parent
8390cf0c63
commit
e23e9e371e
Binary file not shown.
@ -0,0 +1 @@ |
||||
{"duration": 60.5380380153656, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=82, max_iter=300, penalty='none', random_state=42,\n solver='newton-cg')", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100"}} |
@ -1 +1 @@ |
||||
{"duration": 140.90401196479797, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(activation='identity', alpha=0.0008100000000000001,\n hidden_layer_sizes=(98, 2), max_iter=100, random_state=42,\n solver='sgd', tol=0.0008100000000000001)", "params": "{'hidden_layer_sizes': [(60, 3), (61, 1), (62, 1), (63, 3), (64, 2), (65, 1), (66, 1), (67, 1), (68, 3), (69, 1), (70, 3), (71, 3), (72, 3), (73, 1), (74, 3), (75, 2), (76, 1), (77, 1), (78, 1), (79, 1), (80, 1), (81, 3), (82, 3), (83, 1), (84, 3), (85, 1), (86, 3), (87, 3), (88, 3), (89, 3), (90, 2), (91, 1), (92, 2), (93, 3), (94, 2), (95, 1), (96, 1), (97, 3), (98, 2), (99, 2), (100, 2), (101, 1), (102, 1), (103, 2), (104, 1), (105, 1), (106, 2), (107, 1), (108, 2), (109, 2), (110, 3), (111, 2), (112, 1), (113, 3), (114, 2), (115, 3), (116, 1), (117, 2), (118, 1), (119, 3)], 'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "200"}} |
||||
{"duration": 187.45918798446655, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(activation='tanh', alpha=1e-05, hidden_layer_sizes=(94, 2),\n max_iter=100, random_state=42, tol=0.0008100000000000001)", "params": "{'hidden_layer_sizes': [(60, 3), (61, 1), (62, 1), (63, 3), (64, 2), (65, 1), (66, 1), (67, 1), (68, 3), (69, 1), (70, 3), (71, 3), (72, 3), (73, 1), (74, 3), (75, 2), (76, 1), (77, 1), (78, 1), (79, 1), (80, 1), (81, 3), (82, 3), (83, 1), (84, 3), (85, 1), (86, 3), (87, 3), (88, 3), (89, 3), (90, 2), (91, 1), (92, 2), (93, 3), (94, 2), (95, 1), (96, 1), (97, 3), (98, 2), (99, 2), (100, 2), (101, 1), (102, 1), (103, 2), (104, 1), (105, 1), (106, 2), (107, 1), (108, 2), (109, 2), (110, 3), (111, 2), (112, 1), (113, 3), (114, 2), (115, 3), (116, 1), (117, 2), (118, 1), (119, 3)], 'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "200"}} |
Binary file not shown.
@ -1 +1 @@ |
||||
{"duration": 150.79905891418457, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(criterion='mse', learning_rate=0.01, n_estimators=89,\n random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "400"}} |
||||
{"duration": 166.53135991096497, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(learning_rate=0.01, n_estimators=70, random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "400"}} |
Binary file not shown.
@ -1 +1 @@ |
||||
{"duration": 15.544848203659058, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='brute', metric='euclidean', n_neighbors=14,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} |
||||
{"duration": 21.348681926727295, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', n_neighbors=77)", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "500"}} |
@ -1 +0,0 @@ |
||||
{"duration": 46.68945908546448, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=62, max_iter=400, random_state=42, solver='sag')", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100"}} |
@ -1 +1 @@ |
||||
{"duration": 126.85907101631165, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(criterion='entropy', n_estimators=66, random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "300"}} |
||||
{"duration": 144.77490973472595, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(criterion='entropy', n_estimators=56, random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "300"}} |
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1 @@ |
||||
{"duration": 20.462234020233154, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', metric='euclidean', n_neighbors=57,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} |
Binary file not shown.
