VisEvol: Visual Analytics to Support Hyperparameter Search through Evolutionary Optimization
https://doi.org/10.1111/cgf.14300
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1817 lines
62 KiB
1817 lines
62 KiB
from flask import Flask, render_template, jsonify, request
|
|
from flask_pymongo import PyMongo
|
|
from flask_cors import CORS, cross_origin
|
|
|
|
import json
|
|
import copy
|
|
import warnings
|
|
import re
|
|
import random
|
|
import math
|
|
import pandas as pd
|
|
import numpy as np
|
|
import multiprocessing
|
|
|
|
from joblib import Memory
|
|
|
|
from sklearn.model_selection import RandomizedSearchCV
|
|
from sklearn.model_selection import GridSearchCV
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from sklearn.svm import SVC
|
|
from sklearn.neural_network import MLPClassifier
|
|
from sklearn.linear_model import LogisticRegression
|
|
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
|
|
from sklearn.model_selection import cross_val_predict
|
|
from sklearn.metrics import matthews_corrcoef
|
|
from sklearn.metrics import log_loss
|
|
from imblearn.metrics import geometric_mean_score
|
|
from sklearn.manifold import MDS
|
|
from sklearn.manifold import TSNE
|
|
import umap
|
|
|
|
# this block of code is for the connection between the server, the database, and the client (plus routing)
|
|
|
|
# access MongoDB
|
|
app = Flask(__name__)
|
|
|
|
app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb"
|
|
mongo = PyMongo(app)
|
|
|
|
cors = CORS(app, resources={r"/data/*": {"origins": "*"}})
|
|
|
|
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
|
|
@app.route('/data/Reset', methods=["GET", "POST"])
|
|
def reset():
|
|
|
|
global Results
|
|
Results = []
|
|
global ResultsCM
|
|
ResultsCM = []
|
|
|
|
global DataRawLength
|
|
global DataResultsRaw
|
|
global previousState
|
|
previousState = []
|
|
|
|
global filterActionFinal
|
|
filterActionFinal = ''
|
|
|
|
global keySpecInternal
|
|
keySpecInternal = 1
|
|
|
|
global dataSpacePointsIDs
|
|
dataSpacePointsIDs = []
|
|
|
|
global previousStateActive
|
|
previousStateActive = []
|
|
|
|
global RANDOM_SEED
|
|
RANDOM_SEED = 42
|
|
|
|
global KNNModelsCount
|
|
global LRModelsCount
|
|
|
|
global factors
|
|
factors = [1,1,1,1,0,0,0,0]
|
|
|
|
global crossValidation
|
|
crossValidation = 5
|
|
|
|
global randomSearchVar
|
|
randomSearchVar = 100
|
|
|
|
global keyData
|
|
keyData = 0
|
|
|
|
KNNModelsCount = 0
|
|
LRModelsCount = KNNModelsCount+randomSearchVar
|
|
MLPModelsCount = LRModelsCount+randomSearchVar
|
|
RFModelsCount = MLPModelsCount+randomSearchVar
|
|
GradBModelsCount = RFModelsCount+randomSearchVar
|
|
|
|
global XData
|
|
XData = []
|
|
global yData
|
|
yData = []
|
|
|
|
global EnsembleActive
|
|
EnsembleActive = []
|
|
|
|
global addKNN
|
|
addKNN = 0
|
|
|
|
global addLR
|
|
addLR = addKNN+randomSearchVar
|
|
|
|
global addMLP
|
|
addMLP = addLR+randomSearchVar
|
|
|
|
global addRF
|
|
addRF = addMLP+randomSearchVar
|
|
|
|
global addGradB
|
|
addGradB = addRF+randomSearchVar
|
|
|
|
global countAllModels
|
|
countAllModels = 0
|
|
|
|
global XDataStored
|
|
XDataStored = []
|
|
global yDataStored
|
|
yDataStored = []
|
|
|
|
global detailsParams
|
|
detailsParams = []
|
|
|
|
global algorithmList
|
|
algorithmList = []
|
|
|
|
global ClassifierIDsList
|
|
ClassifierIDsList = ''
|
|
|
|
# Initializing models
|
|
|
|
global resultsList
|
|
resultsList = []
|
|
|
|
global RetrieveModelsList
|
|
RetrieveModelsList = []
|
|
|
|
global allParametersPerformancePerModel
|
|
allParametersPerformancePerModel = []
|
|
|
|
global allParametersPerfCrossMutr
|
|
allParametersPerfCrossMutr = []
|
|
|
|
global HistoryPreservation
|
|
HistoryPreservation = []
|
|
|
|
global all_classifiers
|
|
all_classifiers = []
|
|
|
|
# models
|
|
global KNNModels
|
|
KNNModels = []
|
|
global RFModels
|
|
RFModels = []
|
|
|
|
global scoring
|
|
scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'}
|
|
|
|
global loopFeatures
|
|
loopFeatures = 2
|
|
|
|
global results
|
|
results = []
|
|
|
|
global resultsMetrics
|
|
resultsMetrics = []
|
|
|
|
global parametersSelData
|
|
parametersSelData = []
|
|
|
|
global target_names
|
|
target_names = []
|
|
|
|
global target_namesLoc
|
|
target_namesLoc = []
|
|
return 'The reset was done!'
|
|
|
|
# retrieve data from client and select the correct data set
|
|
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
|
|
@app.route('/data/ServerRequest', methods=["GET", "POST"])
|
|
def retrieveFileName():
|
|
global DataRawLength
|
|
global DataResultsRaw
|
|
global DataResultsRawTest
|
|
global DataRawLengthTest
|
|
|
|
fileName = request.get_data().decode('utf8').replace("'", '"')
|
|
data = json.loads(fileName)
|
|
|
|
global keySpecInternal
|
|
keySpecInternal = 1
|
|
|
|
global filterActionFinal
|
|
filterActionFinal = ''
|
|
|
|
global dataSpacePointsIDs
|
|
dataSpacePointsIDs = []
|
|
|
|
global RANDOM_SEED
|
|
RANDOM_SEED = 42
|
|
|
|
global keyData
|
|
keyData = 0
|
|
|
|
global KNNModelsCount
|
|
global LRModelsCount
|
|
global MLPModelsCount
|
|
global RFModelsCount
|
|
global GradBModelsCount
|
|
|
|
global factors
|
|
factors = data['Factors']
|
|
|
|
global crossValidation
|
|
crossValidation = int(data['CrossValidation'])
|
|
|
|
global randomSearchVar
|
|
randomSearchVar = int(data['RandomSearch'])
|
|
|
|
KNNModelsCount = 0
|
|
LRModelsCount = KNNModelsCount+randomSearchVar
|
|
MLPModelsCount = LRModelsCount+randomSearchVar
|
|
RFModelsCount = MLPModelsCount+randomSearchVar
|
|
GradBModelsCount = RFModelsCount+randomSearchVar
|
|
|
|
global XData
|
|
XData = []
|
|
|
|
global previousState
|
|
previousState = []
|
|
|
|
global previousStateActive
|
|
previousStateActive = []
|
|
|
|
global yData
|
|
yData = []
|
|
|
|
global XDataStored
|
|
XDataStored = []
|
|
|
|
global yDataStored
|
|
yDataStored = []
|
|
|
|
global filterDataFinal
|
|
filterDataFinal = 'mean'
|
|
|
|
global ClassifierIDsList
|
|
ClassifierIDsList = ''
|
|
|
|
global algorithmList
|
|
algorithmList = []
|
|
|
|
global detailsParams
|
|
detailsParams = []
|
|
|
|
global EnsembleActive
|
|
EnsembleActive = []
|
|
|
|
global addKNN
|
|
addKNN = 0
|
|
|
|
global addLR
|
|
addLR = addKNN+randomSearchVar
|
|
|
|
global addMLP
|
|
addMLP = addLR+randomSearchVar
|
|
|
|
global addRF
|
|
addRF = addMLP+randomSearchVar
|
|
|
|
global addGradB
|
|
addGradB = addRF+randomSearchVar
|
|
|
|
# Initializing models
|
|
|
|
global RetrieveModelsList
|
|
RetrieveModelsList = []
|
|
|
|
global resultsList
|
|
resultsList = []
|
|
|
|
global allParametersPerformancePerModel
|
|
allParametersPerformancePerModel = []
|
|
|
|
global allParametersPerfCrossMutr
|
|
allParametersPerfCrossMutr = []
|
|
|
|
global HistoryPreservation
|
|
HistoryPreservation = []
|
|
|
|
global all_classifiers
|
|
all_classifiers = []
|
|
|
|
global scoring
|
|
scoring = {'accuracy': 'accuracy', 'precision_weighted': 'precision_weighted', 'recall_weighted': 'recall_weighted', 'f1_weighted': 'f1_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'}
|
|
|
|
global loopFeatures
|
|
loopFeatures = 2
|
|
|
|
# models
|
|
global KNNModels
|
|
global SVCModels
|
|
global GausNBModels
|
|
global MLPModels
|
|
global LRModels
|
|
global LDAModels
|
|
