|
|
|
@ -301,27 +301,15 @@ def retrieveFileName(): |
|
|
|
|
|
|
|
|
|
# models |
|
|
|
|
global KNNModels |
|
|
|
|
global SVCModels |
|
|
|
|
global GausNBModels |
|
|
|
|
global MLPModels |
|
|
|
|
global LRModels |
|
|
|
|
global LDAModels |
|
|
|
|
global QDAModels |
|
|
|
|
global RFModels |
|
|
|
|
global ExtraTModels |
|
|
|
|
global AdaBModels |
|
|
|
|
global GradBModels |
|
|
|
|
|
|
|
|
|
KNNModels = [] |
|
|
|
|
SVCModels = [] |
|
|
|
|
GausNBModels = [] |
|
|
|
|
MLPModels = [] |
|
|
|
|
LRModels = [] |
|
|
|
|
LDAModels = [] |
|
|
|
|
QDAModels = [] |
|
|
|
|
RFModels = [] |
|
|
|
|
ExtraTModels = [] |
|
|
|
|
AdaBModels = [] |
|
|
|
|
GradBModels = [] |
|
|
|
|
|
|
|
|
|
global results |
|
|
|
@ -1051,12 +1039,15 @@ def CrossoverMutateFun(): |
|
|
|
|
EnsembleActive = json.loads(EnsembleActive) |
|
|
|
|
|
|
|
|
|
EnsembleActive = EnsembleActive['StoreEnsemble'] |
|
|
|
|
random.seed(RANDOM_SEED) |
|
|
|
|
|
|
|
|
|
global XData |
|
|
|
|
global yData |
|
|
|
|
global LRModelsCount |
|
|
|
|
global addKNN |
|
|
|
|
global addLR |
|
|
|
|
global addMLP |
|
|
|
|
global addRF |
|
|
|
|
global addGradB |
|
|
|
|
global countAllModels |
|
|
|
|
|
|
|
|
|
# loop through the algorithms |
|
|
|
@ -1066,14 +1057,23 @@ def CrossoverMutateFun(): |
|
|
|
|
|
|
|
|
|
KNNIDs = list(filter(lambda k: 'KNN' in k, RemainingIds)) |
|
|
|
|
LRIDs = list(filter(lambda k: 'LR' in k, RemainingIds)) |
|
|
|
|
MLPIDs = list(filter(lambda k: 'MLP' in k, RemainingIds)) |
|
|
|
|
RFIDs = list(filter(lambda k: 'RF' in k, RemainingIds)) |
|
|
|
|
GradBIDs = list(filter(lambda k: 'GradB' in k, RemainingIds)) |
|
|
|
|
|
|
|
|
|
countKNN = 0 |
|
|
|
|
countLR = 0 |
|
|
|
|
countMLP = 0 |
|
|
|
|
countRF = 0 |
|
|
|
|
countGradB = 0 |
|
|
|
|
setMaxLoopValue = 5 |
|
|
|
|
paramAllAlgs = PreprocessingParam() |
|
|
|
|
|
|
|
|
|
KNNIntIndex = [] |
|
|
|
|
LRIntIndex = [] |
|
|
|
|
MLPIntIndex = [] |
|
|
|
|
RFIntIndex = [] |
|
|
|
|
GradBIntIndex = [] |
|
|
|
|
|
|
|
|
|
localCrossMutr = [] |
|
|
|
|
allParametersPerfCrossMutrKNNC = [] |
|
|
|
@ -1099,7 +1099,7 @@ def CrossoverMutateFun(): |
|
|
|
|
countKNN += 1 |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
|
|
|
|
|
countAllModels = countAllModels + 5 |
|
|
|
|
countAllModels = countAllModels + setMaxLoopValue |
|
|
|
|
|
|
|
|
|
for loop in range(setMaxLoopValue - 1): |
|
|
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] |
|
|
|
@ -1146,7 +1146,7 @@ def CrossoverMutateFun(): |
|
|
|
|
countKNN += 1 |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
|
|
|
|
|
countAllModels = countAllModels + 5 |
|
|
|
|
countAllModels = countAllModels + setMaxLoopValue |
|
|
|
|
|
|
|
|
|
for loop in range(setMaxLoopValue - 1): |
|
|
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] |
|
|
|
@ -1187,7 +1187,7 @@ def CrossoverMutateFun(): |
|
|
|
|
countLR += 1 |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
|
|
|
|
|
countAllModels = countAllModels + 5 |
|
|
|
|
countAllModels = countAllModels + setMaxLoopValue |
|
|
|
|
|
|
|
|
|
for loop in range(setMaxLoopValue - 1): |
|
|
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] |
|
|
|
@ -1234,7 +1234,7 @@ def CrossoverMutateFun(): |
|
|
|
|
countLR += 1 |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
|
|
|
|
|
countAllModels = countAllModels + 5 |
|
|
|
|
countAllModels = countAllModels + setMaxLoopValue |
|
|
|
|
|
|
|
|
|
for loop in range(setMaxLoopValue - 1): |
|
|
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] |
|
|
|
@ -1250,10 +1250,275 @@ def CrossoverMutateFun(): |
|
|
|
|
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRM |
|
|
|
|
|
|
|
|
|
localCrossMutr.clear() |
|
|
|
|
allParametersPerfCrossMutrMLPC = [] |
|
|
|
|
|
|
|
|
|
while countMLP < setMaxLoopValue: |
|
|
|
|
for dr in MLPIDs: |
|
|
|
|
MLPIntIndex.append(int(re.findall('\d+', dr)[0])) |
|
|
|
|