@ -1,351 +0,0 @@ |
||||
<template> |
||||
<div id="PCP" class="parcoords" style="min-height: 285px;"></div> |
||||
</template> |
||||
|
||||
<script> |
||||
import 'parcoord-es/dist/parcoords.css'; |
||||
import ParCoords from 'parcoord-es'; |
||||
import * as d3Base from 'd3' |
||||
|
||||
// attach all d3 plugins to the d3 library |
||||
const d3 = Object.assign(d3Base) |
||||
|
||||
import { EventBus } from '../main.js' |
||||
|
||||
export default { |
||||
name: 'AlgorithmHyperParam', |
||||
data () { |
||||
return { |
||||
ModelsPerformance: 0, |
||||
selAlgorithm: 0, |
||||
keyAllOrClass: true, |
||||
listClassPerf: [], |
||||
pc: 0, |
||||
factors: [1,0,0 |
||||
,1,0,0,1,0 |
||||
,0,1,0,0,0 |
||||
,0,0,1,0,0 |
||||
,0,1,1,1 |
||||
], |
||||
SVCModels: 576, |
||||
GausNBModels: 736, |
||||
MLPModels: 1236, |
||||
LRModels: 1356, |
||||
LDAModels: 1996, |
||||
QDAModels: 2196, |
||||
RFModels: 2446, |
||||
ExtraTModels: 2606, |
||||
AdaBModels: 2766, |
||||
GradBModels: 2926, |
||||
} |
||||
}, |
||||
methods: { |
||||
reset () { |
||||
d3.selectAll("#PCP > *").remove(); |
||||
}, |
||||
PCPView () { |
||||
d3.selectAll("#PCP > *").remove(); |
||||
if (this.selAlgorithm != '') { |
||||
var colors = ['#a6cee3','#1f78b4','#b2df8a','#33a02c','#fb9a99','#e31a1c','#fdbf6f','#ff7f00','#cab2d6','#6a3d9a','#b15928'] |
||||
var colorGiv = 0 |
||||
|
||||
var factorsLocal = this.factors |
||||
var divide = 0 |
||||
|
||||
factorsLocal.forEach(element => { |
||||
divide = element + divide |
||||
}); |
||||
|
||||
var McKNN = [] |
||||
const performanceAlgKNN = JSON.parse(this.ModelsPerformance[6]) |
||||
for (let j = 0; j < Object.values(performanceAlgKNN['mean_test_accuracy']).length; j++) { |
||||
let sumKNN |
||||
sumKNN = (factorsLocal[0] * Object.values(performanceAlgKNN['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgKNN['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgKNN['geometric_mean_score_macro'])[j]) |
||||
+ (factorsLocal[3] * Object.values(performanceAlgKNN['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgKNN['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgKNN['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgKNN['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgKNN['mean_test_recall_micro'])[j]) |
||||
+ (factorsLocal[8] * Object.values(performanceAlgKNN['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgKNN['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgKNN['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgKNN['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgKNN['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgKNN['f1_micro'])[j]) |
||||
+ (factorsLocal[14] * Object.values(performanceAlgKNN['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgKNN['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgKNN['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgKNN['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgKNN['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgKNN['matthews_corrcoef'])[j])) |
||||
+ (factorsLocal[20] * Object.values(performanceAlgKNN['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgKNN['log_loss'])[j])) |
||||
McKNN.push((sumKNN/divide)*100) |
||||
} |
||||
var McSVC = [] |
||||
const performanceAlgSVC = JSON.parse(this.ModelsPerformance[15]) |
||||
for (let j = 0; j < Object.values(performanceAlgSVC['mean_test_accuracy']).length; j++) { |
||||
let sumSVC |
||||
sumSVC = (factorsLocal[0] * Object.values(performanceAlgSVC['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgSVC['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgSVC['geometric_mean_score_macro'])[j]) |
||||
+ (factorsLocal[3] * Object.values(performanceAlgSVC['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgSVC['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgSVC['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgSVC['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgSVC['mean_test_recall_micro'])[j]) |
||||
+ (factorsLocal[8] * Object.values(performanceAlgSVC['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgSVC['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgSVC['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgSVC['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgSVC['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgSVC['f1_micro'])[j]) |