global QDAModels
|
|
global RFModels
|
|
global ExtraTModels
|
|
global AdaBModels
|
|
global GradBModels
|
|
|
|
KNNModels = []
|
|
SVCModels = []
|
|
GausNBModels = []
|
|
MLPModels = []
|
|
LRModels = []
|
|
LDAModels = []
|
|
QDAModels = []
|
|
RFModels = []
|
|
ExtraTModels = []
|
|
AdaBModels = []
|
|
GradBModels = []
|
|
|
|
global results
|
|
results = []
|
|
|
|
global resultsMetrics
|
|
resultsMetrics = []
|
|
|
|
global parametersSelData
|
|
parametersSelData = []
|
|
|
|
global StanceTest
|
|
StanceTest = False
|
|
|
|
global target_names
|
|
|
|
target_names = []
|
|
|
|
global target_namesLoc
|
|
|
|
target_namesLoc = []
|
|
|
|
DataRawLength = -1
|
|
DataRawLengthTest = -1
|
|
|
|
if data['fileName'] == 'HeartC':
|
|
CollectionDB = mongo.db.HeartC.find()
|
|
elif data['fileName'] == 'StanceC':
|
|
StanceTest = True
|
|
CollectionDB = mongo.db.StanceC.find()
|
|
CollectionDBTest = mongo.db.StanceCTest.find()
|
|
elif data['fileName'] == 'DiabetesC':
|
|
CollectionDB = mongo.db.DiabetesC.find()
|
|
else:
|
|
CollectionDB = mongo.db.IrisC.find()
|
|
DataResultsRaw = []
|
|
for index, item in enumerate(CollectionDB):
|
|
item['_id'] = str(item['_id'])
|
|
item['InstanceID'] = index
|
|
DataResultsRaw.append(item)
|
|
DataRawLength = len(DataResultsRaw)
|
|
|
|
DataResultsRawTest = []
|
|
if (StanceTest):
|
|
for index, item in enumerate(CollectionDBTest):
|
|
item['_id'] = str(item['_id'])
|
|
item['InstanceID'] = index
|
|
DataResultsRawTest.append(item)
|
|
DataRawLengthTest = len(DataResultsRawTest)
|
|
|
|
dataSetSelection()
|
|
return 'Everything is okay'
|
|
|
|
# Retrieve data set from client
|
|
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
|
|
@app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"])
|
|
def sendToServerData():
|
|
|
|
uploadedData = request.get_data().decode('utf8').replace("'", '"')
|
|
uploadedDataParsed = json.loads(uploadedData)
|
|
DataResultsRaw = uploadedDataParsed['uploadedData']
|
|
|
|
DataResults = copy.deepcopy(DataResultsRaw)
|
|
|
|
for dictionary in DataResultsRaw:
|
|
for key in dictionary.keys():
|
|
if (key.find('*') != -1):
|
|
target = key
|
|
continue
|
|
continue
|
|
DataResultsRaw.sort(key=lambda x: x[target], reverse=True)
|
|
DataResults.sort(key=lambda x: x[target], reverse=True)
|
|
|
|
for dictionary in DataResults:
|
|
del dictionary[target]
|
|
|
|
global AllTargets
|
|
global target_names
|
|
global target_namesLoc
|
|
AllTargets = [o[target] for o in DataResultsRaw]
|
|
AllTargetsFloatValues = []
|
|
|
|
previous = None
|
|
Class = 0
|
|
for i, value in enumerate(AllTargets):
|
|
if (i == 0):
|
|
previous = value
|
|
target_names.append(value)
|
|
if (value == previous):
|
|
AllTargetsFloatValues.append(Class)
|
|
else:
|
|
Class = Class + 1
|
|
target_names.append(value)
|
|
AllTargetsFloatValues.append(Class)
|
|
previous = value
|
|
|
|
ArrayDataResults = pd.DataFrame.from_dict(DataResults)
|
|
|
|
global XData, yData, RANDOM_SEED
|
|
XData, yData = ArrayDataResults, AllTargetsFloatValues
|
|
|
|
global XDataStored, yDataStored
|
|
XDataStored = XData.copy()
|
|
yDataStored = yData.copy()
|
|
|
|
return 'Processed uploaded data set'
|
|
|
|
def dataSetSelection():
|
|
global XDataTest, yDataTest
|
|
XDataTest = pd.DataFrame()
|
|
global StanceTest
|
|
global AllTargets
|
|
global target_names
|
|
target_namesLoc = []
|
|
if (StanceTest):
|
|
DataResultsTest = copy.deepcopy(DataResultsRawTest)
|
|
|
|
for dictionary in DataResultsRawTest:
|
|
for key in dictionary.keys():
|
|
if (key.find('*') != -1):
|
|
target = key
|
|
continue
|
|
continue
|
|
|
|
DataResultsRawTest.sort(key=lambda x: x[target], reverse=True)
|
|
DataResultsTest.sort(key=lambda x: x[target], reverse=True)
|
|
|
|
for dictionary in DataResultsTest:
|
|
del dictionary['_id']
|
|
del dictionary['InstanceID']
|
|
del dictionary[target]
|
|
|
|
AllTargetsTest = [o[target] for o in DataResultsRawTest]
|
|
AllTargetsFloatValuesTest = []
|
|
|
|
previous = None
|
|
Class = 0
|
|
for i, value in enumerate(AllTargetsTest):
|
|
if (i == 0):
|
|
previous = value
|
|
target_namesLoc.append(value)
|
|
if (value == previous):
|
|
AllTargetsFloatValuesTest.append(Class)
|
|
else:
|
|
Class = Class + 1
|
|
target_namesLoc.append(value)
|
|
AllTargetsFloatValuesTest.append(Class)
|
|
previous = value
|
|
|
|
ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest)
|
|
|
|
XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest
|
|
|
|
DataResults = copy.deepcopy(DataResultsRaw)
|
|
|
|
for dictionary in DataResultsRaw:
|
|
for key in dictionary.keys():
|
|
if (key.find('*') != -1):
|
|
target = key
|
|
continue
|
|
continue
|
|
|
|
DataResultsRaw.sort(key=lambda x: x[target], reverse=True)
|
|
DataResults.sort(key=lambda x: x[target], reverse=True)
|
|
|
|
for dictionary in DataResults:
|
|
del dictionary['_id']
|
|
del dictionary['InstanceID']
|
|
del dictionary[target]
|
|
|
|
AllTargets = [o[target] for o in DataResultsRaw]
|
|
AllTargetsFloatValues = []
|
|
|
|
previous = None
|
|
Class = 0
|
|
for i, value in enumerate(AllTargets):
|
|
if (i == 0):
|
|
previous = value
|
|
target_names.append(value)
|
|
if (value == previous):
|
|
AllTargetsFloatValues.append(Class)
|
|
else:
|
|
Class = Class + 1
|
|
target_names.append(value)
|
|
AllTargetsFloatValues.append(Class)
|
|
previous = value
|
|
|
|
ArrayDataResults = pd.DataFrame.from_dict(DataResults)
|
|
|
|
global XData, yData, RANDOM_SEED
|
|
XData, yData = ArrayDataResults, AllTargetsFloatValues
|
|
|
|
global XDataStored, yDataStored
|
|
XDataStored = XData.copy()
|
|
yDataStored = yData.copy()
|
|
|
|
warnings.simplefilter('ignore')
|
|
return 'Everything is okay'
|
|
|
|
# Retrieve data from client
|
|
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
|
|
@app.route('/data/factors', methods=["GET", "POST"])
|
|
def RetrieveFactors():
|
|
global factors
|
|
global allParametersPerformancePerModel
|
|
Factors = request.get_data().decode('utf8').replace("'", '"')
|
|
FactorsInt = json.loads(Factors)
|
|
factors = FactorsInt['Factors']
|
|
|
|
return 'Everything Okay'
|
|
|
|
# Initialize every model for each algorithm
|
|
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
|
|
@app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"])
|
|
def retrieveModel():
|
|
|
|
# get the models from the frontend
|
|
RetrievedModel = request.get_data().decode('utf8').replace("'", '"')
|
|
RetrievedModel = json.loads(RetrievedModel)
|
|
|
|
global algorithms
|
|
algorithms = RetrievedModel['Algorithms']
|
|
|
|
global XData
|
|
global yData
|
|
global LRModelsCount
|
|
global countAllModels
|
|
|
|
# loop through the algorithms
|
|
global allParametersPerformancePerModel
|
|
global HistoryPreservation
|
|
|
|
for eachAlgor in algorithms:
|
|
print(eachAlgor)
|
|
if (eachAlgor) == 'KNN':
|
|
clf = KNeighborsClassifier()
|
|
params = {'n_neighbors': list(range(1, 100)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}
|
|
AlgorithmsIDsEnd = countAllModels
|
|
elif (eachAlgor) == 'LR':
|
|
clf = LogisticRegression(random_state=RANDOM_SEED)
|
|
params = {'C': list(np.arange(1,100,1)), 'max_iter': list(np.arange(50,500,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}
|
|
countAllModels = countAllModels + randomSearchVar
|
|