MLPPickPair = random.sample(MLPIntIndex,2) |
|
|
|
|
|
|
|
|
|
pairDF = paramAllAlgs.iloc[MLPPickPair] |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
for column in pairDF: |
|
|
|
|
listData = [] |
|
|
|
|
randomZeroOne = random.randint(0, 1) |
|
|
|
|
valuePerColumn = pairDF[column].iloc[randomZeroOne] |
|
|
|
|
listData.append(valuePerColumn) |
|
|
|
|
crossoverDF[column] = listData |
|
|
|
|
if (((paramAllAlgs['hidden_layer_sizes'] == crossoverDF['hidden_layer_sizes'].iloc[0]) & (paramAllAlgs['alpha'] == crossoverDF['alpha'].iloc[0]) & (paramAllAlgs['tol'] == crossoverDF['tol'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['activation'] == crossoverDF['activation'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0])).any()): |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
else: |
|
|
|
|
clf = MLPClassifier(random_state=RANDOM_SEED) |
|
|
|
|
params = {'hidden_layer_sizes': [crossoverDF['hidden_layer_sizes'].iloc[0]], 'alpha': [crossoverDF['alpha'].iloc[0]], 'tol': [crossoverDF['tol'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'activation': [crossoverDF['activation'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]]} |
|
|
|
|
AlgorithmsIDsEnd = countAllModels + countMLP |
|
|
|
|
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'MLP', AlgorithmsIDsEnd) |
|
|
|
|
countMLP += 1 |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
|
|
|
|
|
countAllModels = countAllModels + setMaxLoopValue |
|
|
|
|
|
|
|
|
|
for loop in range(setMaxLoopValue - 1): |
|
|
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] |
|
|
|
|
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) |
|
|
|
|
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) |
|
|
|
|
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
allParametersPerfCrossMutrMLPC.append(localCrossMutr[0]) |
|
|
|
|
allParametersPerfCrossMutrMLPC.append(localCrossMutr[1]) |
|
|
|
|
allParametersPerfCrossMutrMLPC.append(localCrossMutr[2]) |
|
|
|
|
allParametersPerfCrossMutrMLPC.append(localCrossMutr[3]) |
|
|
|
|
|
|
|
|
|
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrMLPC |
|
|
|
|
|
|
|
|
|
countMLP = 0 |
|
|
|
|
MLPIntIndex = [] |
|
|
|
|
localCrossMutr.clear() |
|
|
|
|
allParametersPerfCrossMutrMLPM = [] |
|
|
|
|
|
|
|
|
|
while countMLP < setMaxLoopValue: |
|
|
|
|
for dr in MLPIDs: |
|
|
|
|
MLPIntIndex.append(int(re.findall('\d+', dr)[0])) |
|
|
|
|
MLPPickPair = random.sample(MLPIntIndex,1) |
|
|
|
|
|
|
|
|
|
pairDF = paramAllAlgs.iloc[MLPPickPair] |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
for column in pairDF: |
|
|
|
|
listData = [] |
|
|
|
|
if (column == 'hidden_layer_sizes'): |
|
|
|
|
randomNumber = (random.randint(10,60), random.randint(4,10)) |
|
|
|
|
listData.append(randomNumber) |
|
|
|
|
crossoverDF[column] = listData |
|
|
|
|
else: |
|
|
|
|
valuePerColumn = pairDF[column].iloc[0] |
|
|
|
|
listData.append(valuePerColumn) |
|
|
|
|
crossoverDF[column] = listData |
|
|
|
|
if (((paramAllAlgs['hidden_layer_sizes'] == crossoverDF['hidden_layer_sizes'].iloc[0]) & (paramAllAlgs['alpha'] == crossoverDF['alpha'].iloc[0]) & (paramAllAlgs['tol'] == crossoverDF['tol'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['activation'] == crossoverDF['activation'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0])).any()): |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
else: |
|
|
|
|
clf = MLPClassifier(random_state=RANDOM_SEED) |
|
|
|
|
params = {'hidden_layer_sizes': [crossoverDF['hidden_layer_sizes'].iloc[0]], 'alpha': [crossoverDF['alpha'].iloc[0]], 'tol': [crossoverDF['tol'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'activation': [crossoverDF['activation'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]]} |
|
|
|
|
AlgorithmsIDsEnd = countAllModels + countMLP |
|
|
|
|
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'MLP', AlgorithmsIDsEnd) |
|
|
|
|
