VisEvol: Visual Analytics to Support Hyperparameter Search through Evolutionary Optimization https://doi.org/10.1111/cgf.14300
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
VisEvol/run.py

1817 lines
62 KiB

from flask import Flask, render_template, jsonify, request
from flask_pymongo import PyMongo
from flask_cors import CORS, cross_origin
import json
import copy
import warnings
import re
import random
import math
import pandas as pd
import numpy as np
import multiprocessing
from joblib import Memory
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import log_loss
from imblearn.metrics import geometric_mean_score
from sklearn.manifold import MDS
from sklearn.manifold import TSNE
import umap
# this block of code is for the connection between the server, the database, and the client (plus routing)
# access MongoDB
app = Flask(__name__)
app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb"
mongo = PyMongo(app)
cors = CORS(app, resources={r"/data/*": {"origins": "*"}})
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/Reset', methods=["GET", "POST"])
def reset():
global Results
Results = []
global ResultsCM
ResultsCM = []
global DataRawLength
global DataResultsRaw
global previousState
previousState = []
global filterActionFinal
filterActionFinal = ''
global keySpecInternal
keySpecInternal = 1
global dataSpacePointsIDs
dataSpacePointsIDs = []
global previousStateActive
previousStateActive = []
global RANDOM_SEED
RANDOM_SEED = 42
global KNNModelsCount
global LRModelsCount
global factors
factors = [1,1,1,1,0,0,0,0]
global crossValidation
crossValidation = 5
global randomSearchVar
randomSearchVar = 100
global keyData
keyData = 0
KNNModelsCount = 0
LRModelsCount = KNNModelsCount+randomSearchVar
MLPModelsCount = LRModelsCount+randomSearchVar
RFModelsCount = MLPModelsCount+randomSearchVar
GradBModelsCount = RFModelsCount+randomSearchVar
global XData
XData = []
global yData
yData = []
global EnsembleActive
EnsembleActive = []
global addKNN
addKNN = 0
global addLR
addLR = addKNN+randomSearchVar
global addMLP
addMLP = addLR+randomSearchVar
global addRF
addRF = addMLP+randomSearchVar
global addGradB
addGradB = addRF+randomSearchVar
global countAllModels
countAllModels = 0
global XDataStored
XDataStored = []
global yDataStored
yDataStored = []
global detailsParams
detailsParams = []
global algorithmList
algorithmList = []
global ClassifierIDsList
ClassifierIDsList = ''
# Initializing models
global resultsList
resultsList = []
global RetrieveModelsList
RetrieveModelsList = []
global allParametersPerformancePerModel
allParametersPerformancePerModel = []
global allParametersPerfCrossMutr
allParametersPerfCrossMutr = []
global HistoryPreservation
HistoryPreservation = []
global all_classifiers
all_classifiers = []
# models
global KNNModels
KNNModels = []
global RFModels
RFModels = []
global scoring
scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'}
global loopFeatures
loopFeatures = 2
global results
results = []
global resultsMetrics
resultsMetrics = []
global parametersSelData
parametersSelData = []
global target_names
target_names = []
global target_namesLoc
target_namesLoc = []
return 'The reset was done!'
# retrieve data from client and select the correct data set
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequest', methods=["GET", "POST"])
def retrieveFileName():
global DataRawLength
global DataResultsRaw
global DataResultsRawTest
global DataRawLengthTest
fileName = request.get_data().decode('utf8').replace("'", '"')
data = json.loads(fileName)
global keySpecInternal
keySpecInternal = 1
global filterActionFinal
filterActionFinal = ''
global dataSpacePointsIDs
dataSpacePointsIDs = []
global RANDOM_SEED
RANDOM_SEED = 42
global keyData
keyData = 0
global KNNModelsCount
global LRModelsCount
global MLPModelsCount
global RFModelsCount
global GradBModelsCount
global factors
factors = data['Factors']
global crossValidation
crossValidation = int(data['CrossValidation'])
global randomSearchVar
randomSearchVar = int(data['RandomSearch'])
KNNModelsCount = 0
LRModelsCount = KNNModelsCount+randomSearchVar
MLPModelsCount = LRModelsCount+randomSearchVar
RFModelsCount = MLPModelsCount+randomSearchVar
GradBModelsCount = RFModelsCount+randomSearchVar
global XData
XData = []
global previousState
previousState = []
global previousStateActive
previousStateActive = []
global yData
yData = []
global XDataStored
XDataStored = []
global yDataStored
yDataStored = []
global filterDataFinal
filterDataFinal = 'mean'
global ClassifierIDsList
ClassifierIDsList = ''
global algorithmList
algorithmList = []
global detailsParams
detailsParams = []
global EnsembleActive
EnsembleActive = []
global addKNN
addKNN = 0
global addLR
addLR = addKNN+randomSearchVar
global addMLP
addMLP = addLR+randomSearchVar
global addRF
addRF = addMLP+randomSearchVar
global addGradB
addGradB = addRF+randomSearchVar
# Initializing models
global RetrieveModelsList
RetrieveModelsList = []
global resultsList
resultsList = []
global allParametersPerformancePerModel
allParametersPerformancePerModel = []
global allParametersPerfCrossMutr
allParametersPerfCrossMutr = []
global HistoryPreservation
HistoryPreservation = []
global all_classifiers
all_classifiers = []
global scoring
scoring = {'accuracy': 'accuracy', 'precision_weighted': 'precision_weighted', 'recall_weighted': 'recall_weighted', 'f1_weighted': 'f1_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'}
global loopFeatures
loopFeatures = 2
# models
global KNNModels
global SVCModels
global GausNBModels
global MLPModels
global LRModels
global LDAModels
global QDAModels
global RFModels
global ExtraTModels
global AdaBModels
global GradBModels
KNNModels = []
SVCModels = []
GausNBModels = []
MLPModels = []
LRModels = []
LDAModels = []
QDAModels = []
RFModels = []
ExtraTModels = []
AdaBModels = []
GradBModels = []
global results
results = []
global resultsMetrics
resultsMetrics = []
global parametersSelData
parametersSelData = []
global StanceTest
StanceTest = False
global target_names
target_names = []
global target_namesLoc
target_namesLoc = []
DataRawLength = -1
DataRawLengthTest = -1
if data['fileName'] == 'HeartC':
CollectionDB = mongo.db.HeartC.find()
elif data['fileName'] == 'StanceC':
StanceTest = True