AlgorithmsIDsEnd = countAllModels
|
|
elif (eachAlgor) == 'MLP':
|
|
start = 60
|
|
stop = 120
|
|
step = 1
|
|
random.seed(RANDOM_SEED)
|
|
ranges = [(n, random.randint(1,3)) for n in range(start, stop, step)]
|
|
clf = MLPClassifier(random_state=RANDOM_SEED)
|
|
params = {'hidden_layer_sizes': ranges,'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']}
|
|
countAllModels = countAllModels + randomSearchVar
|
|
AlgorithmsIDsEnd = countAllModels
|
|
elif (eachAlgor) == 'RF':
|
|
clf = RandomForestClassifier(random_state=RANDOM_SEED)
|
|
params = {'n_estimators': list(range(20, 100)), 'criterion': ['gini', 'entropy']}
|
|
countAllModels = countAllModels + randomSearchVar
|
|
AlgorithmsIDsEnd = countAllModels
|
|
else:
|
|
clf = GradientBoostingClassifier(random_state=RANDOM_SEED)
|
|
params = {'n_estimators': list(range(20, 100)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']}
|
|
countAllModels = countAllModels + randomSearchVar
|
|
AlgorithmsIDsEnd = countAllModels
|
|
allParametersPerformancePerModel = randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd)
|
|
HistoryPreservation = allParametersPerformancePerModel.copy()
|
|
# call the function that sends the results to the frontend
|
|
|
|
return 'Everything Okay'
|
|
|
|
location = './cachedir'
|
|
memory = Memory(location, verbose=0)
|
|
|
|
@memory.cache
|
|
def randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
|
|
|
|
search = RandomizedSearchCV(
|
|
estimator=clf, param_distributions=params, n_iter=100,
|
|
cv=crossValidation, refit='accuracy', scoring=scoring,
|
|
verbose=0, n_jobs=-1)
|
|
|
|
# fit and extract the probabilities
|
|
search.fit(XData, yData)
|
|
|
|
# process the results
|
|
cv_results = []
|
|
cv_results.append(search.cv_results_)
|
|
df_cv_results = pd.DataFrame.from_dict(cv_results)
|
|
|
|
# number of models stored
|
|
number_of_models = len(df_cv_results.iloc[0][0])
|
|
|
|
# initialize results per row
|
|
df_cv_results_per_row = []
|
|
|
|
# loop through number of models
|
|
modelsIDs = []
|
|
for i in range(number_of_models):
|
|
number = AlgorithmsIDsEnd+i
|
|
modelsIDs.append(eachAlgor+str(number))
|
|
# initialize results per item
|
|
df_cv_results_per_item = []
|
|
for column in df_cv_results.iloc[0]:
|
|
df_cv_results_per_item.append(column[i])
|
|
df_cv_results_per_row.append(df_cv_results_per_item)
|
|
|
|
# store the results into a pandas dataframe
|
|
df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns)
|
|
|
|
# copy and filter in order to get only the metrics
|
|
metrics = df_cv_results_classifiers.copy()
|
|
metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_weighted','mean_test_recall_weighted','mean_test_f1_weighted','mean_test_roc_auc_ovo_weighted'])
|
|
|
|
# concat parameters and performance
|
|
parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params'])
|
|
parametersLocal = parametersPerformancePerModel['params'].copy()
|
|
|
|
Models = []
|
|
for index, items in enumerate(parametersLocal):
|
|
Models.append(index)
|
|
parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ]
|
|
|
|
perModelProb = []
|
|
|
|
resultsWeighted = []
|
|
resultsCorrCoef = []
|
|
resultsLogLoss = []
|
|
resultsLogLossFinal = []
|
|
|
|
# influence calculation for all the instances
|
|
inputs = range(len(XData))
|
|
num_cores = multiprocessing.cpu_count()
|
|
|
|
for eachModelParameters in parametersLocalNew:
|
|
clf.set_params(**eachModelParameters)
|
|
clf.fit(XData, yData)
|
|
yPredict = clf.predict(XData)
|
|
yPredict = np.nan_to_num(yPredict)
|
|
yPredictProb = cross_val_predict(clf, XData, yData, cv=crossValidation, method='predict_proba')
|
|
yPredictProb = np.nan_to_num(yPredictProb)
|
|
perModelProb.append(yPredictProb.tolist())
|
|
|
|
resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted'))
|
|
resultsCorrCoef.append(matthews_corrcoef(yData, yPredict))
|
|
resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True))
|
|
|
|
maxLog = max(resultsLogLoss)
|
|
minLog = min(resultsLogLoss)
|
|
for each in resultsLogLoss:
|
|
resultsLogLossFinal.append((each-minLog)/(maxLog-minLog))
|
|
|
|
metrics.insert(5,'geometric_mean_score_weighted',resultsWeighted)
|
|
metrics.insert(6,'matthews_corrcoef',resultsCorrCoef)
|
|
metrics.insert(7,'log_loss',resultsLogLossFinal)
|
|
|
|
perModelProbPandas = pd.DataFrame(perModelProb)
|
|
|
|
results.append(modelsIDs)
|
|
results.append(parametersPerformancePerModel)
|
|
results.append(metrics)
|
|
results.append(perModelProbPandas)
|
|
|
|
return results
|
|
|
|
def PreprocessingIDs():
|
|
dicKNN = allParametersPerformancePerModel[0]
|
|
dicLR = allParametersPerformancePerModel[4]
|
|
dicMLP = allParametersPerformancePerModel[8]
|
|
dicRF = allParametersPerformancePerModel[12]
|
|
dicGradB = allParametersPerformancePerModel[16]
|
|
|
|
df_concatIDs = dicKNN + dicLR + dicMLP + dicRF + dicGradB
|
|
|
|
return df_concatIDs
|
|
|
|
def PreprocessingMetrics():
|
|
dicKNN = allParametersPerformancePerModel[2]
|
|
dicLR = allParametersPerformancePerModel[6]
|
|
dicMLP = allParametersPerformancePerModel[10]
|
|
dicRF = allParametersPerformancePerModel[14]
|
|
dicGradB = allParametersPerformancePerModel[18]
|
|
|
|
dfKNN = pd.DataFrame.from_dict(dicKNN)
|
|
dfLR = pd.DataFrame.from_dict(dicLR)
|
|
dfMLP = pd.DataFrame.from_dict(dicMLP)
|
|
dfRF = pd.DataFrame.from_dict(dicRF)
|
|
dfGradB = pd.DataFrame.from_dict(dicGradB)
|
|
|
|
df_concatMetrics = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
|
|
df_concatMetrics = df_concatMetrics.reset_index(drop=True)
|
|
return df_concatMetrics
|
|
|
|
def PreprocessingPred():
|
|
dicKNN = allParametersPerformancePerModel[3]
|
|
dicLR = allParametersPerformancePerModel[7]
|
|
dicMLP = allParametersPerformancePerModel[11]
|
|
dicRF = allParametersPerformancePerModel[15]
|
|
dicGradB = allParametersPerformancePerModel[19]
|
|
|
|
dfKNN = pd.DataFrame.from_dict(dicKNN)
|
|
dfLR = pd.DataFrame.from_dict(dicLR)
|
|
dfMLP = pd.DataFrame.from_dict(dicMLP)
|
|
dfRF = pd.DataFrame.from_dict(dicRF)
|
|
dfGradB = pd.DataFrame.from_dict(dicGradB)
|
|
|
|
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
|
|
df_concatProbs.reset_index(drop=True, inplace=True)
|
|
|
|
predictionsKNN = []
|
|
for column, content in dfKNN.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsKNN.append(el)
|
|
|
|
predictionsLR = []
|
|
for column, content in dfLR.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsLR.append(el)
|
|
|
|
predictionsMLP = []
|
|
for column, content in dfMLP.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsMLP.append(el)
|
|
|
|
predictionsRF = []
|
|
for column, content in dfRF.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsRF.append(el)
|
|
|
|
predictionsGradB = []
|
|
for column, content in dfGradB.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsGradB.append(el)
|
|
|
|
predictions = []
|
|
for column, content in df_concatProbs.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictions.append(el)
|
|
|
|
return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions]
|
|
|
|
def PreprocessingPredEnsemble():
|
|
|
|
global EnsembleActive
|
|
|
|
numberIDKNN = []
|
|
numberIDLR = []
|
|
numberIDMLP = []
|
|
numberIDRF = []
|
|
numberIDGradB = []
|
|
|
|
for el in EnsembleActive:
|
|