countMLP += 1 |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
|
|
|
|
|
allParametersPerfCrossMutr = allParametersPerfCrossMutrKNNC + allParametersPerfCrossMutrKNNM + allParametersPerfCrossMutrLRC + allParametersPerfCrossMutrLRM |
|
|
|
|
countAllModels = countAllModels + setMaxLoopValue |
|
|
|
|
|
|
|
|
|
for loop in range(setMaxLoopValue - 1): |
|
|
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] |
|
|
|
|
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) |
|
|
|
|
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) |
|
|
|
|
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
allParametersPerfCrossMutrMLPM.append(localCrossMutr[0]) |
|
|
|
|
allParametersPerfCrossMutrMLPM.append(localCrossMutr[1]) |
|
|
|
|
allParametersPerfCrossMutrMLPM.append(localCrossMutr[2]) |
|
|
|
|
allParametersPerfCrossMutrMLPM.append(localCrossMutr[3]) |
|
|
|
|
|
|
|
|
|
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrMLPM |
|
|
|
|
|
|
|
|
|
localCrossMutr.clear() |
|
|
|
|
allParametersPerfCrossMutrRFC = [] |
|
|
|
|
|
|
|
|
|
while countRF < setMaxLoopValue: |
|
|
|
|
for dr in RFIDs: |
|
|
|
|
RFIntIndex.append(int(re.findall('\d+', dr)[0])) |
|
|
|
|
RFPickPair = random.sample(RFIntIndex,2) |
|
|
|
|
|
|
|
|
|
pairDF = paramAllAlgs.iloc[RFPickPair] |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
for column in pairDF: |
|
|
|
|
listData = [] |
|
|
|
|
randomZeroOne = random.randint(0, 1) |
|
|
|
|
valuePerColumn = pairDF[column].iloc[randomZeroOne] |
|
|
|
|
listData.append(valuePerColumn) |
|
|
|
|
crossoverDF[column] = listData |
|
|
|
|
if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
else: |
|
|
|
|
clf = RandomForestClassifier(random_state=RANDOM_SEED) |
|
|
|
|
params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} |
|
|
|
|
AlgorithmsIDsEnd = countAllModels + countRF |
|
|
|
|
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RF', AlgorithmsIDsEnd) |
|
|
|
|
countRF += 1 |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
|
|
|
|
|
countAllModels = countAllModels + setMaxLoopValue |
|
|
|
|
|
|
|
|
|
for loop in range(setMaxLoopValue - 1): |
|
|
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] |
|
|
|
|
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) |
|
|
|
|
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) |
|
|
|
|
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
allParametersPerfCrossMutrRFC.append(localCrossMutr[0]) |
|
|
|
|
allParametersPerfCrossMutrRFC.append(localCrossMutr[1]) |
|
|
|
|
allParametersPerfCrossMutrRFC.append(localCrossMutr[2]) |
|
|
|
|
allParametersPerfCrossMutrRFC.append(localCrossMutr[3]) |
|
|
|
|
|
|
|
|
|
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrRFC |
|
|
|
|
|
|
|
|
|
countRF = 0 |
|
|
|
|
RFIntIndex = [] |
|
|
|
|
localCrossMutr.clear() |
|
|
|
|
allParametersPerfCrossMutrRFM = [] |
|
|
|
|
|
|
|
|
|
while countRF < setMaxLoopValue: |
|
|
|
|
for dr in RFIDs: |
|
|
|
|
RFIntIndex.append(int(re.findall('\d+', dr)[0])) |
|
|
|
|
RFPickPair = random.sample(RFIntIndex,1) |
|
|
|
|
|
|
|
|
|
pairDF = paramAllAlgs.iloc[RFPickPair] |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
for column in pairDF: |
|
|
|
|
listData = [] |
|
|
|
|
if (column == 'n_estimators'): |
|
|
|
|
randomNumber = random.randint(100, 200) |
|
|
|
|
listData.append(randomNumber) |
|
|
|
|
crossoverDF[column] = listData |
|
|
|
|
else: |
|
|
|
|
valuePerColumn = pairDF[column].iloc[0] |
|
|
|
|
listData.append(valuePerColumn) |
|
|
|
|
crossoverDF[column] = listData |
|
|
|
|
if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
else: |
|
|
|
|
clf = RandomForestClassifier(random_state=RANDOM_SEED) |
|
|
|
|
params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} |
|
|
|
|
AlgorithmsIDsEnd = countAllModels + countRF |
|
|
|
|
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RF', AlgorithmsIDsEnd) |
|
|
|
|