||||
+ (factorsLocal[14] * Object.values(performanceAlgSVC['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgSVC['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgSVC['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgSVC['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgSVC['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgSVC['matthews_corrcoef'])[j])) |
||||
+ (factorsLocal[20] * Object.values(performanceAlgSVC['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgSVC['log_loss'])[j])) |
||||
McSVC.push((sumSVC/divide)*100) |
||||
} |
||||
var McGausNB = [] |
||||
const performanceAlgGausNB = JSON.parse(this.ModelsPerformance[24]) |
||||
for (let j = 0; j < Object.values(performanceAlgGausNB['mean_test_accuracy']).length; j++) { |
||||
let sumGausNB |
||||
sumGausNB = (factorsLocal[0] * Object.values(performanceAlgGausNB['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgGausNB['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgGausNB['geometric_mean_score_macro'])[j]) |
||||
+ (factorsLocal[3] * Object.values(performanceAlgGausNB['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGausNB['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgGausNB['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgGausNB['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgGausNB['mean_test_recall_micro'])[j]) |
||||
+ (factorsLocal[8] * Object.values(performanceAlgGausNB['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgGausNB['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgGausNB['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGausNB['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGausNB['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGausNB['f1_micro'])[j]) |
||||
+ (factorsLocal[14] * Object.values(performanceAlgGausNB['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGausNB['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgGausNB['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGausNB['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGausNB['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgGausNB['matthews_corrcoef'])[j])) |
||||
+ (factorsLocal[20] * Object.values(performanceAlgGausNB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgGausNB['log_loss'])[j])) |
||||
McGausNB.push((sumGausNB/divide)*100) |
||||
} |
||||
var McMLP = [] |
||||
const performanceAlgMLP = JSON.parse(this.ModelsPerformance[33]) |
||||
for (let j = 0; j < Object.values(performanceAlgMLP['mean_test_accuracy']).length; j++) { |
||||
let sumMLP |
||||
sumMLP = (factorsLocal[0] * Object.values(performanceAlgMLP['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgMLP['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgMLP['geometric_mean_score_macro'])[j]) |
||||
+ (factorsLocal[3] * Object.values(performanceAlgMLP['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgMLP['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgMLP['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgMLP['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgMLP['mean_test_recall_micro'])[j]) |
||||
+ (factorsLocal[8] * Object.values(performanceAlgMLP['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgMLP['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgMLP['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgMLP['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgMLP['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgMLP['f1_micro'])[j]) |
||||
+ (factorsLocal[14] * Object.values(performanceAlgMLP['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgMLP['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgMLP['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgMLP['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgMLP['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgMLP['matthews_corrcoef'])[j])) |
||||
+ (factorsLocal[20] * Object.values(performanceAlgMLP['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgMLP['log_loss'])[j])) |
||||
McMLP.push((sumMLP/divide)*100) |
||||
} |
||||
var McLR = [] |
||||
const performanceAlgLR = JSON.parse(this.ModelsPerformance[42]) |
||||
for (let j = 0; j < Object.values(performanceAlgLR['mean_test_accuracy']).length; j++) { |
||||
let sumLR |
||||