match = re.match(r"([a-z]+)([0-9]+)", el, re.I)
|
|
if match:
|
|
items = match.groups()
|
|
if (items[0] == 'KNN'):
|
|
numberIDKNN.append(int(items[1]))
|
|
elif (items[0] == 'LR'):
|
|
numberIDLR.append(int(items[1]))
|
|
elif (items[0] == 'MLP'):
|
|
numberIDMLP.append(int(items[1]))
|
|
elif (items[0] == 'RF'):
|
|
numberIDRF.append(int(items[1]))
|
|
else:
|
|
numberIDGradB.append(int(items[1]))
|
|
|
|
dicKNN = allParametersPerformancePerModel[3]
|
|
dicLR = allParametersPerformancePerModel[7]
|
|
dicMLP = allParametersPerformancePerModel[11]
|
|
dicRF = allParametersPerformancePerModel[15]
|
|
dicGradB = allParametersPerformancePerModel[19]
|
|
|
|
dfKNN = pd.DataFrame.from_dict(dicKNN)
|
|
dfLR = pd.DataFrame.from_dict(dicLR)
|
|
dfMLP = pd.DataFrame.from_dict(dicMLP)
|
|
dfRF = pd.DataFrame.from_dict(dicRF)
|
|
dfGradB = pd.DataFrame.from_dict(dicGradB)
|
|
|
|
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
|
|
df_concatProbs = df_concatProbs.reset_index(drop=True)
|
|
|
|
dfKNN = df_concatProbs.loc[numberIDKNN]
|
|
dfLR = df_concatProbs.loc[numberIDLR]
|
|
dfMLP = df_concatProbs.loc[numberIDMLP]
|
|
dfRF = df_concatProbs.loc[numberIDRF]
|
|
dfGradB = df_concatProbs.loc[numberIDGradB]
|
|
|
|
df_concatProbs = pd.DataFrame()
|
|
df_concatProbs = df_concatProbs.iloc[0:0]
|
|
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
|
|
|
|
predictionsKNN = []
|
|
for column, content in dfKNN.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsKNN.append(el)
|
|
|
|
predictionsLR = []
|
|
for column, content in dfLR.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsLR.append(el)
|
|
|
|
predictionsMLP = []
|
|
for column, content in dfMLP.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsMLP.append(el)
|
|
|
|
predictionsRF = []
|
|
for column, content in dfRF.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsRF.append(el)
|
|
|
|
predictionsGradB = []
|
|
for column, content in dfGradB.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsGradB.append(el)
|
|
|
|
predictions = []
|
|
for column, content in df_concatProbs.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictions.append(el)
|
|
|
|
return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions]
|
|
|
|
def PreprocessingParam():
|
|
dicKNN = allParametersPerformancePerModel[1]
|
|
dicLR = allParametersPerformancePerModel[5]
|
|
dicMLP = allParametersPerformancePerModel[9]
|
|
dicRF = allParametersPerformancePerModel[13]
|
|
dicGradB = allParametersPerformancePerModel[17]
|
|
|
|
dicKNN = dicKNN['params']
|
|
dicLR = dicLR['params']
|
|
dicMLP = dicMLP['params']
|
|
dicRF = dicRF['params']
|
|
dicGradB = dicGradB['params']
|
|
|
|
dicKNN = {int(k):v for k,v in dicKNN.items()}
|
|
dicLR = {int(k):v for k,v in dicLR.items()}
|
|
dicMLP = {int(k):v for k,v in dicMLP.items()}
|
|
dicRF = {int(k):v for k,v in dicRF.items()}
|
|
dicGradB = {int(k):v for k,v in dicGradB.items()}
|
|
|
|
dfKNN = pd.DataFrame.from_dict(dicKNN)
|
|
dfLR = pd.DataFrame.from_dict(dicLR)
|
|
dfMLP = pd.DataFrame.from_dict(dicMLP)
|
|
dfRF = pd.DataFrame.from_dict(dicRF)
|
|
dfGradB = pd.DataFrame.from_dict(dicGradB)
|
|
|
|
dfKNN = dfKNN.T
|
|
dfLR = dfLR.T
|
|
dfMLP = dfMLP.T
|
|
dfRF = dfRF.T
|
|
dfGradB = dfGradB.T
|
|
|
|
df_params = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
|
|
df_params = df_params.reset_index(drop=True)
|
|
return df_params
|
|
|
|
def PreprocessingParamSep():
|
|
dicKNN = allParametersPerformancePerModel[1]
|
|
dicLR = allParametersPerformancePerModel[5]
|
|
dicMLP = allParametersPerformancePerModel[9]
|
|
dicRF = allParametersPerformancePerModel[13]
|
|
dicGradB = allParametersPerformancePerModel[17]
|
|
|
|
dicKNN = dicKNN['params']
|
|
dicLR = dicLR['params']
|
|
dicMLP = dicMLP['params']
|
|
dicRF = dicRF['params']
|
|
dicGradB = dicGradB['params']
|
|
|
|
dicKNN = {int(k):v for k,v in dicKNN.items()}
|
|
dicLR = {int(k):v for k,v in dicLR.items()}
|
|
dicMLP = {int(k):v for k,v in dicMLP.items()}
|
|
dicRF = {int(k):v for k,v in dicRF.items()}
|
|
dicGradB = {int(k):v for k,v in dicGradB.items()}
|
|
|
|
dfKNN = pd.DataFrame.from_dict(dicKNN)
|
|
dfLR = pd.DataFrame.from_dict(dicLR)
|
|
dfMLP = pd.DataFrame.from_dict(dicMLP)
|
|
dfRF = pd.DataFrame.from_dict(dicRF)
|
|
dfGradB = pd.DataFrame.from_dict(dicGradB)
|
|
|
|
dfKNN = dfKNN.T
|
|
dfLR = dfLR.T
|
|
dfMLP = dfMLP.T
|
|
dfRF = dfRF.T
|
|
dfGradB = dfGradB.T
|
|
|
|
return [dfKNN, dfLR, dfMLP, dfRF, dfGradB]
|
|
|
|
# remove that maybe!
|
|
def preProcsumPerMetric(factors):
|
|
sumPerClassifier = []
|
|
loopThroughMetrics = PreprocessingMetrics()
|
|
loopThroughMetrics = loopThroughMetrics.fillna(0)
|
|
loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss']
|
|
for row in loopThroughMetrics.iterrows():
|
|
rowSum = 0
|
|
name, values = row
|
|
for loop, elements in enumerate(values):
|
|
rowSum = elements*factors[loop] + rowSum
|
|
if sum(factors) is 0:
|
|
sumPerClassifier = 0
|
|
else:
|
|
sumPerClassifier.append(rowSum/sum(factors) * 100)
|
|
return sumPerClassifier
|
|
|
|
def preProcMetricsAllAndSel():
|
|
loopThroughMetrics = PreprocessingMetrics()
|
|
loopThroughMetrics = loopThroughMetrics.fillna(0)
|
|
global factors
|
|
metricsPerModelColl = []
|
|
metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy'])
|
|
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted'])
|
|
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted'])
|
|
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted'])
|
|
metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_weighted'])
|
|
metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef'])
|
|
metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted'])
|
|
metricsPerModelColl.append(loopThroughMetrics['log_loss'])
|
|
|
|
f=lambda a: (abs(a)+a)/2
|
|
for index, metric in enumerate(metricsPerModelColl):
|
|
if (index == 5):
|
|
metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100
|
|
elif (index == 7):
|
|
metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100
|
|
else:
|
|
metricsPerModelColl[index] = (metric*factors[index]) * 100
|
|
metricsPerModelColl[index] = metricsPerModelColl[index].to_json()
|
|
return metricsPerModelColl
|
|
|
|
def FunMDS (data):
|
|
mds = MDS(n_components=2, random_state=RANDOM_SEED)
|
|
XTransformed = mds.fit_transform(data).T
|
|
XTransformed = XTransformed.tolist()
|
|
return XTransformed
|
|
|
|
def FunTsne (data):
|
|
tsne = TSNE(n_components=2, random_state=RANDOM_SEED).fit_transform(data)
|
|
tsne.shape
|
|
return tsne
|
|
|
|
def FunUMAP (data):
|
|
trans = umap.UMAP(n_neighbors=15, random_state=RANDOM_SEED).fit(data)
|
|
Xpos = trans.embedding_[:, 0].tolist()
|
|
Ypos = trans.embedding_[:, 1].tolist()
|
|
return [Xpos,Ypos]
|
|
|
|
# Sending the overview classifiers' results to be visualized as a scatterplot
|
|
@app.route('/data/PlotClassifiers', methods=["GET", "POST"])
|
|
def SendToPlot():
|
|
while (len(DataResultsRaw) != DataRawLength):
|
|
pass
|
|
InitializeEnsemble()
|
|
response = {
|
|
'OverviewResults': Results
|
|
}
|
|
return jsonify(response)
|
|
|
|
def InitializeEnsemble():
|
|
XModels = PreprocessingMetrics()
|
|
global ModelSpaceMDS
|
|
global ModelSpaceTSNE
|
|
global allParametersPerformancePerModel
|
|
global EnsembleActive
|
|
|
|
XModels = XModels.fillna(0)