countRF += 1 |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
|
|
|
|
|
countAllModels = countAllModels + setMaxLoopValue |
|
|
|
|
|
|
|
|
|
for loop in range(setMaxLoopValue - 1): |
|
|
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] |
|
|
|
|
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) |
|
|
|
|
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) |
|
|
|
|
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
allParametersPerfCrossMutrRFM.append(localCrossMutr[0]) |
|
|
|
|
allParametersPerfCrossMutrRFM.append(localCrossMutr[1]) |
|
|
|
|
allParametersPerfCrossMutrRFM.append(localCrossMutr[2]) |
|
|
|
|
allParametersPerfCrossMutrRFM.append(localCrossMutr[3]) |
|
|
|
|
|
|
|
|
|
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrRFM |
|
|
|
|
|
|
|
|
|
localCrossMutr.clear() |
|
|
|
|
allParametersPerfCrossMutrGradBC = [] |
|
|
|
|
|
|
|
|
|
while countGradB < setMaxLoopValue: |
|
|
|
|
for dr in GradBIDs: |
|
|
|
|
GradBIntIndex.append(int(re.findall('\d+', dr)[0])) |
|
|
|
|
GradBPickPair = random.sample(GradBIntIndex,2) |
|
|
|
|
|
|
|
|
|
pairDF = paramAllAlgs.iloc[GradBPickPair] |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
for column in pairDF: |
|
|
|
|
listData = [] |
|
|
|
|
randomZeroOne = random.randint(0, 1) |
|
|
|
|
valuePerColumn = pairDF[column].iloc[randomZeroOne] |
|
|
|
|
listData.append(valuePerColumn) |
|
|
|
|
crossoverDF[column] = listData |
|
|
|
|
if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['learning_rate'] == crossoverDF['learning_rate'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
else: |
|
|
|
|
clf = GradientBoostingClassifier(random_state=RANDOM_SEED) |
|
|
|
|
params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'learning_rate': [crossoverDF['learning_rate'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} |
|
|
|
|
AlgorithmsIDsEnd = countAllModels + countGradB |
|
|
|
|
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'GradB', AlgorithmsIDsEnd) |
|
|
|
|
countGradB += 1 |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
|
|
|
|
|
countAllModels = countAllModels + setMaxLoopValue |
|
|
|
|
|
|
|
|
|
for loop in range(setMaxLoopValue - 1): |
|
|
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] |
|
|
|
|
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) |
|
|
|
|
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) |
|
|
|
|
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
allParametersPerfCrossMutrGradBC.append(localCrossMutr[0]) |
|
|
|
|
allParametersPerfCrossMutrGradBC.append(localCrossMutr[1]) |
|
|
|
|
allParametersPerfCrossMutrGradBC.append(localCrossMutr[2]) |
|
|
|
|
allParametersPerfCrossMutrGradBC.append(localCrossMutr[3]) |
|
|
|
|
|
|
|
|
|
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrGradBC |
|
|
|
|
|
|
|
|
|
countGradB = 0 |
|
|
|
|
GradBIntIndex = [] |
|
|
|
|
localCrossMutr.clear() |
|
|
|
|
allParametersPerfCrossMutrGradBM = [] |
|
|
|
|
|
|
|
|
|
while countGradB < setMaxLoopValue: |
|
|
|
|
for dr in GradBIDs: |
|
|
|
|
GradBIntIndex.append(int(re.findall('\d+', dr)[0])) |
|
|
|
|
GradPickPair = random.sample(GradBIntIndex,1) |
|
|
|
|
|
|
|
|
|
pairDF = paramAllAlgs.iloc[GradBPickPair] |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
for column in pairDF: |
|
|
|
|
listData = [] |
|
|
|
|
if (column == 'n_estimators'): |
|
|
|
|
randomNumber = random.randint(100, 200) |
|
|
|
|
listData.append(randomNumber) |
|
|
|
|
crossoverDF[column] = listData |
|
|
|
|
else: |
|
|
|
|
valuePerColumn = pairDF[column].iloc[0] |
|
|
|
|
listData.append(valuePerColumn) |
|
|
|
|
crossoverDF[column] = listData |
|
|
|
|
if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['learning_rate'] == crossoverDF['learning_rate'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
else: |
|
|
|
|
clf = GradientBoostingClassifier(random_state=RANDOM_SEED) |
|
|
|
|