sumLR = (factorsLocal[0] * Object.values(performanceAlgLR['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgLR['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgLR['geometric_mean_score_macro'])[j]) |
||||
+ (factorsLocal[3] * Object.values(performanceAlgLR['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLR['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgLR['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgLR['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgLR['mean_test_recall_micro'])[j]) |
||||
+ (factorsLocal[8] * Object.values(performanceAlgLR['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgLR['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgLR['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLR['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLR['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLR['f1_micro'])[j]) |
||||
+ (factorsLocal[14] * Object.values(performanceAlgLR['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLR['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgLR['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLR['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLR['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgLR['matthews_corrcoef'])[j])) |
||||
+ (factorsLocal[20] * Object.values(performanceAlgLR['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgLR['log_loss'])[j])) |
||||
McLR.push((sumLR/divide)*100) |
||||
} |
||||
var McLDA = [] |
||||
const performanceAlgLDA = JSON.parse(this.ModelsPerformance[51]) |
||||
for (let j = 0; j < Object.values(performanceAlgLDA['mean_test_accuracy']).length; j++) { |
||||
let sumLDA |
||||
sumLDA = (factorsLocal[0] * Object.values(performanceAlgLDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgLDA['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgLDA['geometric_mean_score_macro'])[j]) |
||||
+ (factorsLocal[3] * Object.values(performanceAlgLDA['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLDA['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgLDA['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgLDA['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgLDA['mean_test_recall_micro'])[j]) |
||||
+ (factorsLocal[8] * Object.values(performanceAlgLDA['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgLDA['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgLDA['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLDA['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLDA['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLDA['f1_micro'])[j]) |
||||
+ (factorsLocal[14] * Object.values(performanceAlgLDA['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLDA['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgLDA['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLDA['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLDA['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgLDA['matthews_corrcoef'])[j])) |
||||
+ (factorsLocal[20] * Object.values(performanceAlgLDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgLDA['log_loss'])[j])) |
||||
McLDA.push((sumLDA/divide)*100) |
||||
} |
||||
var McQDA = [] |
||||
const performanceAlgQDA = JSON.parse(this.ModelsPerformance[60]) |
||||
for (let j = 0; j < Object.values(performanceAlgQDA['mean_test_accuracy']).length; j++) { |
||||
let sumQDA |
||||
sumQDA = (factorsLocal[0] * Object.values(performanceAlgQDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgQDA['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgQDA['geometric_mean_score_macro'])[j]) |
||||
+ (factorsLocal[3] * Object.values(performanceAlgQDA['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgQDA['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgQDA['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgQDA['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgQDA['mean_test_recall_micro'])[j]) |
||||
+ (factorsLocal[8] * Object.values(performanceAlgQDA['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgQDA['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgQDA['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgQDA['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgQDA['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgQDA['f1_micro'])[j]) |
||||