CollectionDB = mongo.db.StanceC.find()
CollectionDBTest = mongo.db.StanceCTest.find()
elif data['fileName'] == 'DiabetesC':
CollectionDB = mongo.db.DiabetesC.find()
else:
CollectionDB = mongo.db.IrisC.find()
DataResultsRaw = []
for index, item in enumerate(CollectionDB):
item['_id'] = str(item['_id'])
item['InstanceID'] = index
DataResultsRaw.append(item)
DataRawLength = len(DataResultsRaw)
DataResultsRawTest = []
if (StanceTest):
for index, item in enumerate(CollectionDBTest):
item['_id'] = str(item['_id'])
item['InstanceID'] = index
DataResultsRawTest.append(item)
DataRawLengthTest = len(DataResultsRawTest)
dataSetSelection()
return 'Everything is okay'
# Retrieve data set from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"])
def sendToServerData():
uploadedData = request.get_data().decode('utf8').replace("'", '"')
uploadedDataParsed = json.loads(uploadedData)
DataResultsRaw = uploadedDataParsed['uploadedData']
DataResults = copy.deepcopy(DataResultsRaw)
for dictionary in DataResultsRaw:
for key in dictionary.keys():
if (key.find('*') != -1):
target = key
continue
continue
DataResultsRaw.sort(key=lambda x: x[target], reverse=True)
DataResults.sort(key=lambda x: x[target], reverse=True)
for dictionary in DataResults:
del dictionary[target]
global AllTargets
global target_names
global target_namesLoc
AllTargets = [o[target] for o in DataResultsRaw]
AllTargetsFloatValues = []
previous = None
Class = 0
for i, value in enumerate(AllTargets):
if (i == 0):
previous = value
target_names.append(value)
if (value == previous):
AllTargetsFloatValues.append(Class)
else:
Class = Class + 1
target_names.append(value)
AllTargetsFloatValues.append(Class)
previous = value
ArrayDataResults = pd.DataFrame.from_dict(DataResults)
global XData, yData, RANDOM_SEED
XData, yData = ArrayDataResults, AllTargetsFloatValues
global XDataStored, yDataStored
XDataStored = XData.copy()
yDataStored = yData.copy()
return 'Processed uploaded data set'
def dataSetSelection():
global XDataTest, yDataTest
XDataTest = pd.DataFrame()
global StanceTest
global AllTargets
global target_names
target_namesLoc = []
if (StanceTest):
DataResultsTest = copy.deepcopy(DataResultsRawTest)
for dictionary in DataResultsRawTest:
for key in dictionary.keys():
if (key.find('*') != -1):
target = key
continue
continue
DataResultsRawTest.sort(key=lambda x: x[target], reverse=True)
DataResultsTest.sort(key=lambda x: x[target], reverse=True)
for dictionary in DataResultsTest:
del dictionary['_id']
del dictionary['InstanceID']
del dictionary[target]
AllTargetsTest = [o[target] for o in DataResultsRawTest]
AllTargetsFloatValuesTest = []
previous = None
Class = 0
for i, value in enumerate(AllTargetsTest):
if (i == 0):
previous = value
target_namesLoc.append(value)
if (value == previous):
AllTargetsFloatValuesTest.append(Class)
else:
Class = Class + 1
target_namesLoc.append(value)
AllTargetsFloatValuesTest.append(Class)
previous = value
ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest)
XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest
DataResults = copy.deepcopy(DataResultsRaw)
for dictionary in DataResultsRaw:
for key in dictionary.keys():
if (key.find('*') != -1):
target = key
continue
continue
DataResultsRaw.sort(key=lambda x: x[target], reverse=True)
DataResults.sort(key=lambda x: x[target], reverse=True)
for dictionary in DataResults:
del dictionary['_id']
del dictionary['InstanceID']
del dictionary[target]
AllTargets = [o[target] for o in DataResultsRaw]
AllTargetsFloatValues = []
previous = None
Class = 0
for i, value in enumerate(AllTargets):
if (i == 0):
previous = value
target_names.append(value)
if (value == previous):
AllTargetsFloatValues.append(Class)
else:
Class = Class + 1
target_names.append(value)
AllTargetsFloatValues.append(Class)
previous = value
ArrayDataResults = pd.DataFrame.from_dict(DataResults)
global XData, yData, RANDOM_SEED
XData, yData = ArrayDataResults, AllTargetsFloatValues
global XDataStored, yDataStored
XDataStored = XData.copy()
yDataStored = yData.copy()
warnings.simplefilter('ignore')
return 'Everything is okay'
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/factors', methods=["GET", "POST"])
def RetrieveFactors():
global factors
global allParametersPerformancePerModel
Factors = request.get_data().decode('utf8').replace("'", '"')
FactorsInt = json.loads(Factors)
factors = FactorsInt['Factors']
return 'Everything Okay'
# Initialize every model for each algorithm
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"])
def retrieveModel():
# get the models from the frontend
RetrievedModel = request.get_data().decode('utf8').replace("'", '"')
RetrievedModel = json.loads(RetrievedModel)
global algorithms
algorithms = RetrievedModel['Algorithms']
global XData
global yData
global LRModelsCount
global countAllModels
# loop through the algorithms
global allParametersPerformancePerModel
global HistoryPreservation
for eachAlgor in algorithms:
print(eachAlgor)
if (eachAlgor) == 'KNN':
clf = KNeighborsClassifier()
params = {'n_neighbors': list(range(1, 100)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}
AlgorithmsIDsEnd = countAllModels
elif (eachAlgor) == 'LR':
clf = LogisticRegression(random_state=RANDOM_SEED)
params = {'C': list(np.arange(1,100,1)), 'max_iter': list(np.arange(50,500,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}
countAllModels = countAllModels + randomSearchVar
AlgorithmsIDsEnd = countAllModels
elif (eachAlgor) == 'MLP':
start = 60
stop = 120
step = 1
random.seed(RANDOM_SEED)
ranges = [(n, random.randint(1,3)) for n in range(start, stop, step)]
clf = MLPClassifier(random_state=RANDOM_SEED)
params = {'hidden_layer_sizes': ranges,'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']}
countAllModels = countAllModels + randomSearchVar
AlgorithmsIDsEnd = countAllModels
elif (eachAlgor) == 'RF':
clf = RandomForestClassifier(random_state=RANDOM_SEED)
params = {'n_estimators': list(range(20, 100)), 'criterion': ['gini', 'entropy']}
countAllModels = countAllModels + randomSearchVar
AlgorithmsIDsEnd = countAllModels
else:
clf = GradientBoostingClassifier(random_state=RANDOM_SEED)
params = {'n_estimators': list(range(20, 100)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']}
countAllModels = countAllModels + randomSearchVar
