from flask import Flask, render_template, jsonify, request from flask_pymongo import PyMongo from flask_cors import CORS, cross_origin import json import copy import warnings import re import random import math import pandas as pd import numpy as np import multiprocessing from joblib import Memory from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.model_selection import cross_val_predict from sklearn.metrics import matthews_corrcoef from sklearn.metrics import log_loss from imblearn.metrics import geometric_mean_score from sklearn.manifold import MDS from sklearn.manifold import TSNE import umap # this block of code is for the connection between the server, the database, and the client (plus routing) # access MongoDB app = Flask(__name__) app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb" mongo = PyMongo(app) cors = CORS(app, resources={r"/data/*": {"origins": "*"}}) @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/Reset', methods=["GET", "POST"]) def reset(): global Results Results = [] global ResultsCM ResultsCM = [] global DataRawLength global DataResultsRaw global previousState previousState = [] global filterActionFinal filterActionFinal = '' global keySpecInternal keySpecInternal = 1 global dataSpacePointsIDs dataSpacePointsIDs = [] global previousStateActive previousStateActive = [] global RANDOM_SEED RANDOM_SEED = 42 global KNNModelsCount global LRModelsCount global factors factors = [1,1,1,1,0,0,0,0] global crossValidation crossValidation = 5 global randomSearchVar randomSearchVar = 100 global keyData keyData = 0 KNNModelsCount = 0 LRModelsCount = KNNModelsCount+randomSearchVar MLPModelsCount = LRModelsCount+randomSearchVar RFModelsCount = MLPModelsCount+randomSearchVar GradBModelsCount = RFModelsCount+randomSearchVar global XData XData = [] global yData yData = [] global EnsembleActive EnsembleActive = [] global addKNN addKNN = 0 global addLR addLR = addKNN+randomSearchVar global addMLP addMLP = addLR+randomSearchVar global addRF addRF = addMLP+randomSearchVar global addGradB addGradB = addRF+randomSearchVar global countAllModels countAllModels = 0 global XDataStored XDataStored = [] global yDataStored yDataStored = [] global detailsParams detailsParams = [] global algorithmList algorithmList = [] global ClassifierIDsList ClassifierIDsList = '' # Initializing models global resultsList resultsList = [] global RetrieveModelsList RetrieveModelsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global allParametersPerfCrossMutr allParametersPerfCrossMutr = [] global HistoryPreservation HistoryPreservation = [] global all_classifiers all_classifiers = [] # models global KNNModels KNNModels = [] global RFModels RFModels = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global target_names target_names = [] global target_namesLoc target_namesLoc = [] return 'The reset was done!' # retrieve data from client and select the correct data set @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequest', methods=["GET", "POST"]) def retrieveFileName(): global DataRawLength global DataResultsRaw global DataResultsRawTest global DataRawLengthTest fileName = request.get_data().decode('utf8').replace("'", '"') data = json.loads(fileName) global keySpecInternal keySpecInternal = 1 global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global KNNModelsCount global LRModelsCount global MLPModelsCount global RFModelsCount global GradBModelsCount global factors factors = data['Factors'] global crossValidation crossValidation = int(data['CrossValidation']) global randomSearchVar randomSearchVar = int(data['RandomSearch']) KNNModelsCount = 0 LRModelsCount = KNNModelsCount+randomSearchVar MLPModelsCount = LRModelsCount+randomSearchVar RFModelsCount = MLPModelsCount+randomSearchVar GradBModelsCount = RFModelsCount+randomSearchVar global XData XData = [] global previousState previousState = [] global previousStateActive previousStateActive = [] global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global filterDataFinal filterDataFinal = 'mean' global ClassifierIDsList ClassifierIDsList = '' global algorithmList algorithmList = [] global detailsParams detailsParams = [] global EnsembleActive EnsembleActive = [] global addKNN addKNN = 0 global addLR addLR = addKNN+randomSearchVar global addMLP addMLP = addLR+randomSearchVar global addRF addRF = addMLP+randomSearchVar global addGradB addGradB = addRF+randomSearchVar # Initializing models global RetrieveModelsList RetrieveModelsList = [] global resultsList resultsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global allParametersPerfCrossMutr allParametersPerfCrossMutr = [] global HistoryPreservation HistoryPreservation = [] global all_classifiers