|
|
|
|
ModelSpaceMDS = FunMDS(XModels)
|
|
ModelSpaceTSNE = FunTsne(XModels)
|
|
ModelSpaceTSNE = ModelSpaceTSNE.tolist()
|
|
ModelSpaceUMAP = FunUMAP(XModels)
|
|
|
|
if (len(EnsembleActive) == 0):
|
|
PredictionProbSel = PreprocessingPred()
|
|
else:
|
|
PredictionProbSel = PreprocessingPredEnsemble()
|
|
|
|
returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionProbSel)
|
|
|
|
def returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionProbSel):
|
|
|
|
global Results
|
|
global AllTargets
|
|
Results = []
|
|
|
|
parametersGen = PreprocessingParam()
|
|
metricsPerModel = preProcMetricsAllAndSel()
|
|
sumPerClassifier = preProcsumPerMetric(factors)
|
|
ModelsIDs = PreprocessingIDs()
|
|
|
|
|
|
parametersGenPD = parametersGen.to_json(orient='records')
|
|
XDataJSONEntireSet = XData.to_json(orient='records')
|
|
XDataColumns = XData.columns.tolist()
|
|
|
|
Results.append(json.dumps(ModelsIDs))
|
|
Results.append(json.dumps(sumPerClassifier))
|
|
Results.append(json.dumps(parametersGenPD))
|
|
Results.append(json.dumps(metricsPerModel))
|
|
Results.append(json.dumps(XDataJSONEntireSet))
|
|
Results.append(json.dumps(XDataColumns))
|
|
Results.append(json.dumps(yData))
|
|
Results.append(json.dumps(target_names))
|
|
Results.append(json.dumps(AllTargets))
|
|
Results.append(json.dumps(ModelSpaceMDS))
|
|
Results.append(json.dumps(ModelSpaceTSNE))
|
|
Results.append(json.dumps(ModelSpaceUMAP))
|
|
Results.append(json.dumps(PredictionProbSel))
|
|
|
|
return Results
|
|
|
|
# Initialize crossover and mutation processes
|
|
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
|
|
@app.route('/data/CrossoverMutation', methods=["GET", "POST"])
|
|
def CrossoverMutateFun():
|
|
|
|
# get the models from the frontend
|
|
RemainingIds = request.get_data().decode('utf8').replace("'", '"')
|
|
RemainingIds = json.loads(RemainingIds)
|
|
|
|
RemainingIds = RemainingIds['RemainingPoints']
|
|
|
|
global EnsembleActive
|
|
|
|
EnsembleActive = request.get_data().decode('utf8').replace("'", '"')
|
|
EnsembleActive = json.loads(EnsembleActive)
|
|
|
|
EnsembleActive = EnsembleActive['StoreEnsemble']
|
|
|
|
global XData
|
|
global yData
|
|
global LRModelsCount
|
|
global addKNN
|
|
global addLR
|
|
global countAllModels
|
|
|
|
# loop through the algorithms
|
|
global allParametersPerfCrossMutr
|
|
global HistoryPreservation
|
|
global allParametersPerformancePerModel
|
|
|
|
KNNIDs = list(filter(lambda k: 'KNN' in k, RemainingIds))
|
|
LRIDs = list(filter(lambda k: 'LR' in k, RemainingIds))
|
|
|
|
countKNN = 0
|
|
countLR = 0
|
|
setMaxLoopValue = 5
|
|
paramAllAlgs = PreprocessingParam()
|
|
|
|
KNNIntIndex = []
|
|
LRIntIndex = []
|
|
|
|
localCrossMutr = []
|
|
allParametersPerfCrossMutrKNNC = []
|
|
while countKNN < setMaxLoopValue:
|
|
for dr in KNNIDs:
|
|
KNNIntIndex.append(int(re.findall('\d+', dr)[0]))
|
|
KNNPickPair = random.sample(KNNIntIndex,2)
|
|
pairDF = paramAllAlgs.iloc[KNNPickPair]
|
|
crossoverDF = pd.DataFrame()
|
|
for column in pairDF:
|
|
listData = []
|
|
randomZeroOne = random.randint(0, 1)
|
|
valuePerColumn = pairDF[column].iloc[randomZeroOne]
|
|
listData.append(valuePerColumn)
|
|
crossoverDF[column] = listData
|
|
if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()):
|
|
crossoverDF = pd.DataFrame()
|
|
else:
|
|
clf = KNeighborsClassifier()
|
|
params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]}
|
|
AlgorithmsIDsEnd = countAllModels + countKNN
|
|
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNN', AlgorithmsIDsEnd)
|
|
countKNN += 1
|
|
crossoverDF = pd.DataFrame()
|
|
|
|
countAllModels = countAllModels + 5
|
|
|
|
for loop in range(setMaxLoopValue - 1):
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4]
|
|
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True)
|
|
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True)
|
|
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True)
|
|
|
|
allParametersPerfCrossMutrKNNC.append(localCrossMutr[0])
|
|
allParametersPerfCrossMutrKNNC.append(localCrossMutr[1])
|
|
allParametersPerfCrossMutrKNNC.append(localCrossMutr[2])
|
|
allParametersPerfCrossMutrKNNC.append(localCrossMutr[3])
|
|
|
|
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNC
|
|
|
|
countKNN = 0
|
|
KNNIntIndex = []
|
|
localCrossMutr.clear()
|
|
allParametersPerfCrossMutrKNNM = []
|
|
|
|
while countKNN < setMaxLoopValue:
|
|
for dr in KNNIDs:
|
|
KNNIntIndex.append(int(re.findall('\d+', dr)[0]))
|
|
KNNPickPair = random.sample(KNNIntIndex,1)
|
|
|
|
pairDF = paramAllAlgs.iloc[KNNPickPair]
|
|
crossoverDF = pd.DataFrame()
|
|
for column in pairDF:
|
|
listData = []
|
|
if (column == 'n_neighbors'):
|
|
randomNumber = random.randint(101, math.floor(((len(yData)/crossValidation)*(crossValidation-1)))-1)
|
|
listData.append(randomNumber)
|
|
crossoverDF[column] = listData
|
|
else:
|
|
valuePerColumn = pairDF[column].iloc[0]
|
|
listData.append(valuePerColumn)
|
|
crossoverDF[column] = listData
|
|
if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()):
|
|
crossoverDF = pd.DataFrame()
|
|
else:
|
|
clf = KNeighborsClassifier()
|
|
params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]}
|
|
AlgorithmsIDsEnd = countAllModels + countKNN
|
|
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNN', AlgorithmsIDsEnd)
|
|
countKNN += 1
|
|
crossoverDF = pd.DataFrame()
|
|
|
|
countAllModels = countAllModels + 5
|
|
|
|
for loop in range(setMaxLoopValue - 1):
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4]
|
|
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True)
|
|
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True)
|
|
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True)
|
|
|
|
allParametersPerfCrossMutrKNNM.append(localCrossMutr[0])
|
|
allParametersPerfCrossMutrKNNM.append(localCrossMutr[1])
|
|
allParametersPerfCrossMutrKNNM.append(localCrossMutr[2])
|
|
allParametersPerfCrossMutrKNNM.append(localCrossMutr[3])
|
|
|
|
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNM
|
|
|
|
localCrossMutr.clear()
|
|
allParametersPerfCrossMutrLRC = []
|
|
|
|
while countLR < setMaxLoopValue:
|
|
for dr in LRIDs:
|
|
LRIntIndex.append(int(re.findall('\d+', dr)[0]))
|
|
LRPickPair = random.sample(LRIntIndex,2)
|
|
|
|
pairDF = paramAllAlgs.iloc[LRPickPair]
|
|
crossoverDF = pd.DataFrame()
|
|
for column in pairDF:
|
|
listData = []
|
|
randomZeroOne = random.randint(0, 1)
|
|
valuePerColumn = pairDF[column].iloc[randomZeroOne]
|
|
listData.append(valuePerColumn)
|
|
crossoverDF[column] = listData
|
|
if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()):
|
|
crossoverDF = pd.DataFrame()
|
|
else:
|
|
clf = LogisticRegression(random_state=RANDOM_SEED)
|
|
params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]}
|
|
AlgorithmsIDsEnd = countAllModels + countLR
|
|
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LR', AlgorithmsIDsEnd)
|
|
countLR += 1
|
|
crossoverDF = pd.DataFrame()
|
|
|
|
countAllModels = countAllModels + 5
|
|
|
|
for loop in range(setMaxLoopValue - 1):
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4]
|
|
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True)
|
|
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True)
|
|
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True)