AlgorithmsIDsEnd = countAllModels
allParametersPerformancePerModel = randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd)
HistoryPreservation = allParametersPerformancePerModel.copy()
# call the function that sends the results to the frontend
return 'Everything Okay'
location = './cachedir'
memory = Memory(location, verbose=0)
@memory.cache
def randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
search = RandomizedSearchCV(
estimator=clf, param_distributions=params, n_iter=100,
cv=crossValidation, refit='accuracy', scoring=scoring,
verbose=0, n_jobs=-1)
# fit and extract the probabilities
search.fit(XData, yData)
# process the results
cv_results = []
cv_results.append(search.cv_results_)
df_cv_results = pd.DataFrame.from_dict(cv_results)
# number of models stored
number_of_models = len(df_cv_results.iloc[0][0])
# initialize results per row
df_cv_results_per_row = []
# loop through number of models
modelsIDs = []
for i in range(number_of_models):
number = AlgorithmsIDsEnd+i
modelsIDs.append(eachAlgor+str(number))
# initialize results per item
df_cv_results_per_item = []
for column in df_cv_results.iloc[0]:
df_cv_results_per_item.append(column[i])
df_cv_results_per_row.append(df_cv_results_per_item)
# store the results into a pandas dataframe
df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns)
# copy and filter in order to get only the metrics
metrics = df_cv_results_classifiers.copy()
metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_weighted','mean_test_recall_weighted','mean_test_f1_weighted','mean_test_roc_auc_ovo_weighted'])
# concat parameters and performance
parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params'])
parametersLocal = parametersPerformancePerModel['params'].copy()
Models = []
for index, items in enumerate(parametersLocal):
Models.append(index)
parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ]
perModelProb = []
resultsWeighted = []
resultsCorrCoef = []
resultsLogLoss = []
resultsLogLossFinal = []
# influence calculation for all the instances
inputs = range(len(XData))
num_cores = multiprocessing.cpu_count()
for eachModelParameters in parametersLocalNew:
clf.set_params(**eachModelParameters)
clf.fit(XData, yData)
yPredict = clf.predict(XData)
yPredict = np.nan_to_num(yPredict)
yPredictProb = cross_val_predict(clf, XData, yData, cv=crossValidation, method='predict_proba')
yPredictProb = np.nan_to_num(yPredictProb)
perModelProb.append(yPredictProb.tolist())
resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted'))
resultsCorrCoef.append(matthews_corrcoef(yData, yPredict))
resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True))
maxLog = max(resultsLogLoss)
minLog = min(resultsLogLoss)
for each in resultsLogLoss:
resultsLogLossFinal.append((each-minLog)/(maxLog-minLog))
metrics.insert(5,'geometric_mean_score_weighted',resultsWeighted)
metrics.insert(6,'matthews_corrcoef',resultsCorrCoef)
metrics.insert(7,'log_loss',resultsLogLossFinal)
perModelProbPandas = pd.DataFrame(perModelProb)
results.append(modelsIDs)
results.append(parametersPerformancePerModel)
results.append(metrics)
results.append(perModelProbPandas)
return results
def PreprocessingIDs():
dicKNN = allParametersPerformancePerModel[0]
dicLR = allParametersPerformancePerModel[4]
dicMLP = allParametersPerformancePerModel[8]
dicRF = allParametersPerformancePerModel[12]
dicGradB = allParametersPerformancePerModel[16]
df_concatIDs = dicKNN + dicLR + dicMLP + dicRF + dicGradB
return df_concatIDs
def PreprocessingMetrics():
dicKNN = allParametersPerformancePerModel[2]
dicLR = allParametersPerformancePerModel[6]
dicMLP = allParametersPerformancePerModel[10]
dicRF = allParametersPerformancePerModel[14]
dicGradB = allParametersPerformancePerModel[18]
dfKNN = pd.DataFrame.from_dict(dicKNN)
dfLR = pd.DataFrame.from_dict(dicLR)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfRF = pd.DataFrame.from_dict(dicRF)
dfGradB = pd.DataFrame.from_dict(dicGradB)
df_concatMetrics = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
df_concatMetrics = df_concatMetrics.reset_index(drop=True)
return df_concatMetrics
def PreprocessingPred():
dicKNN = allParametersPerformancePerModel[3]
dicLR = allParametersPerformancePerModel[7]
dicMLP = allParametersPerformancePerModel[11]
dicRF = allParametersPerformancePerModel[15]
dicGradB = allParametersPerformancePerModel[19]
dfKNN = pd.DataFrame.from_dict(dicKNN)
dfLR = pd.DataFrame.from_dict(dicLR)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfRF = pd.DataFrame.from_dict(dicRF)
dfGradB = pd.DataFrame.from_dict(dicGradB)
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
df_concatProbs.reset_index(drop=True, inplace=True)
predictionsKNN = []
for column, content in dfKNN.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsKNN.append(el)
predictionsLR = []
for column, content in dfLR.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsLR.append(el)
predictionsMLP = []
for column, content in dfMLP.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsMLP.append(el)
predictionsRF = []
for column, content in dfRF.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsRF.append(el)
predictionsGradB = []
for column, content in dfGradB.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsGradB.append(el)
predictions = []
for column, content in df_concatProbs.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictions.append(el)
return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions]
def PreprocessingPredEnsemble():
global EnsembleActive
numberIDKNN = []
numberIDLR = []
numberIDMLP = []
numberIDRF = []
numberIDGradB = []
for el in EnsembleActive:
match = re.match(r"([a-z]+)([0-9]+)", el, re.I)
if match:
items = match.groups()
if (items[0] == 'KNN'):
numberIDKNN.append(int(items[1]))
elif (items[0] == 'LR'):
numberIDLR.append(int(items[1]))
elif (items[0] == 'MLP'):
numberIDMLP.append(int(items[1]))
elif (items[0] == 'RF'):
numberIDRF.append(int(items[1]))
else:
numberIDGradB.append(int(items[1]))
dicKNN = allParametersPerformancePerModel[3]
dicLR = allParametersPerformancePerModel[7]
dicMLP = allParametersPerformancePerModel[11]
dicRF = allParametersPerformancePerModel[15]
dicGradB = allParametersPerformancePerModel[19]
dfKNN = pd.DataFrame.from_dict(dicKNN)