all_classifiers = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_weighted': 'precision_weighted', 'recall_weighted': 'recall_weighted', 'f1_weighted': 'f1_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 # models global KNNModels global SVCModels global GausNBModels global MLPModels global LRModels global LDAModels global QDAModels global RFModels global ExtraTModels global AdaBModels global GradBModels KNNModels = [] SVCModels = [] GausNBModels = [] MLPModels = [] LRModels = [] LDAModels = [] QDAModels = [] RFModels = [] ExtraTModels = [] AdaBModels = [] GradBModels = [] global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global StanceTest StanceTest = False global target_names target_names = [] global target_namesLoc target_namesLoc = [] DataRawLength = -1 DataRawLengthTest = -1 if data['fileName'] == 'HeartC': CollectionDB = mongo.db.HeartC.find() elif data['fileName'] == 'StanceC': StanceTest = True CollectionDB = mongo.db.StanceC.find() CollectionDBTest = mongo.db.StanceCTest.find() elif data['fileName'] == 'DiabetesC': CollectionDB = mongo.db.DiabetesC.find() else: CollectionDB = mongo.db.IrisC.find() DataResultsRaw = [] for index, item in enumerate(CollectionDB): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRaw.append(item) DataRawLength = len(DataResultsRaw) DataResultsRawTest = [] if (StanceTest): for index, item in enumerate(CollectionDBTest): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawTest.append(item) DataRawLengthTest = len(DataResultsRawTest) dataSetSelection() return 'Everything is okay' # Retrieve data set from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"]) def sendToServerData(): uploadedData = request.get_data().decode('utf8').replace("'", '"') uploadedDataParsed = json.loads(uploadedData) DataResultsRaw = uploadedDataParsed['uploadedData'] DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary[target] global AllTargets global target_names global target_namesLoc AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() return 'Processed uploaded data set' def dataSetSelection(): global XDataTest, yDataTest XDataTest = pd.DataFrame() global StanceTest global AllTargets global target_names target_namesLoc = [] if (StanceTest): DataResultsTest = copy.deepcopy(DataResultsRawTest) for dictionary in DataResultsRawTest: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawTest.sort(key=lambda x: x[target], reverse=True) DataResultsTest.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsTest: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsTest = [o[target] for o in DataResultsRawTest] AllTargetsFloatValuesTest = [] previous = None Class = 0 for i, value in enumerate(AllTargetsTest): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesTest.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesTest.append(Class) previous = value ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest) XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() warnings.simplefilter('ignore') return 'Everything is okay' # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/factors', methods=["GET", "POST"]) def RetrieveFactors(): global factors global allParametersPerformancePerModel Factors = request.get_data().decode('utf8').replace("'", '"') FactorsInt = json.loads(Factors) factors = FactorsInt['Factors'] return 'Everything Okay' # Initialize every model for each algorithm @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"]) def retrieveModel(): # get the models from the frontend RetrievedModel = request.get_data().decode('utf8').replace("'", '"') RetrievedModel = json.loads(RetrievedModel) global algorithms algorithms = RetrievedModel['Algorithms'] global XData global yData global LRModelsCount global countAllModels # loop through the algorithms global allParametersPerformancePerModel global HistoryPreservation for eachAlgor in algorithms: print(eachAlgor) if (eachAlgor) == 'KNN': clf = KNeighborsClassifier() params = {'n_neighbors': list(range(1, 100)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']} AlgorithmsIDsEnd = countAllModels elif (eachAlgor) == 'LR': clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': list(np.arange(1,100,1)), 'max_iter': list(np.arange(50,500,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels elif (eachAlgor) == 'MLP': start = 60 stop = 120 step = 1 random.seed(RANDOM_SEED) ranges = [(n, random.randint(1,3)) for n in range(start, stop, step)] clf = MLPClassifier(random_state=RANDOM_SEED) params = {'hidden_layer_sizes': ranges,'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels elif (eachAlgor) == 'RF': clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(20, 100)), 'criterion': ['gini', 'entropy']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(20, 100)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels allParametersPerformancePerModel = randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd) HistoryPreservation = allParametersPerformancePerModel.copy() # call the function that sends the results to the frontend return 'Everything Okay' location = './cachedir' memory = Memory(location, verbose=0) @memory.cache def randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd): search = RandomizedSearchCV( estimator=clf, param_distributions=params, n_iter=100, cv=crossValidation, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) # fit and extract the probabilities search.fit(XData, yData) # process the results cv_results = [] cv_results.append(search.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) # number of models stored number_of_models = len(df_cv_results.iloc[0][0]) # initialize results per row df_cv_results_per_row = [] # loop through number of models modelsIDs = [] for i in range(number_of_models): number = AlgorithmsIDsEnd+i modelsIDs.append(eachAlgor+str(number)) # initialize results per item df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) # store the results into a pandas dataframe df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_weighted','mean_test_recall_weighted','mean_test_f1_weighted','mean_test_roc_auc_ovo_weighted']) # concat parameters and performance parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params']) parametersLocal = parametersPerformancePerModel['params'].copy() Models = [] for index, items in enumerate(parametersLocal): Models.append(index) parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ] perModelProb = [] resultsWeighted = [] resultsCorrCoef = [] resultsLogLoss = [] resultsLogLossFinal = [] # influence calculation for all the instances inputs = range(len(XData)) num_cores = multiprocessing.cpu_count() for eachModelParameters in parametersLocalNew: clf.set_params(**eachModelParameters) clf.fit(XData, yData) yPredict = clf.predict(XData) yPredict = np.nan_to_num(yPredict) yPredictProb = cross_val_predict(clf, XData, yData, cv=crossValidation, method='predict_proba') yPredictProb = np.nan_to_num(yPredictProb) perModelProb.append(yPredictProb.tolist()) resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted')) resultsCorrCoef.append(matthews_corrcoef(yData, yPredict)) resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True)) maxLog = max(resultsLogLoss) minLog = min(resultsLogLoss) for each in resultsLogLoss: resultsLogLossFinal.append((each-minLog)/(maxLog-minLog)) metrics.insert(5,'geometric_mean_score_weighted',resultsWeighted) metrics.insert(6,'matthews_corrcoef',resultsCorrCoef) metrics.insert(7,'log_loss',resultsLogLossFinal) perModelProbPandas = pd.DataFrame(perModelProb) results.append(modelsIDs) results.append(parametersPerformancePerModel) results.append(metrics) results.append(perModelProbPandas) return results def PreprocessingIDs(): dicKNN = allParametersPerformancePerModel[0] dicLR = allParametersPerformancePerModel[4] dicMLP = allParametersPerformancePerModel[8] dicRF = allParametersPerformancePerModel[12] dicGradB = allParametersPerformancePerModel[16] df_concatIDs = dicKNN + dicLR + dicMLP + dicRF + dicGradB return df_concatIDs def PreprocessingMetrics(): dicKNN = allParametersPerformancePerModel[2] dicLR = allParametersPerformancePerModel[6] dicMLP = allParametersPerformancePerModel[10] dicRF = allParametersPerformancePerModel[14] dicGradB = allParametersPerformancePerModel[18] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatMetrics = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatMetrics = df_concatMetrics.reset_index(drop=True) return df_concatMetrics def PreprocessingPred(): dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dicMLP = allParametersPerformancePerModel[11] dicRF = allParametersPerformancePerModel[15] dicGradB = allParametersPerformancePerModel[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatProbs.reset_index(drop=True, inplace=True) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] def PreprocessingPredEnsemble(): global EnsembleActive numberIDKNN = [] numberIDLR = [] numberIDMLP = [] numberIDRF = [] numberIDGradB = [] for el in EnsembleActive: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if (items[0] == 'KNN'): numberIDKNN.append(int(items[1])) elif (items[0] == 'LR'): numberIDLR.append(int(items[1])) elif (items[0] == 'MLP'): numberIDMLP.append(int(items[1])) elif (items[0] == 'RF'): numberIDRF.append(int(items[1])) else: numberIDGradB.append(int(items[1])) dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dicMLP = allParametersPerformancePerModel[11] dicRF = allParametersPerformancePerModel[15] dicGradB = allParametersPerformancePerModel[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatProbs = df_concatProbs.reset_index(drop=True) dfKNN = df_concatProbs.loc[numberIDKNN] dfLR = df_concatProbs.loc[numberIDLR] dfMLP = df_concatProbs.loc[numberIDMLP] dfRF = df_concatProbs.loc[numberIDRF] dfGradB = df_concatProbs.loc[numberIDGradB] df_concatProbs = pd.DataFrame() df_concatProbs = df_concatProbs.iloc[0:0] df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] def PreprocessingParam(): dicKNN = allParametersPerformancePerModel[1] dicLR = allParametersPerformancePerModel[5] dicMLP = allParametersPerformancePerModel[9] dicRF = allParametersPerformancePerModel[13] dicGradB = allParametersPerformancePerModel[17] dicKNN = dicKNN['params'] dicLR = dicLR['params'] dicMLP = dicMLP['params'] dicRF = dicRF['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfLR = dfLR.T dfMLP = dfMLP.T dfRF = dfRF.T dfGradB = dfGradB.T df_params = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_params = df_params.reset_index(drop=True) return df_params def PreprocessingParamSep(): dicKNN = allParametersPerformancePerModel[1] dicLR = allParametersPerformancePerModel[5] dicMLP = allParametersPerformancePerModel[9] dicRF = allParametersPerformancePerModel[13] dicGradB = allParametersPerformancePerModel[17] dicKNN = dicKNN['params'] dicLR = dicLR['params'] dicMLP = dicMLP['params'] dicRF = dicRF['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfLR = dfLR.T dfMLP = dfMLP.T dfRF = dfRF.T dfGradB = dfGradB.T return [dfKNN, dfLR, dfMLP, dfRF, dfGradB] # remove that maybe! def preProcsumPerMetric(factors): sumPerClassifier = [] loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss'] for row in loopThroughMetrics.iterrows(): rowSum = 0 name, values = row for loop, elements in enumerate(values): rowSum = elements*factors[loop] + rowSum if sum(factors) is 0: sumPerClassifier = 0 else: sumPerClassifier.append(rowSum/sum(factors) * 100) return sumPerClassifier def preProcMetricsAllAndSel(): loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) global factors metricsPerModelColl = [] metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted']) metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_weighted']) metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef']) metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted']) metricsPerModelColl.append(loopThroughMetrics['log_loss']) f=lambda a: (abs(a)+a)/2 for index, metric in enumerate(metricsPerModelColl): if (index == 5): metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100 elif (index == 7): metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100 else: metricsPerModelColl[index] = (metric*factors[index]) * 100 metricsPerModelColl[index] = metricsPerModelColl[index].to_json() return metricsPerModelColl def FunMDS (data): mds = MDS(n_components=2, random_state=RANDOM_SEED) XTransformed = mds.fit_transform(data).T XTransformed = XTransformed.tolist() return XTransformed def FunTsne (data): tsne = TSNE(n_components=2, random_state=RANDOM_SEED).fit_transform(data) tsne.shape return tsne def FunUMAP (data): trans = umap.UMAP(n_neighbors=15, random_state=RANDOM_SEED).fit(data) Xpos = trans.embedding_[:, 0].tolist() Ypos = trans.embedding_[:, 1].tolist() return [Xpos,Ypos] # Sending the overview classifiers' results to be visualized as a scatterplot @app.route('/data/PlotClassifiers', methods=["GET", "POST"]) def SendToPlot(): while (len(DataResultsRaw) != DataRawLength): pass InitializeEnsemble() response = { 'OverviewResults': Results } return jsonify(response) def InitializeEnsemble(): XModels = PreprocessingMetrics() global ModelSpaceMDS global ModelSpaceTSNE global allParametersPerformancePerModel global EnsembleActive XModels = XModels.fillna(0) ModelSpaceMDS = FunMDS(XModels) ModelSpaceTSNE = FunTsne(XModels) ModelSpaceTSNE = ModelSpaceTSNE.tolist() ModelSpaceUMAP = FunUMAP(XModels) if (len(EnsembleActive) == 0): PredictionProbSel = PreprocessingPred() else: PredictionProbSel = PreprocessingPredEnsemble() returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionProbSel) def returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionProbSel): global Results global AllTargets Results = [] parametersGen = PreprocessingParam() metricsPerModel = preProcMetricsAllAndSel() sumPerClassifier = preProcsumPerMetric(factors) ModelsIDs = PreprocessingIDs() parametersGenPD = parametersGen.to_json(orient='records') XDataJSONEntireSet = XData.to_json(orient='records') XDataColumns = XData.columns.tolist() Results.append(json.dumps(ModelsIDs)) Results.append(json.dumps(sumPerClassifier)) Results.append(json.dumps(parametersGenPD)) Results.append(json.dumps(metricsPerModel)) Results.append(json.dumps(XDataJSONEntireSet)) Results.append(json.dumps(XDataColumns)) Results.append(json.dumps(yData)) Results.append(json.dumps(target_names)) Results.append(json.dumps(AllTargets)) Results.append(json.dumps(ModelSpaceMDS)) Results.append(json.dumps(ModelSpaceTSNE)) Results.append(json.dumps(ModelSpaceUMAP)) Results.append(json.dumps(PredictionProbSel)) return Results # Initialize crossover and mutation processes @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/CrossoverMutation', methods=["GET", "POST"]) def CrossoverMutateFun(): # get the models from the frontend RemainingIds = request.get_data().decode('utf8').replace("'", '"') RemainingIds = json.loads(RemainingIds) RemainingIds = RemainingIds['RemainingPoints'] global EnsembleActive EnsembleActive = request.get_data().decode('utf8').replace("'", '"') EnsembleActive = json.loads(EnsembleActive) EnsembleActive = EnsembleActive['StoreEnsemble'] global XData global yData global LRModelsCount global addKNN global addLR global countAllModels # loop through the algorithms global allParametersPerfCrossMutr global HistoryPreservation global allParametersPerformancePerModel KNNIDs = list(filter(lambda k: 'KNN' in k, RemainingIds)) LRIDs = list(filter(lambda k: 'LR' in k, RemainingIds)) countKNN = 0 countLR = 0 setMaxLoopValue = 5 paramAllAlgs = PreprocessingParam() KNNIntIndex = [] LRIntIndex = [] localCrossMutr = [] allParametersPerfCrossMutrKNNC = [] while countKNN < setMaxLoopValue: for dr in KNNIDs: KNNIntIndex.append(int(re.findall('\d+', dr)[0])) KNNPickPair = random.sample(KNNIntIndex,2) pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNN', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + 5 for loop in range(setMaxLoopValue - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrKNNC.append(localCrossMutr[0]) allParametersPerfCrossMutrKNNC.append(localCrossMutr[1]) allParametersPerfCrossMutrKNNC.append(localCrossMutr[2]) allParametersPerfCrossMutrKNNC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNC countKNN = 0 KNNIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrKNNM = [] while countKNN < setMaxLoopValue: for dr in KNNIDs: KNNIntIndex.append(int(re.findall('\d+', dr)[0])) KNNPickPair = random.sample(KNNIntIndex,1) pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_neighbors'): randomNumber = random.randint(101, math.floor(((len(yData)/crossValidation)*(crossValidation-1)))-1) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNN', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + 5 for loop in range(setMaxLoopValue - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrKNNM.append(localCrossMutr[0]) allParametersPerfCrossMutrKNNM.append(localCrossMutr[1]) allParametersPerfCrossMutrKNNM.append(localCrossMutr[2]) allParametersPerfCrossMutrKNNM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNM localCrossMutr.clear() allParametersPerfCrossMutrLRC = [] while countLR < setMaxLoopValue: for dr in LRIDs: LRIntIndex.append(int(re.findall('\d+', dr)[0])) LRPickPair = random.sample(LRIntIndex,2) pairDF = paramAllAlgs.iloc[LRPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LR', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + 5 for loop in range(setMaxLoopValue - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrLRC.append(localCrossMutr[0]) allParametersPerfCrossMutrLRC.append(localCrossMutr[1]) allParametersPerfCrossMutrLRC.append(localCrossMutr[2]) allParametersPerfCrossMutrLRC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRC countLR = 0 LRIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrLRM = [] while countLR < setMaxLoopValue: for dr in LRIDs: LRIntIndex.append(int(re.findall('\d+', dr)[0])) LRPickPair = random.sample(LRIntIndex,1) pairDF = paramAllAlgs.iloc[LRPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'C'): randomNumber = random.randint(101, 1000) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LR', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + 5 for loop in range(setMaxLoopValue - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrLRM.append(localCrossMutr[0]) allParametersPerfCrossMutrLRM.append(localCrossMutr[1]) allParametersPerfCrossMutrLRM.append(localCrossMutr[2]) allParametersPerfCrossMutrLRM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRM localCrossMutr.clear() allParametersPerfCrossMutr = allParametersPerfCrossMutrKNNC + allParametersPerfCrossMutrKNNM + allParametersPerfCrossMutrLRC + allParametersPerfCrossMutrLRM allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrKNNC[0] + allParametersPerfCrossMutrKNNM[0] allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNC[1]], ignore_index=True) allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNM[1]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrKNNC[2]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrKNNM[2]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNC[3]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNM[3]], ignore_index=True) allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrLRC[0] + allParametersPerfCrossMutrLRM[0] allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRC[1]], ignore_index=True) allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRM[1]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRC[2]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRM[2]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRC[3]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRM[3]], ignore_index=True) addKNN = addLR addLR = addLR + 10 # KNNIntIndex = [] # for dr in KNNIDs: # KNNIntIndex.append(int(re.findall('\d+', dr)[0])) # allParametersPerformancePerModel[0] = [j for i, j in enumerate(allParametersPerformancePerModel[0]) if i not in KNNIntIndex] # allParametersPerformancePerModel[1].drop(allParametersPerformancePerModel[1].index[KNNIntIndex], inplace=True) # allParametersPerformancePerModel[2].drop(allParametersPerformancePerModel[2].index[KNNIntIndex], inplace=True) # allParametersPerformancePerModel[3].drop(allParametersPerformancePerModel[3].index[KNNIntIndex], inplace=True) # LRIntIndex = [] # for dr in LRIDs: # LRIntIndex.append(int(re.findall('\d+', dr)[0]) - 100) # allParametersPerformancePerModel[4] = [j for i, j in enumerate(allParametersPerformancePerModel[4]) if i not in LRIntIndex] # allParametersPerformancePerModel[5].drop(allParametersPerformancePerModel[5].index[LRIntIndex], inplace=True) # allParametersPerformancePerModel[6].drop(allParametersPerformancePerModel[6].index[LRIntIndex], inplace=True) # allParametersPerformancePerModel[7].drop(allParametersPerformancePerModel[7].index[LRIntIndex], inplace=True) return 'Everything Okay' def crossoverMutation(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd): search = GridSearchCV( estimator=clf, param_grid=params, cv=crossValidation, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) # fit and extract the probabilities search.fit(XData, yData) # process the results cv_results = [] cv_results.append(search.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) # number of models stored number_of_models = len(df_cv_results.iloc[0][0]) # initialize results per row df_cv_results_per_row = [] # loop through number of models modelsIDs = [] for i in range(number_of_models): number = AlgorithmsIDsEnd+i modelsIDs.append(eachAlgor+str(number)) # initialize results per item df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) # store the results into a pandas dataframe df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_weighted','mean_test_recall_weighted','mean_test_f1_weighted','mean_test_roc_auc_ovo_weighted']) # concat parameters and performance parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params']) parametersLocal = parametersPerformancePerModel['params'].copy() Models = [] for index, items in enumerate(parametersLocal): Models.append(index) parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ] perModelProb = [] resultsWeighted = [] resultsCorrCoef = [] resultsLogLoss = [] resultsLogLossFinal = [] # influence calculation for all the instances inputs = range(len(XData)) num_cores = multiprocessing.cpu_count() for eachModelParameters in parametersLocalNew: clf.set_params(**eachModelParameters) clf.fit(XData, yData) yPredict = clf.predict(XData) yPredict = np.nan_to_num(yPredict) yPredictProb = cross_val_predict(clf, XData, yData, cv=crossValidation, method='predict_proba') yPredictProb = np.nan_to_num(yPredictProb) perModelProb.append(yPredictProb.tolist()) resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted')) resultsCorrCoef.append(matthews_corrcoef(yData, yPredict)) resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True)) maxLog = max(resultsLogLoss) minLog = min(resultsLogLoss) for each in resultsLogLoss: resultsLogLossFinal.append((each-minLog)/(maxLog-minLog)) metrics.insert(5,'geometric_mean_score_weighted',resultsWeighted) metrics.insert(6,'matthews_corrcoef',resultsCorrCoef) metrics.insert(7,'log_loss',resultsLogLossFinal) perModelProbPandas = pd.DataFrame(perModelProb) results.append(modelsIDs) results.append(parametersPerformancePerModel) results.append(metrics) results.append(perModelProbPandas) return results def PreprocessingIDsCM(): dicKNNC = allParametersPerfCrossMutr[0] dicKNNM = allParametersPerfCrossMutr[4] dicLRC = allParametersPerfCrossMutr[8] dicLRM = allParametersPerfCrossMutr[12] df_concatIDs = dicKNNC + dicKNNM + dicLRC + dicLRM return df_concatIDs def PreprocessingMetricsCM(): dicKNNC = allParametersPerfCrossMutr[2] dicKNNM = allParametersPerfCrossMutr[6] dicLRC = allParametersPerfCrossMutr[10] dicLRM = allParametersPerfCrossMutr[14] dfKNNC = pd.DataFrame.from_dict(dicKNNC) dfKNNM = pd.DataFrame.from_dict(dicKNNM) dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) df_concatMetrics = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM]) df_concatMetrics = df_concatMetrics.reset_index(drop=True) return df_concatMetrics def PreprocessingPredCM(): dicKNNC = allParametersPerfCrossMutr[3] dicKNNM = allParametersPerfCrossMutr[7] dicLRC = allParametersPerfCrossMutr[11] dicLRM = allParametersPerfCrossMutr[15] dfKNNC = pd.DataFrame.from_dict(dicKNNC) dfKNNM = pd.DataFrame.from_dict(dicKNNM) dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) dfKNN = pd.concat([dfKNNC, dfKNNM]) dfLR = pd.concat([dfLRC, dfLRM]) df_concatProbs = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return [predictionsKNN, predictionsLR, predictions] def PreprocessingParamCM(): dicKNNC = allParametersPerfCrossMutr[1] dicKNNM = allParametersPerfCrossMutr[5] dicLRC = allParametersPerfCrossMutr[9] dicLRM = allParametersPerfCrossMutr[13] dicKNNC = dicKNNC['params'] dicKNNM = dicKNNM['params'] dicLRC = dicLRC['params'] dicLRM = dicLRM['params'] dicKNNC = {int(k):v for k,v in dicKNNC.items()} dicKNNM = {int(k):v for k,v in dicKNNM.items()} dicLRC = {int(k):v for k,v in dicLRC.items()} dicLRM = {int(k):v for k,v in dicLRM.items()} dfKNNC = pd.DataFrame.from_dict(dicKNNC) dfKNNM = pd.DataFrame.from_dict(dicKNNM) dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) dfKNNC = dfKNNC.T dfKNNM = dfKNNM.T dfLRC = dfLRC.T dfLRM = dfLRM.T df_params = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM]) df_params = df_params.reset_index(drop=True) return df_params def PreprocessingParamSepCM(): dicKNNC = allParametersPerfCrossMutr[1] dicKNNM = allParametersPerfCrossMutr[5] dicLRC = allParametersPerfCrossMutr[9] dicLRM = allParametersPerfCrossMutr[13] dicKNNC = dicKNNC['params'] dicKNNM = dicKNNM['params'] dicLRC = dicLRC['params'] dicLRM = dicLRM['params'] dicKNNC = {int(k):v for k,v in dicKNNC.items()} dicKNNM = {int(k):v for k,v in dicKNNM.items()} dicLRC = {int(k):v for k,v in dicLRC.items()} dicLRM = {int(k):v for k,v in dicLRM.items()} dfKNNC = pd.DataFrame.from_dict(dicKNNC) dfKNNM = pd.DataFrame.from_dict(dicKNNM) dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) dfKNNC = dfKNNC.T dfKNNM = dfKNNM.T dfLRC = dfLRC.T dfLRM = dfLRM.T return [dfKNNC, dfKNNM, dfLRC, dfLRM] # remove that maybe! def preProcsumPerMetricCM(factors): sumPerClassifier = [] loopThroughMetrics = PreprocessingMetricsCM() loopThroughMetrics = loopThroughMetrics.fillna(0) loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss'] for row in loopThroughMetrics.iterrows(): rowSum = 0 name, values = row for loop, elements in enumerate(values): rowSum = elements*factors[loop] + rowSum if sum(factors) is 0: sumPerClassifier = 0 else: sumPerClassifier.append(rowSum/sum(factors) * 100) return sumPerClassifier def preProcMetricsAllAndSelCM(): loopThroughMetrics = PreprocessingMetricsCM() loopThroughMetrics = loopThroughMetrics.fillna(0) global factors metricsPerModelColl = [] metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted']) metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_weighted']) metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef']) metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted']) metricsPerModelColl.append(loopThroughMetrics['log_loss']) f=lambda a: (abs(a)+a)/2 for index, metric in enumerate(metricsPerModelColl): if (index == 5): metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100 elif (index == 7): metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100 else: metricsPerModelColl[index] = (metric*factors[index]) * 100 metricsPerModelColl[index] = metricsPerModelColl[index].to_json() return metricsPerModelColl # Sending the overview classifiers' results to be visualized as a scatterplot @app.route('/data/PlotCrossMutate', methods=["GET", "POST"]) def SendToPlotCM(): while (len(DataResultsRaw) != DataRawLength): pass PreProcessingInitial() response = { 'OverviewResultsCM': ResultsCM } return jsonify(response) def PreProcessingInitial(): XModels = PreprocessingMetricsCM() global allParametersPerfCrossMutr XModels = XModels.fillna(0) ModelSpaceMDSCM = FunMDS(XModels) ModelSpaceTSNECM = FunTsne(XModels) ModelSpaceTSNECM = ModelSpaceTSNECM.tolist() ModelSpaceUMAPCM = FunUMAP(XModels) PredictionProbSel = PreprocessingPredCM() CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,PredictionProbSel) def CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,PredictionProbSel): global ResultsCM global AllTargets ResultsCM = [] parametersGen = PreprocessingParamCM() metricsPerModel = preProcMetricsAllAndSelCM() sumPerClassifier = preProcsumPerMetricCM(factors) ModelsIDs = PreprocessingIDsCM() parametersGenPD = parametersGen.to_json(orient='records') XDataJSONEntireSet = XData.to_json(orient='records') XDataColumns = XData.columns.tolist() ResultsCM.append(json.dumps(ModelsIDs)) ResultsCM.append(json.dumps(sumPerClassifier)) ResultsCM.append(json.dumps(parametersGenPD)) ResultsCM.append(json.dumps(metricsPerModel)) ResultsCM.append(json.dumps(XDataJSONEntireSet)) ResultsCM.append(json.dumps(XDataColumns)) ResultsCM.append(json.dumps(yData)) ResultsCM.append(json.dumps(target_names)) ResultsCM.append(json.dumps(AllTargets)) ResultsCM.append(json.dumps(ModelSpaceMDSCM)) ResultsCM.append(json.dumps(ModelSpaceTSNECM)) ResultsCM.append(json.dumps(ModelSpaceUMAPCM)) ResultsCM.append(json.dumps(PredictionProbSel)) return ResultsCM def PreprocessingPredSel(SelectedIDs): global addKNN global addLR global addMLP global addRF global addGradB numberIDKNN = [] numberIDLR = [] numberIDMLP = [] numberIDRF = [] numberIDGradB = [] for el in SelectedIDs: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if (items[0] == 'KNN'): numberIDKNN.append(int(items[1]) - addKNN) elif (items[0] == 'LR'): numberIDLR.append(int(items[1]) - addLR) elif (items[0] == 'MLP'): numberIDMLP.append(int(items[1]) - addMLP) elif (items[0] == 'RF'): numberIDRF.append(int(items[1]) - addRF) else: numberIDGradB.append(int(items[1]) - addGradB) dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dicMLP = allParametersPerformancePerModel[11] dicRF = allParametersPerformancePerModel[15] dicGradB = allParametersPerformancePerModel[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfKNN = dfKNN.loc[numberIDKNN] dfLR = pd.DataFrame.from_dict(dicLR) dfLR = dfLR.loc[numberIDLR] dfLR.index += addKNN dfMLP = pd.DataFrame.from_dict(dicMLP) dfMLP = dfMLP.loc[numberIDMLP] dfMLP.index += addKNN + addLR dfRF = pd.DataFrame.from_dict(dicRF) dfRF = dfRF.loc[numberIDRF] dfRF.index += addKNN + addLR + addMLP dfGradB = pd.DataFrame.from_dict(dicGradB) dfGradB = dfGradB.loc[numberIDGradB] dfGradB.index += addKNN + addLR + addMLP + addRF df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverSelIDs', methods=["GET", "POST"]) def RetrieveSelIDsPredict(): global ResultsSelPred ResultsSelPred = [] RetrieveIDsSelection = request.get_data().decode('utf8').replace("'", '"') RetrieveIDsSelection = json.loads(RetrieveIDsSelection) RetrieveIDsSelection = RetrieveIDsSelection['predictSelectionIDs'] ResultsSelPred = PreprocessingPredSel(RetrieveIDsSelection) return 'Everything Okay' @app.route('/data/RetrievePredictions', methods=["GET", "POST"]) def SendPredictSel(): global ResultsSelPred response = { 'PredictSel': ResultsSelPred } return jsonify(response) def PreprocessingPredSelEnsem(SelectedIDsEnsem): numberIDKNN = [] numberIDLR = [] numberIDMLP = [] numberIDRF = [] numberIDGradB = [] for el in SelectedIDsEnsem: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if (items[0] == 'KNN'): numberIDKNN.append(int(items[1])) elif (items[0] == 'LR'): numberIDLR.append(int(items[1])) elif (items[0] == 'MLP'): numberIDLR.append(int(items[1])) elif (items[0] == 'RF'): numberIDLR.append(int(items[1])) else: numberIDLR.append(int(items[1])) dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dicMLP = allParametersPerformancePerModel[11] dicRF = allParametersPerformancePerModel[15] dicGradB = allParametersPerformancePerModel[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatProbs = df_concatProbs.reset_index(drop=True) dfKNN = df_concatProbs.loc[numberIDKNN] dfLR = df_concatProbs.loc[numberIDLR] dfMLP = df_concatProbs.loc[numberIDMLP] dfRF = df_concatProbs.loc[numberIDRF] dfGradB = df_concatProbs.loc[numberIDGradB] df_concatProbs = pd.DataFrame() df_concatProbs = df_concatProbs.iloc[0:0] df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverSelIDsEnsem', methods=["GET", "POST"]) def RetrieveSelIDsPredictEnsem(): global ResultsSelPredEnsem ResultsSelPredEnsem = [] RetrieveIDsSelectionEnsem = request.get_data().decode('utf8').replace("'", '"') RetrieveIDsSelectionEnsem = json.loads(RetrieveIDsSelectionEnsem) RetrieveIDsSelectionEnsem = RetrieveIDsSelectionEnsem['predictSelectionIDsCM'] ResultsSelPredEnsem = PreprocessingPredSelEnsem(RetrieveIDsSelectionEnsem) return 'Everything Okay' @app.route('/data/RetrievePredictionsEnsem', methods=["GET", "POST"]) def SendPredictSelEnsem(): global ResultsSelPredEnsem response = { 'PredictSelEnsem': ResultsSelPredEnsem } return jsonify(response)