|
|
|
|
allParametersPerfCrossMutrLRC.append(localCrossMutr[0])
|
|
allParametersPerfCrossMutrLRC.append(localCrossMutr[1])
|
|
allParametersPerfCrossMutrLRC.append(localCrossMutr[2])
|
|
allParametersPerfCrossMutrLRC.append(localCrossMutr[3])
|
|
|
|
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRC
|
|
|
|
countLR = 0
|
|
LRIntIndex = []
|
|
localCrossMutr.clear()
|
|
allParametersPerfCrossMutrLRM = []
|
|
|
|
while countLR < setMaxLoopValue:
|
|
for dr in LRIDs:
|
|
LRIntIndex.append(int(re.findall('\d+', dr)[0]))
|
|
LRPickPair = random.sample(LRIntIndex,1)
|
|
|
|
pairDF = paramAllAlgs.iloc[LRPickPair]
|
|
crossoverDF = pd.DataFrame()
|
|
for column in pairDF:
|
|
listData = []
|
|
if (column == 'C'):
|
|
randomNumber = random.randint(101, 1000)
|
|
listData.append(randomNumber)
|
|
crossoverDF[column] = listData
|
|
else:
|
|
valuePerColumn = pairDF[column].iloc[0]
|
|
listData.append(valuePerColumn)
|
|
crossoverDF[column] = listData
|
|
if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()):
|
|
crossoverDF = pd.DataFrame()
|
|
else:
|
|
clf = LogisticRegression(random_state=RANDOM_SEED)
|
|
params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]}
|
|
AlgorithmsIDsEnd = countAllModels + countLR
|
|
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LR', AlgorithmsIDsEnd)
|
|
countLR += 1
|
|
crossoverDF = pd.DataFrame()
|
|
|
|
countAllModels = countAllModels + 5
|
|
|
|
for loop in range(setMaxLoopValue - 1):
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4]
|
|
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True)
|
|
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True)
|
|
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True)
|
|
|
|
allParametersPerfCrossMutrLRM.append(localCrossMutr[0])
|
|
allParametersPerfCrossMutrLRM.append(localCrossMutr[1])
|
|
allParametersPerfCrossMutrLRM.append(localCrossMutr[2])
|
|
allParametersPerfCrossMutrLRM.append(localCrossMutr[3])
|
|
|
|
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRM
|
|
|
|
localCrossMutr.clear()
|
|
|
|
allParametersPerfCrossMutr = allParametersPerfCrossMutrKNNC + allParametersPerfCrossMutrKNNM + allParametersPerfCrossMutrLRC + allParametersPerfCrossMutrLRM
|
|
|
|
allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrKNNC[0] + allParametersPerfCrossMutrKNNM[0]
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNC[1]], ignore_index=True)
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNM[1]], ignore_index=True)
|
|
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrKNNC[2]], ignore_index=True)
|
|
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrKNNM[2]], ignore_index=True)
|
|
|
|
allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNC[3]], ignore_index=True)
|
|
allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNM[3]], ignore_index=True)
|
|
|
|
|
|
allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrLRC[0] + allParametersPerfCrossMutrLRM[0]
|
|
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRC[1]], ignore_index=True)
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRM[1]], ignore_index=True)
|
|
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRC[2]], ignore_index=True)
|
|
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRM[2]], ignore_index=True)
|
|
|
|
allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRC[3]], ignore_index=True)
|
|
allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRM[3]], ignore_index=True)
|
|
|
|
addKNN = addLR
|
|
|
|
addLR = addLR + 10
|
|
|
|
# KNNIntIndex = []
|
|
# for dr in KNNIDs:
|
|
# KNNIntIndex.append(int(re.findall('\d+', dr)[0]))
|
|
|
|
# allParametersPerformancePerModel[0] = [j for i, j in enumerate(allParametersPerformancePerModel[0]) if i not in KNNIntIndex]
|
|
# allParametersPerformancePerModel[1].drop(allParametersPerformancePerModel[1].index[KNNIntIndex], inplace=True)
|
|
# allParametersPerformancePerModel[2].drop(allParametersPerformancePerModel[2].index[KNNIntIndex], inplace=True)
|
|
# allParametersPerformancePerModel[3].drop(allParametersPerformancePerModel[3].index[KNNIntIndex], inplace=True)
|
|
|
|
# LRIntIndex = []
|
|
# for dr in LRIDs:
|
|
# LRIntIndex.append(int(re.findall('\d+', dr)[0]) - 100)
|
|
|
|
# allParametersPerformancePerModel[4] = [j for i, j in enumerate(allParametersPerformancePerModel[4]) if i not in LRIntIndex]
|
|
# allParametersPerformancePerModel[5].drop(allParametersPerformancePerModel[5].index[LRIntIndex], inplace=True)
|
|
# allParametersPerformancePerModel[6].drop(allParametersPerformancePerModel[6].index[LRIntIndex], inplace=True)
|
|
# allParametersPerformancePerModel[7].drop(allParametersPerformancePerModel[7].index[LRIntIndex], inplace=True)
|
|
|
|
return 'Everything Okay'
|
|
|
|
def crossoverMutation(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
|
|
search = GridSearchCV(
|
|
estimator=clf, param_grid=params, cv=crossValidation, refit='accuracy',
|
|
scoring=scoring, verbose=0, n_jobs=-1)
|
|
|
|
# fit and extract the probabilities
|
|
search.fit(XData, yData)
|
|
|
|
# process the results
|
|
cv_results = []
|
|
cv_results.append(search.cv_results_)
|
|
df_cv_results = pd.DataFrame.from_dict(cv_results)
|
|
|
|
# number of models stored
|
|
number_of_models = len(df_cv_results.iloc[0][0])
|
|
|
|
# initialize results per row
|
|
df_cv_results_per_row = []
|
|
|
|
# loop through number of models
|
|
modelsIDs = []
|
|
for i in range(number_of_models):
|
|
number = AlgorithmsIDsEnd+i
|
|
modelsIDs.append(eachAlgor+str(number))
|
|
# initialize results per item
|
|
df_cv_results_per_item = []
|
|
for column in df_cv_results.iloc[0]:
|
|
df_cv_results_per_item.append(column[i])
|
|
df_cv_results_per_row.append(df_cv_results_per_item)
|
|
|
|
# store the results into a pandas dataframe
|
|
df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns)
|
|
|
|
# copy and filter in order to get only the metrics
|
|
metrics = df_cv_results_classifiers.copy()
|
|
metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_weighted','mean_test_recall_weighted','mean_test_f1_weighted','mean_test_roc_auc_ovo_weighted'])
|
|
|
|
# concat parameters and performance
|
|
parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params'])
|
|
parametersLocal = parametersPerformancePerModel['params'].copy()
|
|
|
|
Models = []
|
|
for index, items in enumerate(parametersLocal):
|
|
Models.append(index)
|
|
|
|
parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ]
|
|
|
|
perModelProb = []
|
|
|
|
resultsWeighted = []
|
|
resultsCorrCoef = []
|
|
resultsLogLoss = []
|
|
resultsLogLossFinal = []
|
|
|
|
# influence calculation for all the instances
|
|
inputs = range(len(XData))
|
|
num_cores = multiprocessing.cpu_count()
|
|
|
|
for eachModelParameters in parametersLocalNew:
|
|
clf.set_params(**eachModelParameters)
|
|
clf.fit(XData, yData)
|
|
yPredict = clf.predict(XData)
|
|
yPredict = np.nan_to_num(yPredict)
|
|
yPredictProb = cross_val_predict(clf, XData, yData, cv=crossValidation, method='predict_proba')
|
|
yPredictProb = np.nan_to_num(yPredictProb)
|
|
perModelProb.append(yPredictProb.tolist())
|
|
|
|
resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted'))
|
|
resultsCorrCoef.append(matthews_corrcoef(yData, yPredict))
|
|
resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True))
|
|
|
|
maxLog = max(resultsLogLoss)
|
|
minLog = min(resultsLogLoss)
|
|
for each in resultsLogLoss:
|
|
resultsLogLossFinal.append((each-minLog)/(maxLog-minLog))
|
|
|
|
metrics.insert(5,'geometric_mean_score_weighted',resultsWeighted)
|
|
metrics.insert(6,'matthews_corrcoef',resultsCorrCoef)
|
|
metrics.insert(7,'log_loss',resultsLogLossFinal)
|
|
|
|
perModelProbPandas = pd.DataFrame(perModelProb)
|
|
|
|
results.append(modelsIDs)
|
|
results.append(parametersPerformancePerModel)
|
|
results.append(metrics)
|
|
results.append(perModelProbPandas)
|
|
|
|
return results
|
|
|
|
def PreprocessingIDsCM():
|
|
dicKNNC = allParametersPerfCrossMutr[0]
|
|
dicKNNM = allParametersPerfCrossMutr[4]
|
|
dicLRC = allParametersPerfCrossMutr[8]
|
|
dicLRM = allParametersPerfCrossMutr[12]
|
|
|
|
df_concatIDs = dicKNNC + dicKNNM + dicLRC + dicLRM
|
|
return df_concatIDs
|
|
|
|
def PreprocessingMetricsCM():
|
|
dicKNNC = allParametersPerfCrossMutr[2]
|
|
dicKNNM = allParametersPerfCrossMutr[6]
|
|
dicLRC = allParametersPerfCrossMutr[10]
|
|
dicLRM = allParametersPerfCrossMutr[14]
|
|
|
|
dfKNNC = pd.DataFrame.from_dict(dicKNNC)
|
|
dfKNNM = pd.DataFrame.from_dict(dicKNNM)
|
|
dfLRC = pd.DataFrame.from_dict(dicLRC)
|
|
dfLRM = pd.DataFrame.from_dict(dicLRM)
|
|
|
|
df_concatMetrics = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM])
|
|
df_concatMetrics = df_concatMetrics.reset_index(drop=True)
|
|
return df_concatMetrics
|
|
|
|
def PreprocessingPredCM():
|
|
dicKNNC = allParametersPerfCrossMutr[3]
|
|
dicKNNM = allParametersPerfCrossMutr[7]
|
|
dicLRC = allParametersPerfCrossMutr[11]
|
|
dicLRM = allParametersPerfCrossMutr[15]
|
|
|
|
dfKNNC = pd.DataFrame.from_dict(dicKNNC)
|
|
dfKNNM = pd.DataFrame.from_dict(dicKNNM)
|
|
dfLRC = pd.DataFrame.from_dict(dicLRC)
|
|
dfLRM = pd.DataFrame.from_dict(dicLRM)
|
|
|
|
dfKNN = pd.concat([dfKNNC, dfKNNM])
|
|
|
|
dfLR = pd.concat([dfLRC, dfLRM])
|
|
|
|
df_concatProbs = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM])
|
|
|
|
predictionsKNN = []
|
|
for column, content in dfKNN.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsKNN.append(el)
|
|
|
|
predictionsLR = []
|
|
for column, content in dfLR.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsLR.append(el)
|
|
|
|
predictions = []
|
|
for column, content in df_concatProbs.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictions.append(el)
|
|
|
|
return [predictionsKNN, predictionsLR, predictions]
|
|
|
|
def PreprocessingParamCM():
|
|
dicKNNC = allParametersPerfCrossMutr[1]
|
|
dicKNNM = allParametersPerfCrossMutr[5]
|
|
dicLRC = allParametersPerfCrossMutr[9]
|
|
dicLRM = allParametersPerfCrossMutr[13]
|
|
|
|
dicKNNC = dicKNNC['params']
|
|
dicKNNM = dicKNNM['params']
|
|
dicLRC = dicLRC['params']
|
|
dicLRM = dicLRM['params']
|
|
|
|
dicKNNC = {int(k):v for k,v in dicKNNC.items()}
|
|
dicKNNM = {int(k):v for k,v in dicKNNM.items()}
|
|
dicLRC = {int(k):v for k,v in dicLRC.items()}
|
|
dicLRM = {int(k):v for k,v in dicLRM.items()}
|
|
|
|
dfKNNC = pd.DataFrame.from_dict(dicKNNC)
|
|
dfKNNM = pd.DataFrame.from_dict(dicKNNM)
|
|
dfLRC = pd.DataFrame.from_dict(dicLRC)
|
|
dfLRM = pd.DataFrame.from_dict(dicLRM)
|
|
|
|
dfKNNC = dfKNNC.T
|
|
dfKNNM = dfKNNM.T
|
|
dfLRC = dfLRC.T
|
|
dfLRM = dfLRM.T
|
|
|
|
df_params = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM])
|
|
df_params = df_params.reset_index(drop=True)
|
|
return df_params
|
|
|
|
def PreprocessingParamSepCM():
|
|
dicKNNC = allParametersPerfCrossMutr[1]
|
|
dicKNNM = allParametersPerfCrossMutr[5]
|
|
dicLRC = allParametersPerfCrossMutr[9]
|
|
dicLRM = allParametersPerfCrossMutr[13]
|
|
|
|
dicKNNC = dicKNNC['params']
|
|
dicKNNM = dicKNNM['params']
|
|
dicLRC = dicLRC['params']
|
|
dicLRM = dicLRM['params']
|
|
|
|
dicKNNC = {int(k):v for k,v in dicKNNC.items()}
|
|
dicKNNM = {int(k):v for k,v in dicKNNM.items()}
|
|
dicLRC = {int(k):v for k,v in dicLRC.items()}
|
|
dicLRM = {int(k):v for k,v in dicLRM.items()}
|
|
|
|
dfKNNC = pd.DataFrame.from_dict(dicKNNC)
|
|
dfKNNM = pd.DataFrame.from_dict(dicKNNM)
|
|
dfLRC = pd.DataFrame.from_dict(dicLRC)
|
|
dfLRM = pd.DataFrame.from_dict(dicLRM)
|
|
|
|
dfKNNC = dfKNNC.T
|
|
dfKNNM = dfKNNM.T
|
|
dfLRC = dfLRC.T
|
|
dfLRM = dfLRM.T
|
|
|
|
return [dfKNNC, dfKNNM, dfLRC, dfLRM]
|
|
|
|
# remove that maybe!
|
|
def preProcsumPerMetricCM(factors):
|
|
sumPerClassifier = []
|
|
loopThroughMetrics = PreprocessingMetricsCM()
|
|
loopThroughMetrics = loopThroughMetrics.fillna(0)
|
|
loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss']
|
|
for row in loopThroughMetrics.iterrows():
|
|
rowSum = 0
|
|
name, values = row
|
|
for loop, elements in enumerate(values):
|
|
rowSum = elements*factors[loop] + rowSum
|
|
if sum(factors) is 0:
|
|
sumPerClassifier = 0
|
|
else:
|
|
sumPerClassifier.append(rowSum/sum(factors) * 100)
|
|
return sumPerClassifier
|
|
|
|
def preProcMetricsAllAndSelCM():
|
|
loopThroughMetrics = PreprocessingMetricsCM()
|
|
loopThroughMetrics = loopThroughMetrics.fillna(0)
|
|
global factors
|
|
metricsPerModelColl = []
|
|
metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy'])
|
|
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted'])
|
|
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted'])
|
|
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted'])
|
|
metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_weighted'])
|
|
metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef'])
|
|
metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted'])
|
|
metricsPerModelColl.append(loopThroughMetrics['log_loss'])
|
|
|
|
f=lambda a: (abs(a)+a)/2
|
|
for index, metric in enumerate(metricsPerModelColl):
|
|
if (index == 5):
|
|
metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100
|
|
elif (index == 7):
|
|
metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100
|
|
else:
|
|
metricsPerModelColl[index] = (metric*factors[index]) * 100
|
|
metricsPerModelColl[index] = metricsPerModelColl[index].to_json()
|
|
return metricsPerModelColl
|
|
|
|
# Sending the overview classifiers' results to be visualized as a scatterplot
|
|
@app.route('/data/PlotCrossMutate', methods=["GET", "POST"])
|
|
def SendToPlotCM():
|
|
while (len(DataResultsRaw) != DataRawLength):
|
|
pass
|
|
PreProcessingInitial()
|
|
response = {
|
|
'OverviewResultsCM': ResultsCM
|
|
}
|
|
return jsonify(response)
|
|
|
|
def PreProcessingInitial():
|
|
XModels = PreprocessingMetricsCM()
|
|
global allParametersPerfCrossMutr
|
|
|
|
XModels = XModels.fillna(0)
|
|
|
|
ModelSpaceMDSCM = FunMDS(XModels)
|
|
ModelSpaceTSNECM = FunTsne(XModels)
|
|
ModelSpaceTSNECM = ModelSpaceTSNECM.tolist()
|
|
ModelSpaceUMAPCM = FunUMAP(XModels)
|
|
|
|
PredictionProbSel = PreprocessingPredCM()
|
|
|
|
CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,PredictionProbSel)
|
|
|
|
def CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,PredictionProbSel):
|
|
|
|
global ResultsCM
|
|
global AllTargets
|
|
ResultsCM = []
|
|
|
|
parametersGen = PreprocessingParamCM()
|
|
metricsPerModel = preProcMetricsAllAndSelCM()
|
|
sumPerClassifier = preProcsumPerMetricCM(factors)
|
|
ModelsIDs = PreprocessingIDsCM()
|
|
|
|
|
|
parametersGenPD = parametersGen.to_json(orient='records')