params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'learning_rate': [crossoverDF['learning_rate'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} |
|
|
|
|
AlgorithmsIDsEnd = countAllModels + countGradB |
|
|
|
|
localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RF', AlgorithmsIDsEnd) |
|
|
|
|
countGradB += 1 |
|
|
|
|
crossoverDF = pd.DataFrame() |
|
|
|
|
|
|
|
|
|
countAllModels = countAllModels + setMaxLoopValue |
|
|
|
|
|
|
|
|
|
for loop in range(setMaxLoopValue - 1): |
|
|
|
|
localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] |
|
|
|
|
localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) |
|
|
|
|
localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) |
|
|
|
|
localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
allParametersPerfCrossMutrGradBM.append(localCrossMutr[0]) |
|
|
|
|
allParametersPerfCrossMutrGradBM.append(localCrossMutr[1]) |
|
|
|
|
allParametersPerfCrossMutrGradBM.append(localCrossMutr[2]) |
|
|
|
|
allParametersPerfCrossMutrGradBM.append(localCrossMutr[3]) |
|
|
|
|
|
|
|
|
|
HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrGradBM |
|
|
|
|
|
|
|
|
|
localCrossMutr.clear() |
|
|
|
|
|
|
|
|
|
allParametersPerfCrossMutr = allParametersPerfCrossMutrKNNC + allParametersPerfCrossMutrKNNM + allParametersPerfCrossMutrLRC + allParametersPerfCrossMutrLRM + allParametersPerfCrossMutrMLPC + allParametersPerfCrossMutrMLPM + allParametersPerfCrossMutrRFC + allParametersPerfCrossMutrRFM + allParametersPerfCrossMutrGradBC + allParametersPerfCrossMutrGradBM |
|
|
|
|
|
|
|
|
|
allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrKNNC[0] + allParametersPerfCrossMutrKNNM[0] |
|
|
|
|
|
|
|
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNC[1]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNM[1]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrKNNC[2]], ignore_index=True) |
|
|
|
@ -1273,27 +1538,45 @@ def CrossoverMutateFun(): |
|
|
|
|
allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRC[3]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRM[3]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
addKNN = addLR |
|
|
|
|
allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrMLPC[0] + allParametersPerfCrossMutrMLPM[0] |
|
|
|
|
|
|
|
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrMLPC[1]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrMLPM[1]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrMLPC[2]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrMLPM[2]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPC[3]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPM[3]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrRFC[0] + allParametersPerfCrossMutrRFM[0] |
|
|
|
|
|
|
|
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrRFC[1]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrRFM[1]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrRFC[2]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrRFM[2]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
addLR = addLR + 10 |
|
|
|
|
allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFC[3]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFM[3]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
# KNNIntIndex = [] |
|
|
|
|
# for dr in KNNIDs: |
|
|
|
|
# KNNIntIndex.append(int(re.findall('\d+', dr)[0])) |
|
|
|
|
allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrGradBC[0] + allParametersPerfCrossMutrGradBM[0] |
|
|
|
|
|
|
|
|
|
# allParametersPerformancePerModel[0] = [j for i, j in enumerate(allParametersPerformancePerModel[0]) if i not in KNNIntIndex] |
|
|
|
|
# allParametersPerformancePerModel[1].drop(allParametersPerformancePerModel[1].index[KNNIntIndex], inplace=True) |
|
|
|
|
# allParametersPerformancePerModel[2].drop(allParametersPerformancePerModel[2].index[KNNIntIndex], inplace=True) |
|
|
|
|