+ (factorsLocal[14] * Object.values(performanceAlgQDA['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgQDA['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgQDA['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgQDA['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgQDA['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgQDA['matthews_corrcoef'])[j])) |
||||
+ (factorsLocal[20] * Object.values(performanceAlgQDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgQDA['log_loss'])[j])) |
||||
McQDA.push((sumQDA/divide)*100) |
||||
} |
||||
var McRF = [] |
||||
const performanceAlgRF = JSON.parse(this.ModelsPerformance[69]) |
||||
for (let j = 0; j < Object.values(performanceAlgRF['mean_test_accuracy']).length; j++) { |
||||
let sumRF |
||||
sumRF = (factorsLocal[0] * Object.values(performanceAlgRF['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgRF['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgRF['geometric_mean_score_macro'])[j]) |
||||
+ (factorsLocal[3] * Object.values(performanceAlgRF['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgRF['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgRF['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgRF['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgRF['mean_test_recall_micro'])[j]) |
||||
+ (factorsLocal[8] * Object.values(performanceAlgRF['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgRF['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgRF['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgRF['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgRF['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgRF['f1_micro'])[j]) |
||||
+ (factorsLocal[14] * Object.values(performanceAlgRF['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgRF['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgRF['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgRF['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgRF['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgRF['matthews_corrcoef'])[j])) |
||||
+ (factorsLocal[20] * Object.values(performanceAlgRF['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgRF['log_loss'])[j])) |
||||
McRF.push((sumRF/divide)*100) |
||||
} |
||||
var McExtraT = [] |
||||
const performanceAlgExtraT = JSON.parse(this.ModelsPerformance[78]) |
||||
for (let j = 0; j < Object.values(performanceAlgExtraT['mean_test_accuracy']).length; j++) { |
||||
let sumExtraT |
||||
sumExtraT = (factorsLocal[0] * Object.values(performanceAlgExtraT['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgExtraT['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgExtraT['geometric_mean_score_macro'])[j]) |
||||
+ (factorsLocal[3] * Object.values(performanceAlgExtraT['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgExtraT['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgExtraT['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgExtraT['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgExtraT['mean_test_recall_micro'])[j]) |
||||
+ (factorsLocal[8] * Object.values(performanceAlgExtraT['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgExtraT['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgExtraT['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgExtraT['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgExtraT['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgExtraT['f1_micro'])[j]) |
||||
+ (factorsLocal[14] * Object.values(performanceAlgExtraT['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgExtraT['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgExtraT['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgExtraT['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgExtraT['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgExtraT['matthews_corrcoef'])[j])) |
||||
+ (factorsLocal[20] * Object.values(performanceAlgExtraT['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgExtraT['log_loss'])[j])) |
||||
McExtraT.push((sumExtraT/divide)*100) |
||||
} |
||||
var McAdaB = [] |
||||
const performanceAlgAdaB = JSON.parse(this.ModelsPerformance[87]) |
||||
for (let j = 0; j < Object.values(performanceAlgAdaB['mean_test_accuracy']).length; j++) { |
||||
let sumAdaB |
||||
sumAdaB = (factorsLocal[0] * Object.values(performanceAlgAdaB['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgAdaB['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgAdaB['geometric_mean_score_macro'])[j]) |
||||
