( "param-transform" ) . value ;
let Parameters = [ ] ;
if ( dataset == "empty" ) {
Parameters . push ( new _file . name ) ;
} else {
Parameters . push ( dataset ) ;
}
Parameters . push ( perplexity ) ;
Parameters . push ( learningRate ) ;
Parameters . push ( IterValue ) ;
Parameters . push ( parDist ) ;
Parameters . push ( parTrans ) ;
AllData = [ ] ;
if ( cost [ 0 ] != undefined ) {
if ( ! returnVal ) { // Add here if you want to save more parameters from a previous execution.
AllData = points . concat ( points2d ) . concat ( dist _list ) . concat ( dist _list2d ) . concat ( cost [ 0 ] . toFixed ( 3 ) ) . concat ( Parameters ) . concat ( InitialFormDists ) . concat ( InitialFormDists2D ) . concat ( IterationsList ) . concat ( ArrayWithCostsList ) ;
} else {
AllData = points . concat ( points2d ) . concat ( cost [ 0 ] . toFixed ( 3 ) ) . concat ( Parameters ) . concat ( IterationsList ) . concat ( ArrayWithCostsList ) ;
}
} else {
if ( ! returnVal ) {
AllData = points . concat ( points2d ) . concat ( dist _list ) . concat ( dist _list2d ) . concat ( overallCost ) . concat ( Parameters ) . concat ( InitialFormDists ) . concat ( InitialFormDists2D ) . concat ( IterationsList ) . concat ( ArrayWithCostsList ) ;
} else {
AllData = points . concat ( points2d ) . concat ( overallCost ) . concat ( Parameters ) . concat ( IterationsList ) . concat ( ArrayWithCostsList ) ;
}
}
download ( JSON . stringify ( AllData ) , 'Analysis' + measureSaves + '.txt' , 'text/plain' ) ;
}