# allParametersPerformancePerModel[3].drop(allParametersPerformancePerModel[3].index[KNNIntIndex], inplace=True) |
|
|
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrGradBC[1]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrGradBM[1]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrGradBC[2]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrGradBM[2]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
# LRIntIndex = [] |
|
|
|
|
# for dr in LRIDs: |
|
|
|
|
# LRIntIndex.append(int(re.findall('\d+', dr)[0]) - 100) |
|
|
|
|
allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBC[3]], ignore_index=True) |
|
|
|
|
allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBM[3]], ignore_index=True) |
|
|
|
|
|
|
|
|
|
# allParametersPerformancePerModel[4] = [j for i, j in enumerate(allParametersPerformancePerModel[4]) if i not in LRIntIndex] |
|
|
|
|
# allParametersPerformancePerModel[5].drop(allParametersPerformancePerModel[5].index[LRIntIndex], inplace=True) |
|
|
|
|
# allParametersPerformancePerModel[6].drop(allParametersPerformancePerModel[6].index[LRIntIndex], inplace=True) |
|
|
|
|
# allParametersPerformancePerModel[7].drop(allParametersPerformancePerModel[7].index[LRIntIndex], inplace=True) |
|
|
|
|
addKNN = addLR |
|
|
|
|
|
|
|
|
|
addLR = addLR + setMaxLoopValue*2 |
|
|
|
|
|
|
|
|
|
addMLP = addLR + setMaxLoopValue*2 |
|
|
|
|
|
|
|
|
|
addRF = addMLP + setMaxLoopValue*2 |
|
|
|
|
|
|
|
|
|
addGradB = addRF + setMaxLoopValue*2 |
|
|
|
|
|
|
|
|
|
return 'Everything Okay' |
|
|
|
|
|
|
|
|
@ -1391,8 +1674,15 @@ def PreprocessingIDsCM(): |
|
|
|
|
dicKNNM = allParametersPerfCrossMutr[4] |
|
|
|
|
dicLRC = allParametersPerfCrossMutr[8] |
|
|
|
|
dicLRM = allParametersPerfCrossMutr[12] |
|
|
|
|
dicMLPC = allParametersPerfCrossMutr[16] |
|
|
|
|
dicMLPM = allParametersPerfCrossMutr[20] |
|
|
|
|
dicRFC = allParametersPerfCrossMutr[24] |
|
|
|
|
dicRFM = allParametersPerfCrossMutr[28] |
|
|
|
|
dicGradBC = allParametersPerfCrossMutr[32] |
|
|
|
|
dicGradBM = allParametersPerfCrossMutr[36] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df_concatIDs = dicKNNC + dicKNNM + dicLRC + dicLRM |
|
|
|
|
df_concatIDs = dicKNNC + dicKNNM + dicLRC + dicLRM + dicMLPC + dicMLPM + dicRFC + dicRFM + dicGradBC + dicGradBM |
|
|
|
|
return df_concatIDs |
|
|
|
|
|
|
|
|
|
def PreprocessingMetricsCM(): |
|
|
|
@ -1400,13 +1690,25 @@ def PreprocessingMetricsCM(): |
|
|
|
|
dicKNNM = allParametersPerfCrossMutr[6] |
|
|
|
|
dicLRC = allParametersPerfCrossMutr[10] |
|
|
|
|
dicLRM = allParametersPerfCrossMutr[14] |
|
|
|
|
dicMLPC = allParametersPerfCrossMutr[18] |
|
|
|
|
dicMLPM = allParametersPerfCrossMutr[22] |
|
|
|
|
dicRFC = allParametersPerfCrossMutr[26] |
|
|
|
|
dicRFM = allParametersPerfCrossMutr[30] |
|
|
|
|
dicGradBC = allParametersPerfCrossMutr[34] |
|
|
|
|
dicGradBM = allParametersPerfCrossMutr[38] |
|
|
|
|
|
|
|
|
|
dfKNNC = pd.DataFrame.from_dict(dicKNNC) |
|
|
|
|
dfKNNM = pd.DataFrame.from_dict(dicKNNM) |
|
|
|
|
dfLRC = pd.DataFrame.from_dict(dicLRC) |
|
|
|
|
dfLRM = pd.DataFrame.from_dict(dicLRM) |
|
|
|
|
|
|
|
|
|
df_concatMetrics = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM]) |
|
|
|
|
dfMLPC = pd.DataFrame.from_dict(dicMLPC) |
|
|
|
|
dfMLPM = pd.DataFrame.from_dict(dicMLPM) |
|
|
|
|
dfRFC = pd.DataFrame.from_dict(dicRFC) |
|
|
|
|
dfRFM = pd.DataFrame.from_dict(dicRFM) |
|
|
|
|
dfGradBC = pd.DataFrame.from_dict(dicGradBC) |
|
|
|
|
dfGradBM = pd.DataFrame.from_dict(dicGradBM) |
|
|
|
|
|
|
|
|
|
df_concatMetrics = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM, dfMLPC, dfMLPM, dfRFC, dfRFM, dfGradBC, dfGradBM]) |
|
|
|
|
df_concatMetrics = df_concatMetrics.reset_index(drop=True) |
|
|
|
|
return df_concatMetrics |
|
|
|
|
|
|
|
|
@ -1415,17 +1717,35 @@ def PreprocessingPredCM(): |
|
|
|
|
dicKNNM = allParametersPerfCrossMutr[7] |
|
|
|
|
dicLRC = allParametersPerfCrossMutr[11] |