+ (factorsLocal[3] * Object.values(performanceAlgAdaB['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgAdaB['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgAdaB['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgAdaB['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgAdaB['mean_test_recall_micro'])[j]) |
||||
+ (factorsLocal[8] * Object.values(performanceAlgAdaB['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgAdaB['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgAdaB['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgAdaB['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgAdaB['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgAdaB['f1_micro'])[j]) |
||||
+ (factorsLocal[14] * Object.values(performanceAlgAdaB['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgAdaB['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgAdaB['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgAdaB['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgAdaB['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgAdaB['matthews_corrcoef'])[j])) |
||||
+ (factorsLocal[20] * Object.values(performanceAlgAdaB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgAdaB['log_loss'])[j])) |
||||
McAdaB.push((sumAdaB/divide)*100) |
||||
} |
||||
var McGradB = [] |
||||
const performanceAlgGradB = JSON.parse(this.ModelsPerformance[96]) |
||||
for (let j = 0; j < Object.values(performanceAlgGradB['mean_test_accuracy']).length; j++) { |
||||
let sumGradB |
||||
sumGradB = (factorsLocal[0] * Object.values(performanceAlgGradB['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgGradB['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgGradB['geometric_mean_score_macro'])[j]) |
||||
+ (factorsLocal[3] * Object.values(performanceAlgGradB['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGradB['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgGradB['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgGradB['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgGradB['mean_test_recall_micro'])[j]) |
||||
+ (factorsLocal[8] * Object.values(performanceAlgGradB['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgGradB['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgGradB['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGradB['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGradB['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGradB['f1_micro'])[j]) |
||||
+ (factorsLocal[14] * Object.values(performanceAlgGradB['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGradB['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgGradB['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGradB['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGradB['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgGradB['matthews_corrcoef'])[j])) |
||||
+ (factorsLocal[20] * Object.values(performanceAlgGradB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgGradB['log_loss'])[j])) |
||||
McGradB.push((sumGradB/divide)*100) |
||||
} |
||||
|
||||
var Combined = 0 |
||||
if (this.selAlgorithm == 'KNN') { |
||||
Combined = JSON.parse(this.ModelsPerformance[1]) |
||||
colorGiv = colors[0] |
||||
} else if (this.selAlgorithm == 'SVC') { |
||||
Combined = JSON.parse(this.ModelsPerformance[10]) |
||||
colorGiv = colors[1] |
||||
} else if (this.selAlgorithm == 'GauNB') { |
||||
Combined = JSON.parse(this.ModelsPerformance[19]) |
||||
colorGiv = colors[2] |
||||
} else if (this.selAlgorithm == 'MLP') { |
||||
Combined = JSON.parse(this.ModelsPerformance[28]) |
||||
colorGiv = colors[3] |
||||
} else if (this.selAlgorithm == 'LR') { |
||||
Combined = JSON.parse(this.ModelsPerformance[37]) |
||||
colorGiv = colors[4] |
||||
} else if (this.selAlgorithm == 'LDA') { |
||||
Combined = JSON.parse(this.ModelsPerformance[46]) |
||||
colorGiv = colors[5] |
||||
} else if (this.selAlgorithm == 'QDA') { |
||||
Combined = JSON.parse(this.ModelsPerformance[55]) |
||||
colorGiv = colors[6] |
||||
} else if (this.selAlgorithm == 'RF') { |
||||
Combined = JSON.parse(this.ModelsPerformance[64]) |
||||
colorGiv = colors[7] |
||||
} else if (this.selAlgorithm == 'ExtraT') { |
||||
Combined = JSON.parse(this.ModelsPerformance[73]) |
||||
colorGiv = colors[8] |
||||
} else if (this.selAlgorithm == 'AdaB') { |
||||
Combined = JSON.parse(this.ModelsPerformance[82]) |
||||