dfLR = pd.DataFrame.from_dict(dicLR)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfRF = pd.DataFrame.from_dict(dicRF)
dfGradB = pd.DataFrame.from_dict(dicGradB)
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
df_concatProbs = df_concatProbs.reset_index(drop=True)
dfKNN = df_concatProbs.loc[numberIDKNN]
dfLR = df_concatProbs.loc[numberIDLR]
dfMLP = df_concatProbs.loc[numberIDMLP]
dfRF = df_concatProbs.loc[numberIDRF]
dfGradB = df_concatProbs.loc[numberIDGradB]
df_concatProbs = pd.DataFrame()
df_concatProbs = df_concatProbs.iloc[0:0]
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
predictionsKNN = []
for column, content in dfKNN.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsKNN.append(el)
predictionsLR = []
for column, content in dfLR.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsLR.append(el)
predictionsMLP = []
for column, content in dfMLP.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsMLP.append(el)
predictionsRF = []
for column, content in dfRF.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsRF.append(el)
predictionsGradB = []
for column, content in dfGradB.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsGradB.append(el)
predictions = []
for column, content in df_concatProbs.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictions.append(el)
return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions]
def PreprocessingParam():
dicKNN = allParametersPerformancePerModel[1]
dicLR = allParametersPerformancePerModel[5]
dicMLP = allParametersPerformancePerModel[9]
dicRF = allParametersPerformancePerModel[13]
dicGradB = allParametersPerformancePerModel[17]
dicKNN = dicKNN['params']
dicLR = dicLR['params']
dicMLP = dicMLP['params']
dicRF = dicRF['params']
dicGradB = dicGradB['params']
dicKNN = {int(k):v for k,v in dicKNN.items()}
dicLR = {int(k):v for k,v in dicLR.items()}
dicMLP = {int(k):v for k,v in dicMLP.items()}
dicRF = {int(k):v for k,v in dicRF.items()}
dicGradB = {int(k):v for k,v in dicGradB.items()}
dfKNN = pd.DataFrame.from_dict(dicKNN)
dfLR = pd.DataFrame.from_dict(dicLR)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfRF = pd.DataFrame.from_dict(dicRF)
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfKNN = dfKNN.T
dfLR = dfLR.T
dfMLP = dfMLP.T
dfRF = dfRF.T
dfGradB = dfGradB.T
df_params = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
df_params = df_params.reset_index(drop=True)
return df_params
def PreprocessingParamSep():
dicKNN = allParametersPerformancePerModel[1]
dicLR = allParametersPerformancePerModel[5]
dicMLP = allParametersPerformancePerModel[9]
dicRF = allParametersPerformancePerModel[13]
dicGradB = allParametersPerformancePerModel[17]
dicKNN = dicKNN['params']
dicLR = dicLR['params']
dicMLP = dicMLP['params']
dicRF = dicRF['params']
dicGradB = dicGradB['params']
dicKNN = {int(k):v for k,v in dicKNN.items()}
dicLR = {int(k):v for k,v in dicLR.items()}
dicMLP = {int(k):v for k,v in dicMLP.items()}
dicRF = {int(k):v for k,v in dicRF.items()}
dicGradB = {int(k):v for k,v in dicGradB.items()}
dfKNN = pd.DataFrame.from_dict(dicKNN)
dfLR = pd.DataFrame.from_dict(dicLR)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfRF = pd.DataFrame.from_dict(dicRF)
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfKNN = dfKNN.T
dfLR = dfLR.T
dfMLP = dfMLP.T
dfRF = dfRF.T
dfGradB = dfGradB.T
return [dfKNN, dfLR, dfMLP, dfRF, dfGradB]
# remove that maybe!
def preProcsumPerMetric(factors):
sumPerClassifier = []
loopThroughMetrics = PreprocessingMetrics()
loopThroughMetrics = loopThroughMetrics.fillna(0)
loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss']
for row in loopThroughMetrics.iterrows():
rowSum = 0
name, values = row
for loop, elements in enumerate(values):
rowSum = elements*factors[loop] + rowSum
if sum(factors) is 0:
sumPerClassifier = 0
else:
sumPerClassifier.append(rowSum/sum(factors) * 100)
return sumPerClassifier
def preProcMetricsAllAndSel():
loopThroughMetrics = PreprocessingMetrics()
loopThroughMetrics = loopThroughMetrics.fillna(0)
global factors
metricsPerModelColl = []
metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy'])
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_weighted'])
metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted'])
metricsPerModelColl.append(loopThroughMetrics['log_loss'])
f=lambda a: (abs(a)+a)/2
for index, metric in enumerate(metricsPerModelColl):
if (index == 5):
metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100
elif (index == 7):
metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100
else:
metricsPerModelColl[index] = (metric*factors[index]) * 100
metricsPerModelColl[index] = metricsPerModelColl[index].to_json()
return metricsPerModelColl
def FunMDS (data):
mds = MDS(n_components=2, random_state=RANDOM_SEED)
XTransformed = mds.fit_transform(data).T
XTransformed = XTransformed.tolist()
return XTransformed
def FunTsne (data):
tsne = TSNE(n_components=2, random_state=RANDOM_SEED).fit_transform(data)
tsne.shape
return tsne
def FunUMAP (data):
trans = umap.UMAP(n_neighbors=15, random_state=RANDOM_SEED).fit(data)
Xpos = trans.embedding_[:, 0].tolist()
Ypos = trans.embedding_[:, 1].tolist()
return [Xpos,Ypos]
# Sending the overview classifiers' results to be visualized as a scatterplot
@app.route('/data/PlotClassifiers', methods=["GET", "POST"])
def SendToPlot():
while (len(DataResultsRaw) != DataRawLength):
pass
InitializeEnsemble()
response = {
'OverviewResults': Results
}
return jsonify(response)
def InitializeEnsemble():
XModels = PreprocessingMetrics()
global ModelSpaceMDS
global ModelSpaceTSNE
global allParametersPerformancePerModel
global EnsembleActive
XModels = XModels.fillna(0)
ModelSpaceMDS = FunMDS(XModels)
ModelSpaceTSNE = FunTsne(XModels)
ModelSpaceTSNE = ModelSpaceTSNE.tolist()
ModelSpaceUMAP = FunUMAP(XModels)
if (len(EnsembleActive) == 0):
PredictionProbSel = PreprocessingPred()
else:
PredictionProbSel = PreprocessingPredEnsemble()
returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionProbSel)
def returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionProbSel):
global Results
global AllTargets
Results = []
parametersGen = PreprocessingParam()
metricsPerModel = preProcMetricsAllAndSel()
sumPerClassifier = preProcsumPerMetric(factors)
ModelsIDs = PreprocessingIDs()
parametersGenPD = parametersGen.to_json(orient='records')
XDataJSONEntireSet = XData.to_json(orient='records')
XDataColumns = XData.columns.tolist()
Results.append(json.dumps(ModelsIDs))
Results.append(json.dumps(sumPerClassifier))
Results.append(json.dumps(parametersGenPD))
Results.append(json.dumps(metricsPerModel))
Results.append(json.dumps(XDataJSONEntireSet))
Results.append(json.dumps(XDataColumns))
Results.append(json.dumps(yData))
Results.append(json.dumps(target_names))
Results.append(json.dumps(AllTargets))
Results.append(json.dumps(ModelSpaceMDS))
Results.append(json.dumps(ModelSpaceTSNE))
Results.append(json.dumps(ModelSpaceUMAP))
Results.append(json.dumps(PredictionProbSel))
return Results
# Initialize crossover and mutation processes
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/CrossoverMutation', methods=["GET", "POST"])
def CrossoverMutateFun():
# get the models from the frontend
RemainingIds = request.get_data().decode('utf8').replace("'", '"')
RemainingIds = json.loads(RemainingIds)
RemainingIds = RemainingIds['RemainingPoints']
global EnsembleActive
EnsembleActive = request.get_data().decode('utf8').replace("'", '"')
EnsembleActive = json.loads(EnsembleActive)
EnsembleActive = EnsembleActive['StoreEnsemble']
global XData
global yData
global LRModelsCount
global addKNN
global addLR
global countAllModels
# loop through the algorithms
global allParametersPerfCrossMutr
global HistoryPreservation
global allParametersPerformancePerModel
KNNIDs = list(filter(lambda k: 'KNN' in k, RemainingIds))
LRIDs = list(filter(lambda k: 'LR' in k, RemainingIds))
countKNN = 0
countLR = 0
setMaxLoopValue = 5
paramAllAlgs = PreprocessingParam()
KNNIntIndex = []
LRIntIndex = []
localCrossMutr = []
allParametersPerfCrossMutrKNNC = []
while countKNN < setMaxLoopValue:
for dr in KNNIDs:
KNNIntIndex.append(int(re.findall('\d+', dr)[0]))
KNNPickPair = random.sample(KNNIntIndex,2)
pairDF = paramAllAlgs.iloc[KNNPickPair]
crossoverDF = pd.DataFrame()
for column in pairDF:
listData = []
randomZeroOne = random.randint(0, 1)
valuePerColumn = pairDF[column].iloc[randomZeroOne]
listData.append(valuePerColumn)
crossoverDF[column] = listData
if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()):
crossoverDF = pd.DataFrame()
else:
clf = KNeighborsClassifier()
params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]}
AlgorithmsIDsEnd = countAllModels + countKNN
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNN', AlgorithmsIDsEnd)
countKNN += 1
crossoverDF = pd.DataFrame()
countAllModels = countAllModels + 5
for loop in range(setMaxLoopValue - 1):
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4]
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True)
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True)
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True)
allParametersPerfCrossMutrKNNC.append(localCrossMutr[0])
allParametersPerfCrossMutrKNNC.append(localCrossMutr[1])
allParametersPerfCrossMutrKNNC.append(localCrossMutr[2])
allParametersPerfCrossMutrKNNC.append(localCrossMutr[3])
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNC
countKNN = 0
KNNIntIndex = []
localCrossMutr.clear()
allParametersPerfCrossMutrKNNM = []
while countKNN < setMaxLoopValue:
for dr in KNNIDs:
KNNIntIndex.append(int(re.findall('\d+', dr)[0]))
KNNPickPair = random.sample(KNNIntIndex,1)
pairDF = paramAllAlgs.iloc[KNNPickPair]
crossoverDF = pd.DataFrame()
for column in pairDF:
listData = []
if (column == 'n_neighbors'):
randomNumber = random.randint(101, math.floor(((len(yData)/crossValidation)*(crossValidation-1)))-1)
listData.append(randomNumber)
crossoverDF[column] = listData
else:
valuePerColumn = pairDF[column].iloc[0]
listData.append(valuePerColumn)
crossoverDF[column] = listData
if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()):
crossoverDF = pd.DataFrame()
else:
clf = KNeighborsClassifier()
params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]}
AlgorithmsIDsEnd = countAllModels + countKNN
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNN', AlgorithmsIDsEnd)
countKNN += 1
crossoverDF = pd.DataFrame()
countAllModels = countAllModels + 5
for loop in range(setMaxLoopValue - 1):
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4]
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True)
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True)
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True)
allParametersPerfCrossMutrKNNM.append(localCrossMutr[0])
allParametersPerfCrossMutrKNNM.append(localCrossMutr[1])
allParametersPerfCrossMutrKNNM.append(localCrossMutr[2])
allParametersPerfCrossMutrKNNM.append(localCrossMutr[3])
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNM
localCrossMutr.clear()
allParametersPerfCrossMutrLRC = []
while countLR < setMaxLoopValue:
for dr in LRIDs:
LRIntIndex.append(int(re.findall('\d+', dr)[0]))
LRPickPair = random.sample(LRIntIndex,2)
pairDF = paramAllAlgs.iloc[LRPickPair]
crossoverDF = pd.DataFrame()
for column in pairDF:
listData = []
randomZeroOne = random.randint(0, 1)
valuePerColumn = pairDF[column].iloc[randomZeroOne]
listData.append(valuePerColumn)
crossoverDF[column] = listData
if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()):
crossoverDF = pd.DataFrame()
else:
clf = LogisticRegression(random_state=RANDOM_SEED)
params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]}
AlgorithmsIDsEnd = countAllModels + countLR
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LR', AlgorithmsIDsEnd)
countLR += 1
crossoverDF = pd.DataFrame()
countAllModels = countAllModels + 5
for loop in range(setMaxLoopValue - 1):
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4]
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True)
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True)
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True)
allParametersPerfCrossMutrLRC.append(localCrossMutr[0])
allParametersPerfCrossMutrLRC.append(localCrossMutr[1])
allParametersPerfCrossMutrLRC.append(localCrossMutr[2])
allParametersPerfCrossMutrLRC.append(localCrossMutr[3])
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRC
countLR = 0
LRIntIndex = []
localCrossMutr.clear()
allParametersPerfCrossMutrLRM = []
while countLR < setMaxLoopValue:
for dr in LRIDs:
LRIntIndex.append(int(re.findall('\d+', dr)[0]))
LRPickPair = random.sample(LRIntIndex,1)
pairDF = paramAllAlgs.iloc[LRPickPair]
crossoverDF = pd.DataFrame()
for column in pairDF:
listData = []
if (column == 'C'):
randomNumber = random.randint(101, 1000)
listData.append(randomNumber)
crossoverDF[column] = listData
else:
valuePerColumn = pairDF[column].iloc[0]
listData.append(valuePerColumn)
crossoverDF[column] = listData
if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()):
crossoverDF = pd.DataFrame()
else:
clf = LogisticRegression(random_state=RANDOM_SEED)
params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]}
AlgorithmsIDsEnd = countAllModels + countLR
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LR', AlgorithmsIDsEnd)
countLR += 1
crossoverDF = pd.DataFrame()
countAllModels = countAllModels + 5
for loop in range(setMaxLoopValue - 1):
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4]
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True)
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True)
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True)
allParametersPerfCrossMutrLRM.append(localCrossMutr[0])
allParametersPerfCrossMutrLRM.append(localCrossMutr[1])
allParametersPerfCrossMutrLRM.append(localCrossMutr[2])
allParametersPerfCrossMutrLRM.append(localCrossMutr[3])
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRM
localCrossMutr.clear()
allParametersPerfCrossMutr = allParametersPerfCrossMutrKNNC + allParametersPerfCrossMutrKNNM + allParametersPerfCrossMutrLRC + allParametersPerfCrossMutrLRM
allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrKNNC[0] + allParametersPerfCrossMutrKNNM[0]
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNC[1]], ignore_index=True)
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNM[1]], ignore_index=True)
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrKNNC[2]], ignore_index=True)
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrKNNM[2]], ignore_index=True)
allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNC[3]], ignore_index=True)
allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNM[3]], ignore_index=True)
allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrLRC[0] + allParametersPerfCrossMutrLRM[0]
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRC[1]], ignore_index=True)
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRM[1]], ignore_index=True)
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRC[2]], ignore_index=True)
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRM[2]], ignore_index=True)
allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRC[3]], ignore_index=True)
allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRM[3]], ignore_index=True)
addKNN = addLR
addLR = addLR + 10
# KNNIntIndex = []
# for dr in KNNIDs:
# KNNIntIndex.append(int(re.findall('\d+', dr)[0]))
# allParametersPerformancePerModel[0] = [j for i, j in enumerate(allParametersPerformancePerModel[0]) if i not in KNNIntIndex]
# allParametersPerformancePerModel[1].drop(allParametersPerformancePerModel[1].index[KNNIntIndex], inplace=True)
# allParametersPerformancePerModel[2].drop(allParametersPerformancePerModel[2].index[KNNIntIndex], inplace=True)
# allParametersPerformancePerModel[3].drop(allParametersPerformancePerModel[3].index[KNNIntIndex], inplace=True)
# LRIntIndex = []
# for dr in LRIDs:
# LRIntIndex.append(int(re.findall('\d+', dr)[0]) - 100)
# allParametersPerformancePerModel[4] = [j for i, j in enumerate(allParametersPerformancePerModel[4]) if i not in LRIntIndex]
# allParametersPerformancePerModel[5].drop(allParametersPerformancePerModel[5].index[LRIntIndex], inplace=True)
# allParametersPerformancePerModel[6].drop(allParametersPerformancePerModel[6].index[LRIntIndex], inplace=True)
# allParametersPerformancePerModel[7].drop(allParametersPerformancePerModel[7].index[LRIntIndex], inplace=True)
return 'Everything Okay'
def crossoverMutation(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
search = GridSearchCV(
estimator=clf, param_grid=params, cv=crossValidation, refit='accuracy',
scoring=scoring, verbose=0, n_jobs=-1)
# fit and extract the probabilities
search.fit(XData, yData)
# process the results
cv_results = []
cv_results.append(search.cv_results_)
df_cv_results = pd.DataFrame.from_dict(cv_results)
# number of models stored
number_of_models = len(df_cv_results.iloc[0][0])
# initialize results per row
df_cv_results_per_row = []
# loop through number of models
modelsIDs = []
for i in range(number_of_models):
number = AlgorithmsIDsEnd+i
modelsIDs.append(eachAlgor+str(number))
# initialize results per item
df_cv_results_per_item = []
for column in df_cv_results.iloc[0]:
df_cv_results_per_item.append(column[i])
df_cv_results_per_row.append(df_cv_results_per_item)
# store the results into a pandas dataframe
df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns)
# copy and filter in order to get only the metrics
metrics = df_cv_results_classifiers.copy()
metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_weighted','mean_test_recall_weighted','mean_test_f1_weighted','mean_test_roc_auc_ovo_weighted'])
# concat parameters and performance
parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params'])
parametersLocal = parametersPerformancePerModel['params'].copy()
Models = []
for index, items in enumerate(parametersLocal):
Models.append(index)
parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ]
perModelProb = []
resultsWeighted = []
resultsCorrCoef = []
resultsLogLoss = []
resultsLogLossFinal = []
# influence calculation for all the instances
inputs = range(len(XData))
num_cores = multiprocessing.cpu_count()
for eachModelParameters in parametersLocalNew:
clf.set_params(**eachModelParameters)
clf.fit(XData, yData)
yPredict = clf.predict(XData)
yPredict = np.nan_to_num(yPredict)
yPredictProb = cross_val_predict(clf, XData, yData, cv=crossValidation, method='predict_proba')
yPredictProb = np.nan_to_num(yPredictProb)
perModelProb.append(yPredictProb.tolist())
resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted'))
resultsCorrCoef.append(matthews_corrcoef(yData, yPredict))
resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True))
maxLog = max(resultsLogLoss)
minLog = min(resultsLogLoss)
for each in resultsLogLoss:
resultsLogLossFinal.append((each-minLog)/(maxLog-minLog))
metrics.insert(5,'geometric_mean_score_weighted',resultsWeighted)
metrics.insert(6,'matthews_corrcoef',resultsCorrCoef)
metrics.insert(7,'log_loss',resultsLogLossFinal)
perModelProbPandas = pd.DataFrame(perModelProb)
results.append(modelsIDs)
results.append(parametersPerformancePerModel)
results.append(metrics)
results.append(perModelProbPandas)
return results
def PreprocessingIDsCM():
dicKNNC = allParametersPerfCrossMutr[0]
dicKNNM = allParametersPerfCrossMutr[4]
dicLRC = allParametersPerfCrossMutr[8]
dicLRM = allParametersPerfCrossMutr[12]
df_concatIDs = dicKNNC + dicKNNM + dicLRC + dicLRM
return df_concatIDs
def PreprocessingMetricsCM():
dicKNNC = allParametersPerfCrossMutr[2]
dicKNNM = allParametersPerfCrossMutr[6]
dicLRC = allParametersPerfCrossMutr[10]
dicLRM = allParametersPerfCrossMutr[14]
dfKNNC = pd.DataFrame.from_dict(dicKNNC)
dfKNNM = pd.DataFrame.from_dict(dicKNNM)
dfLRC = pd.DataFrame.from_dict(dicLRC)
dfLRM = pd.DataFrame.from_dict(dicLRM)
df_concatMetrics = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM])
df_concatMetrics = df_concatMetrics.reset_index(drop=True)
return df_concatMetrics
def PreprocessingPredCM():
dicKNNC = allParametersPerfCrossMutr[3]
dicKNNM = allParametersPerfCrossMutr[7]
dicLRC = allParametersPerfCrossMutr[11]
dicLRM = allParametersPerfCrossMutr[15]
dfKNNC = pd.DataFrame.from_dict(dicKNNC)
dfKNNM = pd.DataFrame.from_dict(dicKNNM)
dfLRC = pd.DataFrame.from_dict(dicLRC)
dfLRM = pd.DataFrame.from_dict(dicLRM)
dfKNN = pd.concat([dfKNNC, dfKNNM])
dfLR = pd.concat([dfLRC, dfLRM])
df_concatProbs = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM])
predictionsKNN = []
for column, content in dfKNN.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsKNN.append(el)
predictionsLR = []
for column, content in dfLR.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsLR.append(el)
predictions = []
for column, content in df_concatProbs.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictions.append(el)
return [predictionsKNN, predictionsLR, predictions]
def PreprocessingParamCM():
dicKNNC = allParametersPerfCrossMutr[1]
dicKNNM = allParametersPerfCrossMutr[5]
dicLRC = allParametersPerfCrossMutr[9]
dicLRM = allParametersPerfCrossMutr[13]
dicKNNC = dicKNNC['params']
dicKNNM = dicKNNM['params']
dicLRC = dicLRC['params']
dicLRM = dicLRM['params']
dicKNNC = {int(k):v for k,v in dicKNNC.items()}
dicKNNM = {int(k):v for k,v in dicKNNM.items()}
dicLRC = {int(k):v for k,v in dicLRC.items()}
dicLRM = {int(k):v for k,v in dicLRM.items()}
dfKNNC = pd.DataFrame.from_dict(dicKNNC)
dfKNNM = pd.DataFrame.from_dict(dicKNNM)
dfLRC = pd.DataFrame.from_dict(dicLRC)
dfLRM = pd.DataFrame.from_dict(dicLRM)
dfKNNC = dfKNNC.T
dfKNNM = dfKNNM.T
dfLRC = dfLRC.T
dfLRM = dfLRM.T
df_params = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM])
df_params = df_params.reset_index(drop=True)
return df_params
def PreprocessingParamSepCM():
dicKNNC = allParametersPerfCrossMutr[1]
dicKNNM = allParametersPerfCrossMutr[5]
dicLRC = allParametersPerfCrossMutr[9]
dicLRM = allParametersPerfCrossMutr[13]
dicKNNC = dicKNNC['params']
dicKNNM = dicKNNM['params']
dicLRC = dicLRC['params']
dicLRM = dicLRM['params']
dicKNNC = {int(k):v for k,v in dicKNNC.items()}
dicKNNM = {int(k):v for k,v in dicKNNM.items()}
dicLRC = {int(k):v for k,v in dicLRC.items()}
dicLRM = {int(k):v for k,v in dicLRM.items()}
dfKNNC = pd.DataFrame.from_dict(dicKNNC)
dfKNNM = pd.DataFrame.from_dict(dicKNNM)
dfLRC = pd.DataFrame.from_dict(dicLRC)
dfLRM = pd.DataFrame.from_dict(dicLRM)
dfKNNC = dfKNNC.T
dfKNNM = dfKNNM.T
dfLRC = dfLRC.T
dfLRM = dfLRM.T
return [dfKNNC, dfKNNM, dfLRC, dfLRM]
# remove that maybe!
def preProcsumPerMetricCM(factors):
sumPerClassifier = []
loopThroughMetrics = PreprocessingMetricsCM()
loopThroughMetrics = loopThroughMetrics.fillna(0)
loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss']
for row in loopThroughMetrics.iterrows():
rowSum = 0
name, values = row
for loop, elements in enumerate(values):
rowSum = elements*factors[loop] + rowSum
if sum(factors) is 0:
sumPerClassifier = 0
else:
sumPerClassifier.append(rowSum/sum(factors) * 100)
return sumPerClassifier
def preProcMetricsAllAndSelCM():
loopThroughMetrics = PreprocessingMetricsCM()
loopThroughMetrics = loopThroughMetrics.fillna(0)
global factors
metricsPerModelColl = []
metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy'])
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_weighted'])
metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted'])
metricsPerModelColl.append(loopThroughMetrics['log_loss'])
f=lambda a: (abs(a)+a)/2
for index, metric in enumerate(metricsPerModelColl):
if (index == 5):
metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100
elif (index == 7):
metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100
else:
metricsPerModelColl[index] = (metric*factors[index]) * 100
metricsPerModelColl[index] = metricsPerModelColl[index].to_json()
return metricsPerModelColl
# Sending the overview classifiers' results to be visualized as a scatterplot
@app.route('/data/PlotCrossMutate', methods=["GET", "POST"])
def SendToPlotCM():
while (len(DataResultsRaw) != DataRawLength):
pass
PreProcessingInitial()
response = {
'OverviewResultsCM': ResultsCM
}
return jsonify(response)
def PreProcessingInitial():
XModels = PreprocessingMetricsCM()
global allParametersPerfCrossMutr
XModels = XModels.fillna(0)
ModelSpaceMDSCM = FunMDS(XModels)
ModelSpaceTSNECM = FunTsne(XModels)
ModelSpaceTSNECM = ModelSpaceTSNECM.tolist()
ModelSpaceUMAPCM = FunUMAP(XModels)
PredictionProbSel = PreprocessingPredCM()
CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,PredictionProbSel)
def CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,PredictionProbSel):
global ResultsCM
global AllTargets
ResultsCM = []
parametersGen = PreprocessingParamCM()
metricsPerModel = preProcMetricsAllAndSelCM()
sumPerClassifier = preProcsumPerMetricCM(factors)
ModelsIDs = PreprocessingIDsCM()
parametersGenPD = parametersGen.to_json(orient='records')
XDataJSONEntireSet = XData.to_json(orient='records')
XDataColumns = XData.columns.tolist()
ResultsCM.append(json.dumps(ModelsIDs))
ResultsCM.append(json.dumps(sumPerClassifier))
ResultsCM.append(json.dumps(parametersGenPD))
ResultsCM.append(json.dumps(metricsPerModel))
ResultsCM.append(json.dumps(XDataJSONEntireSet))
ResultsCM.append(json.dumps(XDataColumns))
ResultsCM.append(json.dumps(yData))
ResultsCM.append(json.dumps(target_names))
ResultsCM.append(json.dumps(AllTargets))
ResultsCM.append(json.dumps(ModelSpaceMDSCM))
ResultsCM.append(json.dumps(ModelSpaceTSNECM))
ResultsCM.append(json.dumps(ModelSpaceUMAPCM))
ResultsCM.append(json.dumps(PredictionProbSel))
return ResultsCM
def PreprocessingPredSel(SelectedIDs):
global addKNN
global addLR
global addMLP
global addRF
global addGradB
numberIDKNN = []
numberIDLR = []
numberIDMLP = []
numberIDRF = []
numberIDGradB = []
for el in SelectedIDs:
match = re.match(r"([a-z]+)([0-9]+)", el, re.I)
if match:
items = match.groups()
if (items[0] == 'KNN'):
numberIDKNN.append(int(items[1]) - addKNN)
elif (items[0] == 'LR'):
numberIDLR.append(int(items[1]) - addLR)
elif (items[0] == 'MLP'):
numberIDMLP.append(int(items[1]) - addMLP)
elif (items[0] == 'RF'):
numberIDRF.append(int(items[1]) - addRF)
else:
numberIDGradB.append(int(items[1]) - addGradB)
dicKNN = allParametersPerformancePerModel[3]
dicLR = allParametersPerformancePerModel[7]
dicMLP = allParametersPerformancePerModel[11]
dicRF = allParametersPerformancePerModel[15]
dicGradB = allParametersPerformancePerModel[19]
dfKNN = pd.DataFrame.from_dict(dicKNN)
dfKNN = dfKNN.loc[numberIDKNN]
dfLR = pd.DataFrame.from_dict(dicLR)
dfLR = dfLR.loc[numberIDLR]
dfLR.index += addKNN
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfMLP = dfMLP.loc[numberIDMLP]
dfMLP.index += addKNN + addLR
dfRF = pd.DataFrame.from_dict(dicRF)
dfRF = dfRF.loc[numberIDRF]
dfRF.index += addKNN + addLR + addMLP
dfGradB = pd.DataFrame.from_dict(dicGradB)
dfGradB = dfGradB.loc[numberIDGradB]
dfGradB.index += addKNN + addLR + addMLP + addRF
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
predictionsKNN = []
for column, content in dfKNN.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsKNN.append(el)
predictionsLR = []
for column, content in dfLR.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsLR.append(el)
predictionsMLP = []
for column, content in dfMLP.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsMLP.append(el)
predictionsRF = []
for column, content in dfRF.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsRF.append(el)
predictionsGradB = []
for column, content in dfGradB.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsGradB.append(el)
predictions = []
for column, content in df_concatProbs.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictions.append(el)
return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions]
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/SendtoSeverSelIDs', methods=["GET", "POST"])
def RetrieveSelIDsPredict():
global ResultsSelPred
ResultsSelPred = []
RetrieveIDsSelection = request.get_data().decode('utf8').replace("'", '"')
RetrieveIDsSelection = json.loads(RetrieveIDsSelection)
RetrieveIDsSelection = RetrieveIDsSelection['predictSelectionIDs']
ResultsSelPred = PreprocessingPredSel(RetrieveIDsSelection)
return 'Everything Okay'
@app.route('/data/RetrievePredictions', methods=["GET", "POST"])
def SendPredictSel():
global ResultsSelPred
response = {
'PredictSel': ResultsSelPred
}
return jsonify(response)
def PreprocessingPredSelEnsem(SelectedIDsEnsem):
numberIDKNN = []
numberIDLR = []
numberIDMLP = []
numberIDRF = []
numberIDGradB = []
for el in SelectedIDsEnsem:
match = re.match(r"([a-z]+)([0-9]+)", el, re.I)
if match:
items = match.groups()
if (items[0] == 'KNN'):
numberIDKNN.append(int(items[1]))
elif (items[0] == 'LR'):
numberIDLR.append(int(items[1]))
elif (items[0] == 'MLP'):
numberIDLR.append(int(items[1]))
elif (items[0] == 'RF'):
numberIDLR.append(int(items[1]))
else:
numberIDLR.append(int(items[1]))
dicKNN = allParametersPerformancePerModel[3]
dicLR = allParametersPerformancePerModel[7]
dicMLP = allParametersPerformancePerModel[11]
dicRF = allParametersPerformancePerModel[15]
dicGradB = allParametersPerformancePerModel[19]
dfKNN = pd.DataFrame.from_dict(dicKNN)
dfLR = pd.DataFrame.from_dict(dicLR)
dfMLP = pd.DataFrame.from_dict(dicMLP)
dfRF = pd.DataFrame.from_dict(dicRF)
dfGradB = pd.DataFrame.from_dict(dicGradB)
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
df_concatProbs = df_concatProbs.reset_index(drop=True)
dfKNN = df_concatProbs.loc[numberIDKNN]
dfLR = df_concatProbs.loc[numberIDLR]
dfMLP = df_concatProbs.loc[numberIDMLP]
dfRF = df_concatProbs.loc[numberIDRF]
dfGradB = df_concatProbs.loc[numberIDGradB]
df_concatProbs = pd.DataFrame()
df_concatProbs = df_concatProbs.iloc[0:0]
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
predictionsKNN = []
for column, content in dfKNN.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsKNN.append(el)
predictionsLR = []
for column, content in dfLR.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsLR.append(el)
predictionsMLP = []
for column, content in dfMLP.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsMLP.append(el)
predictionsRF = []
for column, content in dfRF.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsRF.append(el)
predictionsGradB = []
for column, content in dfGradB.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictionsGradB.append(el)
predictions = []
for column, content in df_concatProbs.items():
el = [sum(x)/len(x) for x in zip(*content)]
predictions.append(el)
return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions]
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/SendtoSeverSelIDsEnsem', methods=["GET", "POST"])
def RetrieveSelIDsPredictEnsem():
global ResultsSelPredEnsem
ResultsSelPredEnsem = []
RetrieveIDsSelectionEnsem = request.get_data().decode('utf8').replace("'", '"')
RetrieveIDsSelectionEnsem = json.loads(RetrieveIDsSelectionEnsem)
RetrieveIDsSelectionEnsem = RetrieveIDsSelectionEnsem['predictSelectionIDsCM']
ResultsSelPredEnsem = PreprocessingPredSelEnsem(RetrieveIDsSelectionEnsem)
return 'Everything Okay'
@app.route('/data/RetrievePredictionsEnsem', methods=["GET", "POST"])
def SendPredictSelEnsem():
global ResultsSelPredEnsem
response = {
'PredictSelEnsem': ResultsSelPredEnsem
}
return jsonify(response)