|
|
|
|
dicLRM = allParametersPerfCrossMutr[15] |
|
|
|
|
dicMLPC = allParametersPerfCrossMutr[19] |
|
|
|
|
dicMLPM = allParametersPerfCrossMutr[23] |
|
|
|
|
dicRFC = allParametersPerfCrossMutr[27] |
|
|
|
|
dicRFM = allParametersPerfCrossMutr[31] |
|
|
|
|
dicGradBC = allParametersPerfCrossMutr[35] |
|
|
|
|
dicGradBM = allParametersPerfCrossMutr[39] |
|
|
|
|
|
|
|
|
|
dfKNNC = pd.DataFrame.from_dict(dicKNNC) |
|
|
|
|
dfKNNM = pd.DataFrame.from_dict(dicKNNM) |
|
|
|
|
dfLRC = pd.DataFrame.from_dict(dicLRC) |
|
|
|
|
dfLRM = pd.DataFrame.from_dict(dicLRM) |
|
|
|
|
dfMLPC = pd.DataFrame.from_dict(dicMLPC) |
|
|
|
|
dfMLPM = pd.DataFrame.from_dict(dicMLPM) |
|
|
|
|
dfRFC = pd.DataFrame.from_dict(dicRFC) |
|
|
|
|
dfRFM = pd.DataFrame.from_dict(dicRFM) |
|
|
|
|
dfGradBC = pd.DataFrame.from_dict(dicGradBC) |
|
|
|
|
dfGradBM = pd.DataFrame.from_dict(dicGradBM) |
|
|
|
|
|
|
|
|
|
dfKNN = pd.concat([dfKNNC, dfKNNM]) |
|
|
|
|
|
|
|
|
|
dfLR = pd.concat([dfLRC, dfLRM]) |
|
|
|
|
|
|
|
|
|
df_concatProbs = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM]) |
|
|
|
|
dfMLP = pd.concat([dfMLPC, dfMLPM]) |
|
|
|
|
|
|
|
|
|
dfRF = pd.concat([dfRFC, dfRFM]) |
|
|
|
|
|
|
|
|
|
dfGradB = pd.concat([dfGradBC, dfGradBM]) |
|
|
|
|
|
|
|
|
|
df_concatProbs = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM, dfMLPC, dfMLPM, dfRFC, dfRFM, dfGradBC, dfGradBM]) |
|
|
|
|
|
|
|
|
|
predictionsKNN = [] |
|
|
|
|
for column, content in dfKNN.items(): |
|
|
|
@ -1437,40 +1757,86 @@ def PreprocessingPredCM(): |
|
|
|
|
el = [sum(x)/len(x) for x in zip(*content)] |
|
|
|
|
predictionsLR.append(el) |
|
|
|
|
|
|
|
|
|
predictionsMLP = [] |
|
|
|
|
for column, content in dfMLP.items(): |
|
|
|
|
el = [sum(x)/len(x) for x in zip(*content)] |
|
|
|
|
predictionsMLP.append(el) |
|
|
|
|
|
|
|
|
|
predictionsRF = [] |
|
|
|
|
for column, content in dfRF.items(): |
|
|
|
|
el = [sum(x)/len(x) for x in zip(*content)] |
|
|
|
|
predictionsRF.append(el) |
|
|
|
|
|
|
|
|
|
predictionsGradB = [] |
|
|
|
|
for column, content in dfGradB.items(): |
|
|
|
|
el = [sum(x)/len(x) for x in zip(*content)] |
|
|
|
|
predictionsGradB.append(el) |
|
|
|
|
|
|
|
|
|
predictions = [] |
|
|
|
|
for column, content in df_concatProbs.items(): |
|
|
|
|
el = [sum(x)/len(x) for x in zip(*content)] |
|
|
|
|
predictions.append(el) |
|
|
|
|
|
|
|
|
|
return [predictionsKNN, predictionsLR, predictions] |
|
|
|
|
return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] |
|
|
|
|
|
|
|
|
|
def PreprocessingParamCM(): |
|
|
|
|
dicKNNC = allParametersPerfCrossMutr[1] |
|
|
|
|
dicKNNM = allParametersPerfCrossMutr[5] |
|
|
|
|
dicLRC = allParametersPerfCrossMutr[9] |
|
|
|
|
dicLRM = allParametersPerfCrossMutr[13] |
|
|
|
|
dicMLPC = allParametersPerfCrossMutr[17] |
|
|
|
|
dicMLPM = allParametersPerfCrossMutr[21] |
|
|
|
|
dicRFC = allParametersPerfCrossMutr[25] |
|
|
|
|
dicRFM = allParametersPerfCrossMutr[29] |
|
|
|
|
dicGradBC = allParametersPerfCrossMutr[33] |
|
|
|
|
dicGradBM = allParametersPerfCrossMutr[37] |
|
|
|
|
|
|
|
|
|
dicKNNC = dicKNNC['params'] |
|
|
|
|
dicKNNM = dicKNNM['params'] |
|
|
|
|
dicLRC = dicLRC['params'] |
|
|
|
|
dicLRM = dicLRM['params'] |
|
|
|
|
dicMLPC = dicMLPC['params'] |
|
|
|
|
dicMLPM = dicMLPM['params'] |
|
|
|
|
dicRFC = dicRFC['params'] |
|
|
|
|
dicRFM = dicRFM['params'] |
|
|
|
|
dicGradBC = dicGradBC['params'] |
|
|
|
|
dicGradBM = dicGradBM['params'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dicKNNC = {int(k):v for k,v in dicKNNC.items()} |
|
|
|
|
dicKNNM = {int(k):v for k,v in dicKNNM.items()} |
|
|
|
|
dicLRC = {int(k):v for k,v in dicLRC.items()} |
|
|
|
|
dicLRM = {int(k):v for k,v in dicLRM.items()} |
|
|
|
|
dicMLPC = {int(k):v for k,v in dicMLPC.items()} |
|
|
|
|
dicMLPM = {int(k):v for k,v in dicMLPM.items()} |
|
|
|
|
dicRFC = {int(k):v for k,v in dicRFC.items()} |
|
|
|
|
dicRFM = {int(k):v for k,v in dicRFM.items()} |
|
|
|
|
dicGradBC = {int(k):v for k,v in dicGradBC.items()} |
|
|
|
|
dicGradBM = {int(k):v for k,v in dicGradBM.items()} |
|
|
|
|
|
|
|
|
|
dfKNNC = pd.DataFrame.from_dict(dicKNNC) |
|
|
|
|
dfKNNM = pd.DataFrame.from_dict(dicKNNM) |
|
|
|
|
dfLRC = pd.DataFrame.from_dict(dicLRC) |
|
|
|
|
dfLRM = pd.DataFrame.from_dict(dicLRM) |
|
|
|
|
dfMLPC = pd.DataFrame.from_dict(dicMLPC) |
|
|
|
|
dfMLPM = pd.DataFrame.from_dict(dicMLPM) |
|
|
|
|
dfRFC = pd.DataFrame.from_dict(dicRFC) |
|
|
|
|
dfRFM = pd.DataFrame.from_dict(dicRFM) |
|
|
|
|
dfGradBC = pd.DataFrame.from_dict(dicGradBC) |
|
|
|
|
dfGradBM = pd.DataFrame.from_dict(dicGradBM) |
|
|
|
|
|
|
|
|
|
dfKNNC = dfKNNC.T |
|
|
|
|
dfKNNM = dfKNNM.T |
|
|
|
|
dfLRC = dfLRC.T |
|
|
|
|
dfLRM = dfLRM.T |
|
|
|
|
|
|
|
|
|
df_params = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM]) |
|
|
|
|
dfMLPC = dfMLPC.T |
|
|
|
|
dfMLPM = dfMLPM.T |
|
|
|
|
dfRFC = dfRFC.T |
|
|
|
|
dfRFM = dfRFM.T |
|
|
|
|
dfGradBC = dfGradBC.T |
|
|
|
|
dfGradBM = dfGradBM.T |
|
|
|
|
|
|
|
|
|
df_params = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM, dfMLPC, dfMLPM, dfRFC, dfRFM, dfGradBC, dfGradBM]) |
|
|
|
|
df_params = df_params.reset_index(drop=True) |
|
|
|
|
return df_params |
|
|
|
|
|
|
|
|
@ -1479,28 +1845,58 @@ def PreprocessingParamSepCM(): |
|
|
|
|
dicKNNM = allParametersPerfCrossMutr[5] |
|
|
|
|
dicLRC = allParametersPerfCrossMutr[9] |
|
|
|
|
dicLRM = allParametersPerfCrossMutr[13] |
|
|
|
|
dicMLPC = allParametersPerfCrossMutr[17] |
|
|
|
|
dicMLPM = allParametersPerfCrossMutr[21] |
|
|
|
|
dicRFC = allParametersPerfCrossMutr[25] |
|
|
|
|
dicRFM = allParametersPerfCrossMutr[29] |
|
|
|
|
dicGradBC = allParametersPerfCrossMutr[33] |
|
|
|
|
dicGradBM = allParametersPerfCrossMutr[37] |
|
|
|
|
|
|
|
|
|
dicKNNC = dicKNNC['params'] |
|
|
|
|
dicKNNM = dicKNNM['params'] |
|
|
|
|
dicLRC = dicLRC['params'] |
|
|
|
|
dicLRM = dicLRM['params'] |
|
|
|
|
dicMLPC = dicMLPC['params'] |
|
|
|
|
dicMLPM = dicMLPM['params'] |
|
|
|
|
dicRFC = dicRFC['params'] |
|
|
|
|
dicRFM = dicRFM['params'] |
|
|
|
|
dicGradBC = dicGradBC['params'] |
|
|
|
|
dicGradBM = dicGradBM['params'] |
|
|
|
|
|
|
|
|
|
dicKNNC = {int(k):v for k,v in dicKNNC.items()} |
|
|
|
|
dicKNNM = {int(k):v for k,v in dicKNNM.items()} |
|
|
|
|
dicLRC = {int(k):v for k,v in dicLRC.items()} |
|
|
|
|
dicLRM = {int(k):v for k,v in dicLRM.items()} |
|
|
|
|
dicMLPC = {int(k):v for k,v in dicMLPC.items()} |
|
|
|
|
dicMLPM = {int(k):v for k,v in dicMLPM.items()} |
|
|
|
|
dicRFC = {int(k):v for k,v in dicRFC.items()} |
|
|
|
|
dicRFM = {int(k):v for k,v in dicRFM.items()} |
|
|
|
|
dicGradBC = {int(k):v for k,v in dicGradBC.items()} |
|
|
|
|
dicGradBM = {int(k):v for k,v in dicGradBM.items()} |
|
|
|
|
|
|
|
|
|
dfKNNC = pd.DataFrame.from_dict(dicKNNC) |
|
|
|
|
dfKNNM = pd.DataFrame.from_dict(dicKNNM) |
|
|
|
|
dfLRC = pd.DataFrame.from_dict(dicLRC) |
|
|
|
|
dfLRM = pd.DataFrame.from_dict(dicLRM) |
|
|
|
|
dfMLPC = pd.DataFrame.from_dict(dicMLPC) |
|
|
|
|
dfMLPM = pd.DataFrame.from_dict(dicMLPM) |
|
|
|
|
dfRFC = pd.DataFrame.from_dict(dicRFC) |
|
|
|
|
dfRFM = pd.DataFrame.from_dict(dicRFM) |
|
|
|
|
dfGradBC = pd.DataFrame.from_dict(dicGradBC) |
|
|
|
|
dfGradBM = pd.DataFrame.from_dict(dicGradBM) |
|
|
|
|
|
|
|
|
|
dfKNNC = dfKNNC.T |
|
|
|
|
dfKNNM = dfKNNM.T |
|
|
|
|
dfLRC = dfLRC.T |
|
|
|
|
dfLRM = dfLRM.T |
|
|
|
|
|
|
|
|
|
return [dfKNNC, dfKNNM, dfLRC, dfLRM] |
|
|
|
|
dfMLPC = dfMLPC.T |
|
|
|
|
dfMLPM = dfMLPM.T |
|
|
|
|
dfRFC = dfRFC.T |
|
|
|
|
dfRFM = dfRFM.T |
|
|
|
|
dfGradBC = dfGradBC.T |
|
|
|
|
dfGradBM = dfGradBM.T |
|
|
|
|
|
|
|
|
|
return [dfKNNC, dfKNNM, dfLRC, dfLRM, dfMLPC, dfMLPM, dfRFC, dfRFM, dfGradBC, dfGradBM] |
|
|
|
|
|
|
|
|
|
# remove that maybe! |
|
|
|
|
def preProcsumPerMetricCM(factors): |
|
|
|
|