colorGiv = colors[9] |
||||
} else { |
||||
Combined = JSON.parse(this.ModelsPerformance[91]) |
||||
colorGiv = colors[10] |
||||
} |
||||
var valuesPerf = Object.values(Combined['params']) |
||||
|
||||
var ObjectsParams = Combined['params'] |
||||
var newObjectsParamsΚΝΝ = [] |
||||
var newObjectsParamsSVC = [] |
||||
var newObjectsParamsGausNB = [] |
||||
var newObjectsParamsMLP = [] |
||||
var newObjectsParamsLR = [] |
||||
var newObjectsParamsLDA = [] |
||||
var newObjectsParamsQDA = [] |
||||
var newObjectsParamsRF = [] |
||||
var newObjectsParamsExtraT = [] |
||||
var newObjectsParamsAdaB = [] |
||||
var newObjectsParamsGradB = [] |
||||
var ArrayCombined = [] |
||||
var temp |
||||
for (var i = 0; i < valuesPerf.length; i++) { |
||||
if (this.keyAllOrClass) { |
||||
if (this.selAlgorithm === 'KNN') { |
||||
newObjectsParamsΚΝΝ.push({model: i,'# Perf (%) #': McKNN[i],'n_neighbors':ObjectsParams[i].n_neighbors,'metric':ObjectsParams[i].metric,'algorithm':ObjectsParams[i].algorithm,'weights':ObjectsParams[i].weights}) |
||||
ArrayCombined[i] = newObjectsParamsΚΝΝ[i] |
||||
} else if (this.selAlgorithm === 'SVC') { |
||||
newObjectsParamsSVC.push({model: this.SVCModels + i,'# Perf (%) #': McSVC[i],'C':ObjectsParams[i].C,'kernel':ObjectsParams[i].kernel}) |
||||
ArrayCombined[i] = newObjectsParamsSVC[i] |
||||
} else if (this.selAlgorithm === 'GauNB') { |
||||
newObjectsParamsGausNB.push({model: this.GausNBModels + i,'# Perf (%) #': McGausNB[i],'var_smoothing':ObjectsParams[i].var_smoothing}) |
||||
ArrayCombined[i] = newObjectsParamsGausNB[i] |
||||
} else if (this.selAlgorithm === 'MLP') { |
||||
newObjectsParamsMLP.push({model: this.MLPModels + i,'# Perf (%) #': McMLP[i],'alpha':ObjectsParams[i].alpha,'tol':ObjectsParams[i].tol,'activation':ObjectsParams[i].activation,'max_iter':ObjectsParams[i].max_iter,'solver':ObjectsParams[i].solver}) |
||||
ArrayCombined[i] = newObjectsParamsMLP[i] |
||||
} else if (this.selAlgorithm === 'LR') { |
||||
newObjectsParamsLR.push({model: this.LRModels + i,'# Perf (%) #': McLR[i],'C':ObjectsParams[i].C,'max_iter':ObjectsParams[i].max_iter,'solver':ObjectsParams[i].solver,'penalty':ObjectsParams[i].penalty}) |
||||
ArrayCombined[i] = newObjectsParamsLR[i] |
||||
} else if (this.selAlgorithm === 'LDA') { |
||||
newObjectsParamsLDA.push({model: this.LDAModels + i,'# Perf (%) #': McLDA[i],'shrinkage':ObjectsParams[i].shrinkage,'solver':ObjectsParams[i].solver}) |
||||
ArrayCombined[i] = newObjectsParamsLDA[i] |
||||
} else if (this.selAlgorithm === 'QDA') { |
||||
newObjectsParamsQDA.push({model: this.QDAModels + i,'# Perf (%) #': McQDA[i],'reg_param':ObjectsParams[i].reg_param,'tol':ObjectsParams[i].tol}) |
||||
ArrayCombined[i] = newObjectsParamsQDA[i] |
||||
} else if (this.selAlgorithm === 'RF') { |
||||
newObjectsParamsRF.push({model: this.RFModels + i,'# Perf (%) #': McRF[i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion}) |
||||
ArrayCombined[i] = newObjectsParamsRF[i] |
||||
} else if (this.selAlgorithm === 'ExtraT') { |
||||
newObjectsParamsExtraT.push({model: this.ExtraTModels + i,'# Perf (%) #': McExtraT[i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion}) |
||||
ArrayCombined[i] = newObjectsParamsExtraT[i] |
||||
} else if (this.selAlgorithm === 'AdaB') { |
||||
newObjectsParamsAdaB.push({model: this.AdaBModels + i,'# Perf (%) #': McAdaB[i],'n_estimators':ObjectsParams[i].n_estimators,'learning_rate':ObjectsParams[i].learning_rate,'algorithm':ObjectsParams[i].algorithm}) |
||||
ArrayCombined[i] = newObjectsParamsAdaB[i] |
||||
} else { |
||||
newObjectsParamsGradB.push({model: this.GradBModels + i,'# Perf (%) #': McGradB[i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion,'learning_rate':ObjectsParams[i].learning_rate}) |
||||
ArrayCombined[i] = newObjectsParamsGradB[i] |
||||
} |
||||
} else { |
||||
if (this.selAlgorithm === 'KNN') { |
||||
newObjectsParamsΚΝΝ.push({model: i,'# Perf (%) #': this.listClassPerf[0][i],'n_neighbors':ObjectsParams[i].n_neighbors,'metric':ObjectsParams[i].metric,'algorithm':ObjectsParams[i].algorithm,'weights':ObjectsParams[i].weights}) |
||||
ArrayCombined[i] = newObjectsParamsΚΝΝ[i] |
||||
} else if (this.selAlgorithm === 'SVC') { |
||||
newObjectsParamsSVC.push({model: this.SVCModels + i,'# Perf (%) #': this.listClassPerf[1][i],'C':ObjectsParams[i].C,'kernel':ObjectsParams[i].kernel}) |