|
|
XDataJSONEntireSet = XData.to_json(orient='records')
|
|
XDataColumns = XData.columns.tolist()
|
|
|
|
ResultsCM.append(json.dumps(ModelsIDs))
|
|
ResultsCM.append(json.dumps(sumPerClassifier))
|
|
ResultsCM.append(json.dumps(parametersGenPD))
|
|
ResultsCM.append(json.dumps(metricsPerModel))
|
|
ResultsCM.append(json.dumps(XDataJSONEntireSet))
|
|
ResultsCM.append(json.dumps(XDataColumns))
|
|
ResultsCM.append(json.dumps(yData))
|
|
ResultsCM.append(json.dumps(target_names))
|
|
ResultsCM.append(json.dumps(AllTargets))
|
|
ResultsCM.append(json.dumps(ModelSpaceMDSCM))
|
|
ResultsCM.append(json.dumps(ModelSpaceTSNECM))
|
|
ResultsCM.append(json.dumps(ModelSpaceUMAPCM))
|
|
ResultsCM.append(json.dumps(PredictionProbSel))
|
|
|
|
return ResultsCM
|
|
|
|
def PreprocessingPredSel(SelectedIDs):
|
|
|
|
global addKNN
|
|
global addLR
|
|
global addMLP
|
|
global addRF
|
|
global addGradB
|
|
|
|
numberIDKNN = []
|
|
numberIDLR = []
|
|
numberIDMLP = []
|
|
numberIDRF = []
|
|
numberIDGradB = []
|
|
|
|
for el in SelectedIDs:
|
|
match = re.match(r"([a-z]+)([0-9]+)", el, re.I)
|
|
if match:
|
|
items = match.groups()
|
|
if (items[0] == 'KNN'):
|
|
numberIDKNN.append(int(items[1]) - addKNN)
|
|
elif (items[0] == 'LR'):
|
|
numberIDLR.append(int(items[1]) - addLR)
|
|
elif (items[0] == 'MLP'):
|
|
numberIDMLP.append(int(items[1]) - addMLP)
|
|
elif (items[0] == 'RF'):
|
|
numberIDRF.append(int(items[1]) - addRF)
|
|
else:
|
|
numberIDGradB.append(int(items[1]) - addGradB)
|
|
|
|
dicKNN = allParametersPerformancePerModel[3]
|
|
dicLR = allParametersPerformancePerModel[7]
|
|
dicMLP = allParametersPerformancePerModel[11]
|
|
dicRF = allParametersPerformancePerModel[15]
|
|
dicGradB = allParametersPerformancePerModel[19]
|
|
|
|
dfKNN = pd.DataFrame.from_dict(dicKNN)
|
|
dfKNN = dfKNN.loc[numberIDKNN]
|
|
|
|
dfLR = pd.DataFrame.from_dict(dicLR)
|
|
dfLR = dfLR.loc[numberIDLR]
|
|
|
|
dfLR.index += addKNN
|
|
|
|
dfMLP = pd.DataFrame.from_dict(dicMLP)
|
|
dfMLP = dfMLP.loc[numberIDMLP]
|
|
|
|
dfMLP.index += addKNN + addLR
|
|
|
|
dfRF = pd.DataFrame.from_dict(dicRF)
|
|
dfRF = dfRF.loc[numberIDRF]
|
|
|
|
dfRF.index += addKNN + addLR + addMLP
|
|
|
|
dfGradB = pd.DataFrame.from_dict(dicGradB)
|
|
dfGradB = dfGradB.loc[numberIDGradB]
|
|
|
|
dfGradB.index += addKNN + addLR + addMLP + addRF
|
|
|
|
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
|
|
|
|
predictionsKNN = []
|
|
for column, content in dfKNN.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsKNN.append(el)
|
|
|
|
predictionsLR = []
|
|
for column, content in dfLR.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsLR.append(el)
|
|
|
|
predictionsMLP = []
|
|
for column, content in dfMLP.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsMLP.append(el)
|
|
|
|
predictionsRF = []
|
|
for column, content in dfRF.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsRF.append(el)
|
|
|
|
predictionsGradB = []
|
|
for column, content in dfGradB.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsGradB.append(el)
|
|
|
|
predictions = []
|
|
for column, content in df_concatProbs.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictions.append(el)
|
|
|
|
return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions]
|
|
|
|
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
|
|
@app.route('/data/SendtoSeverSelIDs', methods=["GET", "POST"])
|
|
def RetrieveSelIDsPredict():
|
|
global ResultsSelPred
|
|
ResultsSelPred = []
|
|
RetrieveIDsSelection = request.get_data().decode('utf8').replace("'", '"')
|
|
RetrieveIDsSelection = json.loads(RetrieveIDsSelection)
|
|
RetrieveIDsSelection = RetrieveIDsSelection['predictSelectionIDs']
|
|
|
|
ResultsSelPred = PreprocessingPredSel(RetrieveIDsSelection)
|
|
|
|
return 'Everything Okay'
|
|
|
|
@app.route('/data/RetrievePredictions', methods=["GET", "POST"])
|
|
def SendPredictSel():
|
|
global ResultsSelPred
|
|
response = {
|
|
'PredictSel': ResultsSelPred
|
|
}
|
|
return jsonify(response)
|
|
|
|
def PreprocessingPredSelEnsem(SelectedIDsEnsem):
|
|
|
|
numberIDKNN = []
|
|
numberIDLR = []
|
|
numberIDMLP = []
|
|
numberIDRF = []
|
|
numberIDGradB = []
|
|
|
|
for el in SelectedIDsEnsem:
|
|
match = re.match(r"([a-z]+)([0-9]+)", el, re.I)
|
|
if match:
|
|
items = match.groups()
|
|
if (items[0] == 'KNN'):
|
|
numberIDKNN.append(int(items[1]))
|
|
elif (items[0] == 'LR'):
|
|
numberIDLR.append(int(items[1]))
|
|
elif (items[0] == 'MLP'):
|
|
numberIDLR.append(int(items[1]))
|
|
elif (items[0] == 'RF'):
|
|
numberIDLR.append(int(items[1]))
|
|
else:
|
|
numberIDLR.append(int(items[1]))
|
|
|
|
dicKNN = allParametersPerformancePerModel[3]
|
|
dicLR = allParametersPerformancePerModel[7]
|
|
dicMLP = allParametersPerformancePerModel[11]
|
|
dicRF = allParametersPerformancePerModel[15]
|
|
dicGradB = allParametersPerformancePerModel[19]
|
|
|
|
dfKNN = pd.DataFrame.from_dict(dicKNN)
|
|
dfLR = pd.DataFrame.from_dict(dicLR)
|
|
dfMLP = pd.DataFrame.from_dict(dicMLP)
|
|
dfRF = pd.DataFrame.from_dict(dicRF)
|
|
dfGradB = pd.DataFrame.from_dict(dicGradB)
|
|
|
|
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
|
|
df_concatProbs = df_concatProbs.reset_index(drop=True)
|
|
|
|
dfKNN = df_concatProbs.loc[numberIDKNN]
|
|
dfLR = df_concatProbs.loc[numberIDLR]
|
|
dfMLP = df_concatProbs.loc[numberIDMLP]
|
|
dfRF = df_concatProbs.loc[numberIDRF]
|
|
dfGradB = df_concatProbs.loc[numberIDGradB]
|
|
|
|
df_concatProbs = pd.DataFrame()
|
|
df_concatProbs = df_concatProbs.iloc[0:0]
|
|
df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB])
|
|
|
|
predictionsKNN = []
|
|
for column, content in dfKNN.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsKNN.append(el)
|
|
|
|
predictionsLR = []
|
|
for column, content in dfLR.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsLR.append(el)
|
|
|
|
predictionsMLP = []
|
|
for column, content in dfMLP.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsMLP.append(el)
|
|
|
|
predictionsRF = []
|
|
for column, content in dfRF.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsRF.append(el)
|
|
|
|
predictionsGradB = []
|
|
for column, content in dfGradB.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictionsGradB.append(el)
|
|
|
|
predictions = []
|
|
for column, content in df_concatProbs.items():
|
|
el = [sum(x)/len(x) for x in zip(*content)]
|
|
predictions.append(el)
|
|
|
|
return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions]
|
|
|
|
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
|
|
@app.route('/data/SendtoSeverSelIDsEnsem', methods=["GET", "POST"])
|
|
def RetrieveSelIDsPredictEnsem():
|
|
global ResultsSelPredEnsem
|
|
ResultsSelPredEnsem = []
|
|
RetrieveIDsSelectionEnsem = request.get_data().decode('utf8').replace("'", '"')
|
|
RetrieveIDsSelectionEnsem = json.loads(RetrieveIDsSelectionEnsem)
|
|
RetrieveIDsSelectionEnsem = RetrieveIDsSelectionEnsem['predictSelectionIDsCM']
|
|
|
|
ResultsSelPredEnsem = PreprocessingPredSelEnsem(RetrieveIDsSelectionEnsem)
|
|
|
|
return 'Everything Okay'
|
|
|
|
@app.route('/data/RetrievePredictionsEnsem', methods=["GET", "POST"])
|
|
def SendPredictSelEnsem():
|
|
global ResultsSelPredEnsem
|
|
response = {
|
|
'PredictSelEnsem': ResultsSelPredEnsem
|
|
}
|
|
return jsonify(response) |