||||
ArrayCombined[i] = newObjectsParamsSVC[i] |
||||
} else if (this.selAlgorithm === 'GauNB') { |
||||
newObjectsParamsGausNB.push({model: this.GausNBModels + i,'# Perf (%) #': this.listClassPerf[2][i],'var_smoothing':ObjectsParams[i].var_smoothing}) |
||||
ArrayCombined[i] = newObjectsParamsGausNB[i] |
||||
} else if (this.selAlgorithm === 'MLP') { |
||||
newObjectsParamsMLP.push({model: this.MLPModels + i,'# Perf (%) #': this.listClassPerf[3][i],'alpha':ObjectsParams[i].alpha,'tol':ObjectsParams[i].tol,'activation':ObjectsParams[i].activation,'max_iter':ObjectsParams[i].max_iter,'solver':ObjectsParams[i].solver}) |
||||
ArrayCombined[i] = newObjectsParamsMLP[i] |
||||
} else if (this.selAlgorithm === 'LR') { |
||||
newObjectsParamsLR.push({model: this.LRModels + i,'# Perf (%) #': this.listClassPerf[4][i],'C':ObjectsParams[i].C,'max_iter':ObjectsParams[i].max_iter,'solver':ObjectsParams[i].solver,'penalty':ObjectsParams[i].penalty}) |
||||
ArrayCombined[i] = newObjectsParamsLR[i] |
||||
} else if (this.selAlgorithm === 'LDA') { |
||||
newObjectsParamsLDA.push({model: this.LDAModels + i,'# Perf (%) #': this.listClassPerf[5][i],'shrinkage':ObjectsParams[i].shrinkage,'solver':ObjectsParams[i].solver}) |
||||
ArrayCombined[i] = newObjectsParamsLDA[i] |
||||
} else if (this.selAlgorithm === 'QDA') { |
||||
newObjectsParamsQDA.push({model: this.QDAModels + i,'# Perf (%) #': this.listClassPerf[6][i],'reg_param':ObjectsParams[i].reg_param,'tol':ObjectsParams[i].tol}) |
||||
ArrayCombined[i] = newObjectsParamsQDA[i] |
||||
} else if (this.selAlgorithm === 'RF') { |
||||
newObjectsParamsRF.push({model: this.RFModels + i,'# Perf (%) #': this.listClassPerf[7][i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion}) |
||||
ArrayCombined[i] = newObjectsParamsRF[i] |
||||
} else if (this.selAlgorithm === 'ExtraT') { |
||||
newObjectsParamsExtraT.push({model: this.ExtraTModels + i,'# Perf (%) #': this.listClassPerf[8][i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion}) |
||||
ArrayCombined[i] = newObjectsParamsExtraT[i] |
||||
} else if (this.selAlgorithm === 'AdaB') { |
||||
newObjectsParamsAdaB.push({model: this.AdaBModels + i,'# Perf (%) #': this.listClassPerf[9][i],'n_estimators':ObjectsParams[i].n_estimators,'learning_rate':ObjectsParams[i].learning_rate,'algorithm':ObjectsParams[i].algorithm}) |
||||
ArrayCombined[i] = newObjectsParamsAdaB[i] |
||||
} else { |
||||
newObjectsParamsGradB.push({model: this.GradBModels + i,'# Perf (%) #': this.listClassPerf[10][i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion,'learning_rate':ObjectsParams[i].learning_rate}) |
||||
ArrayCombined[i] = newObjectsParamsGradB[i] |
||||
} |
||||
} |
||||
} |
||||
EventBus.$emit('AllAlModels', ArrayCombined.length) |
||||
this.pc = ParCoords()("#PCP") |
||||
.data(ArrayCombined) |
||||
.color(colorGiv) |
||||
.hideAxis(['model']) |
||||
.bundlingStrength(0) // set bundling strength |
||||
.smoothness(0) |
||||
.showControlPoints(false) |
||||
.render() |
||||
.brushMode('1D-axes') |
||||
.reorderable() |
||||
.interactive(); |
||||
|
||||
this.pc.on("brushend", function(d) { |
||||
EventBus.$emit('AllSelModels', d.length) |
||||
EventBus.$emit('UpdateBoxPlot', d) |
||||
}); |
||||
} |
||||
}, |
||||
sliders () { |
||||
|
||||
}, |
||||
|
||||
clear () { |
||||
d3.selectAll("#PCP > *").remove(); |
||||
}, |
||||
}, |
||||
mounted() { |
||||
EventBus.$on('ReturningBrushedPointsModels', this.brushed) |
||||
EventBus.$on('emittedEventCallingModelSelect', data => { this.selAlgorithm = data }) |
||||
EventBus.$on('emittedEventCallingModel', data => { this.ModelsPerformance = data }) |
||||
EventBus.$on('emittedEventCallingModel', this.PCPView) |
||||
EventBus.$on('ResponsiveandChange', this.PCPView) |
||||
EventBus.$on('emittedEventCallingModelClear', this.clear) |
||||
|
||||
EventBus.$on('CallFactorsView', data => { this.factors = data }) |
||||
EventBus.$on('CallFactorsView', this.PCPView) |
||||
|
||||
EventBus.$on('boxplotSet', data => { this.listClassPerf = data }) |
||||
EventBus.$on('boxplotCall', data => { this.keyAllOrClass = data }) |
||||
|
||||
// reset view |
||||
EventBus.$on('resetViews', this.reset) |
||||
EventBus.$on('clearPCP', this.reset) |
||||
} |
||||
} |
||||
</script> |
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue