parent
							
								
									8390cf0c63
								
							
						
					
					
						commit
						e23e9e371e
					
				
									
										Binary file not shown.
									
								
							
						| @ -0,0 +1 @@ | ||||
| {"duration": 60.5380380153656, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=82, max_iter=300, penalty='none', random_state=42,\n                   solver='newton-cg')", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100"}} | ||||
| @ -1 +1 @@ | ||||
| {"duration": 140.90401196479797, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(activation='identity', alpha=0.0008100000000000001,\n              hidden_layer_sizes=(98, 2), max_iter=100, random_state=42,\n              solver='sgd', tol=0.0008100000000000001)", "params": "{'hidden_layer_sizes': [(60, 3), (61, 1), (62, 1), (63, 3), (64, 2), (65, 1), (66, 1), (67, 1), (68, 3), (69, 1), (70, 3), (71, 3), (72, 3), (73, 1), (74, 3), (75, 2), (76, 1), (77, 1), (78, 1), (79, 1), (80, 1), (81, 3), (82, 3), (83, 1), (84, 3), (85, 1), (86, 3), (87, 3), (88, 3), (89, 3), (90, 2), (91, 1), (92, 2), (93, 3), (94, 2), (95, 1), (96, 1), (97, 3), (98, 2), (99, 2), (100, 2), (101, 1), (102, 1), (103, 2), (104, 1), (105, 1), (106, 2), (107, 1), (108, 2), (109, 2), (110, 3), (111, 2), (112, 1), (113, 3), (114, 2), (115, 3), (116, 1), (117, 2), (118, 1), (119, 3)], 'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "200"}} | ||||
| {"duration": 187.45918798446655, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(activation='tanh', alpha=1e-05, hidden_layer_sizes=(94, 2),\n              max_iter=100, random_state=42, tol=0.0008100000000000001)", "params": "{'hidden_layer_sizes': [(60, 3), (61, 1), (62, 1), (63, 3), (64, 2), (65, 1), (66, 1), (67, 1), (68, 3), (69, 1), (70, 3), (71, 3), (72, 3), (73, 1), (74, 3), (75, 2), (76, 1), (77, 1), (78, 1), (79, 1), (80, 1), (81, 3), (82, 3), (83, 1), (84, 3), (85, 1), (86, 3), (87, 3), (88, 3), (89, 3), (90, 2), (91, 1), (92, 2), (93, 3), (94, 2), (95, 1), (96, 1), (97, 3), (98, 2), (99, 2), (100, 2), (101, 1), (102, 1), (103, 2), (104, 1), (105, 1), (106, 2), (107, 1), (108, 2), (109, 2), (110, 3), (111, 2), (112, 1), (113, 3), (114, 2), (115, 3), (116, 1), (117, 2), (118, 1), (119, 3)], 'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "200"}} | ||||
									
										Binary file not shown.
									
								
							
						| @ -1 +1 @@ | ||||
| {"duration": 150.79905891418457, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(criterion='mse', learning_rate=0.01, n_estimators=89,\n                           random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "400"}} | ||||
| {"duration": 166.53135991096497, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(learning_rate=0.01, n_estimators=70, random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "400"}} | ||||
									
										Binary file not shown.
									
								
							
						| @ -1 +1 @@ | ||||
| {"duration": 15.544848203659058, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='brute', metric='euclidean', n_neighbors=14,\n                     weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} | ||||
| {"duration": 21.348681926727295, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', n_neighbors=77)", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "500"}} | ||||
| @ -1 +0,0 @@ | ||||
| {"duration": 46.68945908546448, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=62, max_iter=400, random_state=42, solver='sag')", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100"}} | ||||
| @ -1 +1 @@ | ||||
| {"duration": 126.85907101631165, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(criterion='entropy', n_estimators=66, random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "300"}} | ||||
| {"duration": 144.77490973472595, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(criterion='entropy', n_estimators=56, random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "300"}} | ||||
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						| @ -0,0 +1 @@ | ||||
| {"duration": 20.462234020233154, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', metric='euclidean', n_neighbors=57,\n                     weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} | ||||
									
										Binary file not shown.
									
								
							
						| @ -1,351 +0,0 @@ | ||||
| <template> | ||||
|   <div id="PCP" class="parcoords" style="min-height: 285px;"></div> | ||||
| </template> | ||||
| 
 | ||||
| <script> | ||||
| import 'parcoord-es/dist/parcoords.css'; | ||||
| import ParCoords from 'parcoord-es'; | ||||
| import * as d3Base from 'd3' | ||||
| 
 | ||||
| // attach all d3 plugins to the d3 library | ||||
| const d3 = Object.assign(d3Base) | ||||
| 
 | ||||
| import { EventBus } from '../main.js' | ||||
| 
 | ||||
| export default { | ||||
|   name: 'AlgorithmHyperParam', | ||||
|   data () { | ||||
|     return { | ||||
|       ModelsPerformance: 0, | ||||
|       selAlgorithm: 0, | ||||
|       keyAllOrClass: true, | ||||
|       listClassPerf: [], | ||||
|       pc: 0, | ||||
|       factors: [1,0,0 | ||||
|       ,1,0,0,1,0 | ||||
|       ,0,1,0,0,0 | ||||
|       ,0,0,1,0,0 | ||||
|       ,0,1,1,1 | ||||
|       ], | ||||
|       SVCModels: 576, | ||||
|       GausNBModels: 736,  | ||||
|       MLPModels: 1236, | ||||
|       LRModels: 1356,  | ||||
|       LDAModels: 1996, | ||||
|       QDAModels: 2196, | ||||
|       RFModels: 2446, | ||||
|       ExtraTModels: 2606, | ||||
|       AdaBModels: 2766, | ||||
|       GradBModels: 2926, | ||||
|     } | ||||
|   }, | ||||
|   methods: { | ||||
|     reset () { | ||||
|       d3.selectAll("#PCP > *").remove();  | ||||
|     }, | ||||
|     PCPView () { | ||||
|       d3.selectAll("#PCP > *").remove();  | ||||
|       if (this.selAlgorithm != '') { | ||||
|         var colors = ['#a6cee3','#1f78b4','#b2df8a','#33a02c','#fb9a99','#e31a1c','#fdbf6f','#ff7f00','#cab2d6','#6a3d9a','#b15928'] | ||||
|         var colorGiv = 0 | ||||
|          | ||||
|         var factorsLocal = this.factors | ||||
|         var divide = 0 | ||||
| 
 | ||||
|         factorsLocal.forEach(element => { | ||||
|           divide = element + divide | ||||
|         }); | ||||
| 
 | ||||
|         var McKNN = [] | ||||
|         const performanceAlgKNN = JSON.parse(this.ModelsPerformance[6]) | ||||
|         for (let j = 0; j < Object.values(performanceAlgKNN['mean_test_accuracy']).length; j++) { | ||||
|           let sumKNN | ||||
|           sumKNN = (factorsLocal[0] * Object.values(performanceAlgKNN['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgKNN['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgKNN['geometric_mean_score_macro'])[j]) | ||||
|             + (factorsLocal[3] * Object.values(performanceAlgKNN['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgKNN['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgKNN['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgKNN['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgKNN['mean_test_recall_micro'])[j]) | ||||
|             + (factorsLocal[8] * Object.values(performanceAlgKNN['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgKNN['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgKNN['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgKNN['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgKNN['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgKNN['f1_micro'])[j]) | ||||
|             + (factorsLocal[14] * Object.values(performanceAlgKNN['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgKNN['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgKNN['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgKNN['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgKNN['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgKNN['matthews_corrcoef'])[j])) | ||||
|             + (factorsLocal[20] * Object.values(performanceAlgKNN['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgKNN['log_loss'])[j])) | ||||
|           McKNN.push((sumKNN/divide)*100) | ||||
|         } | ||||
|         var McSVC = [] | ||||
|         const performanceAlgSVC = JSON.parse(this.ModelsPerformance[15]) | ||||
|         for (let j = 0; j < Object.values(performanceAlgSVC['mean_test_accuracy']).length; j++) { | ||||
|           let sumSVC | ||||
|           sumSVC = (factorsLocal[0] * Object.values(performanceAlgSVC['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgSVC['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgSVC['geometric_mean_score_macro'])[j]) | ||||
|             + (factorsLocal[3] * Object.values(performanceAlgSVC['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgSVC['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgSVC['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgSVC['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgSVC['mean_test_recall_micro'])[j]) | ||||
|             + (factorsLocal[8] * Object.values(performanceAlgSVC['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgSVC['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgSVC['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgSVC['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgSVC['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgSVC['f1_micro'])[j]) | ||||
|             + (factorsLocal[14] * Object.values(performanceAlgSVC['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgSVC['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgSVC['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgSVC['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgSVC['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgSVC['matthews_corrcoef'])[j])) | ||||
|             + (factorsLocal[20] * Object.values(performanceAlgSVC['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgSVC['log_loss'])[j])) | ||||
|           McSVC.push((sumSVC/divide)*100) | ||||
|         } | ||||
|         var McGausNB = [] | ||||
|         const performanceAlgGausNB = JSON.parse(this.ModelsPerformance[24]) | ||||
|         for (let j = 0; j < Object.values(performanceAlgGausNB['mean_test_accuracy']).length; j++) { | ||||
|           let sumGausNB  | ||||
|           sumGausNB = (factorsLocal[0] * Object.values(performanceAlgGausNB['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgGausNB['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgGausNB['geometric_mean_score_macro'])[j]) | ||||
|             + (factorsLocal[3] * Object.values(performanceAlgGausNB['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGausNB['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgGausNB['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgGausNB['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgGausNB['mean_test_recall_micro'])[j]) | ||||
|             + (factorsLocal[8] * Object.values(performanceAlgGausNB['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgGausNB['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgGausNB['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGausNB['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGausNB['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGausNB['f1_micro'])[j]) | ||||
|             + (factorsLocal[14] * Object.values(performanceAlgGausNB['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGausNB['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgGausNB['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGausNB['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGausNB['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgGausNB['matthews_corrcoef'])[j])) | ||||
|             + (factorsLocal[20] * Object.values(performanceAlgGausNB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgGausNB['log_loss'])[j])) | ||||
|           McGausNB.push((sumGausNB/divide)*100) | ||||
|         } | ||||
|         var McMLP = [] | ||||
|         const performanceAlgMLP = JSON.parse(this.ModelsPerformance[33]) | ||||
|         for (let j = 0; j < Object.values(performanceAlgMLP['mean_test_accuracy']).length; j++) { | ||||
|           let sumMLP | ||||
|         sumMLP = (factorsLocal[0] * Object.values(performanceAlgMLP['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgMLP['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgMLP['geometric_mean_score_macro'])[j]) | ||||
|           + (factorsLocal[3] * Object.values(performanceAlgMLP['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgMLP['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgMLP['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgMLP['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgMLP['mean_test_recall_micro'])[j]) | ||||
|           + (factorsLocal[8] * Object.values(performanceAlgMLP['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgMLP['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgMLP['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgMLP['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgMLP['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgMLP['f1_micro'])[j]) | ||||
|           + (factorsLocal[14] * Object.values(performanceAlgMLP['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgMLP['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgMLP['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgMLP['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgMLP['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgMLP['matthews_corrcoef'])[j])) | ||||
|           + (factorsLocal[20] * Object.values(performanceAlgMLP['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgMLP['log_loss'])[j])) | ||||
|           McMLP.push((sumMLP/divide)*100) | ||||
|         } | ||||
|         var McLR = [] | ||||
|         const performanceAlgLR = JSON.parse(this.ModelsPerformance[42]) | ||||
|         for (let j = 0; j < Object.values(performanceAlgLR['mean_test_accuracy']).length; j++) { | ||||
|           let sumLR | ||||
|         sumLR = (factorsLocal[0] * Object.values(performanceAlgLR['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgLR['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgLR['geometric_mean_score_macro'])[j]) | ||||
|           + (factorsLocal[3] * Object.values(performanceAlgLR['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLR['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgLR['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgLR['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgLR['mean_test_recall_micro'])[j]) | ||||
|           + (factorsLocal[8] * Object.values(performanceAlgLR['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgLR['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgLR['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLR['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLR['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLR['f1_micro'])[j]) | ||||
|           + (factorsLocal[14] * Object.values(performanceAlgLR['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLR['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgLR['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLR['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLR['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgLR['matthews_corrcoef'])[j])) | ||||
|           + (factorsLocal[20] * Object.values(performanceAlgLR['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgLR['log_loss'])[j])) | ||||
|           McLR.push((sumLR/divide)*100) | ||||
|         } | ||||
|         var McLDA = [] | ||||
|         const performanceAlgLDA = JSON.parse(this.ModelsPerformance[51]) | ||||
|         for (let j = 0; j < Object.values(performanceAlgLDA['mean_test_accuracy']).length; j++) { | ||||
|           let sumLDA | ||||
|         sumLDA = (factorsLocal[0] * Object.values(performanceAlgLDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgLDA['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgLDA['geometric_mean_score_macro'])[j]) | ||||
|           + (factorsLocal[3] * Object.values(performanceAlgLDA['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLDA['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgLDA['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgLDA['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgLDA['mean_test_recall_micro'])[j]) | ||||
|           + (factorsLocal[8] * Object.values(performanceAlgLDA['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgLDA['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgLDA['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLDA['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLDA['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLDA['f1_micro'])[j]) | ||||
|           + (factorsLocal[14] * Object.values(performanceAlgLDA['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLDA['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgLDA['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLDA['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLDA['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgLDA['matthews_corrcoef'])[j])) | ||||
|           + (factorsLocal[20] * Object.values(performanceAlgLDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgLDA['log_loss'])[j])) | ||||
|           McLDA.push((sumLDA/divide)*100) | ||||
|         } | ||||
|         var McQDA = [] | ||||
|         const performanceAlgQDA = JSON.parse(this.ModelsPerformance[60]) | ||||
|         for (let j = 0; j < Object.values(performanceAlgQDA['mean_test_accuracy']).length; j++) { | ||||
|           let sumQDA | ||||
|         sumQDA = (factorsLocal[0] * Object.values(performanceAlgQDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgQDA['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgQDA['geometric_mean_score_macro'])[j]) | ||||
|           + (factorsLocal[3] * Object.values(performanceAlgQDA['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgQDA['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgQDA['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgQDA['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgQDA['mean_test_recall_micro'])[j]) | ||||
|           + (factorsLocal[8] * Object.values(performanceAlgQDA['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgQDA['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgQDA['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgQDA['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgQDA['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgQDA['f1_micro'])[j]) | ||||
|           + (factorsLocal[14] * Object.values(performanceAlgQDA['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgQDA['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgQDA['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgQDA['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgQDA['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgQDA['matthews_corrcoef'])[j])) | ||||
|           + (factorsLocal[20] * Object.values(performanceAlgQDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgQDA['log_loss'])[j])) | ||||
|           McQDA.push((sumQDA/divide)*100) | ||||
|         } | ||||
|         var McRF = [] | ||||
|         const performanceAlgRF = JSON.parse(this.ModelsPerformance[69]) | ||||
|         for (let j = 0; j < Object.values(performanceAlgRF['mean_test_accuracy']).length; j++) { | ||||
|           let sumRF | ||||
|         sumRF = (factorsLocal[0] * Object.values(performanceAlgRF['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgRF['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgRF['geometric_mean_score_macro'])[j]) | ||||
|           + (factorsLocal[3] * Object.values(performanceAlgRF['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgRF['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgRF['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgRF['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgRF['mean_test_recall_micro'])[j]) | ||||
|           + (factorsLocal[8] * Object.values(performanceAlgRF['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgRF['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgRF['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgRF['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgRF['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgRF['f1_micro'])[j]) | ||||
|           + (factorsLocal[14] * Object.values(performanceAlgRF['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgRF['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgRF['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgRF['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgRF['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgRF['matthews_corrcoef'])[j])) | ||||
|           + (factorsLocal[20] * Object.values(performanceAlgRF['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgRF['log_loss'])[j])) | ||||
|           McRF.push((sumRF/divide)*100) | ||||
|         } | ||||
|         var McExtraT = [] | ||||
|         const performanceAlgExtraT = JSON.parse(this.ModelsPerformance[78]) | ||||
|         for (let j = 0; j < Object.values(performanceAlgExtraT['mean_test_accuracy']).length; j++) { | ||||
|           let sumExtraT | ||||
|         sumExtraT = (factorsLocal[0] * Object.values(performanceAlgExtraT['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgExtraT['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgExtraT['geometric_mean_score_macro'])[j]) | ||||
|           + (factorsLocal[3] * Object.values(performanceAlgExtraT['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgExtraT['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgExtraT['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgExtraT['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgExtraT['mean_test_recall_micro'])[j]) | ||||
|           + (factorsLocal[8] * Object.values(performanceAlgExtraT['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgExtraT['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgExtraT['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgExtraT['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgExtraT['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgExtraT['f1_micro'])[j]) | ||||
|           + (factorsLocal[14] * Object.values(performanceAlgExtraT['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgExtraT['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgExtraT['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgExtraT['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgExtraT['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgExtraT['matthews_corrcoef'])[j])) | ||||
|           + (factorsLocal[20] * Object.values(performanceAlgExtraT['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgExtraT['log_loss'])[j])) | ||||
|           McExtraT.push((sumExtraT/divide)*100) | ||||
|         } | ||||
|         var McAdaB = [] | ||||
|         const performanceAlgAdaB = JSON.parse(this.ModelsPerformance[87]) | ||||
|         for (let j = 0; j < Object.values(performanceAlgAdaB['mean_test_accuracy']).length; j++) { | ||||
|         let sumAdaB | ||||
|         sumAdaB = (factorsLocal[0] * Object.values(performanceAlgAdaB['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgAdaB['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgAdaB['geometric_mean_score_macro'])[j]) | ||||
|           + (factorsLocal[3] * Object.values(performanceAlgAdaB['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgAdaB['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgAdaB['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgAdaB['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgAdaB['mean_test_recall_micro'])[j]) | ||||
|           + (factorsLocal[8] * Object.values(performanceAlgAdaB['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgAdaB['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgAdaB['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgAdaB['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgAdaB['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgAdaB['f1_micro'])[j]) | ||||
|           + (factorsLocal[14] * Object.values(performanceAlgAdaB['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgAdaB['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgAdaB['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgAdaB['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgAdaB['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgAdaB['matthews_corrcoef'])[j])) | ||||
|           + (factorsLocal[20] * Object.values(performanceAlgAdaB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgAdaB['log_loss'])[j])) | ||||
|           McAdaB.push((sumAdaB/divide)*100) | ||||
|         } | ||||
|         var McGradB = [] | ||||
|         const performanceAlgGradB = JSON.parse(this.ModelsPerformance[96]) | ||||
|         for (let j = 0; j < Object.values(performanceAlgGradB['mean_test_accuracy']).length; j++) { | ||||
|           let sumGradB | ||||
|         sumGradB = (factorsLocal[0] * Object.values(performanceAlgGradB['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlgGradB['geometric_mean_score_micro'])[j]) + (factorsLocal[2] * Object.values(performanceAlgGradB['geometric_mean_score_macro'])[j]) | ||||
|           + (factorsLocal[3] * Object.values(performanceAlgGradB['geometric_mean_score_weighted'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGradB['mean_test_precision_micro'])[j]) + (factorsLocal[5] * Object.values(performanceAlgGradB['mean_test_precision_macro'])[j]) + (factorsLocal[6] * Object.values(performanceAlgGradB['mean_test_precision_weighted'])[j]) + (factorsLocal[7] * Object.values(performanceAlgGradB['mean_test_recall_micro'])[j]) | ||||
|           + (factorsLocal[8] * Object.values(performanceAlgGradB['mean_test_recall_macro'])[j]) + (factorsLocal[9] * Object.values(performanceAlgGradB['mean_test_recall_weighted'])[j]) + (factorsLocal[10] * Object.values(performanceAlgGradB['f5_micro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGradB['f5_macro'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGradB['f5_weighted'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGradB['f1_micro'])[j]) | ||||
|           + (factorsLocal[14] * Object.values(performanceAlgGradB['f1_macro'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGradB['f1_weighted'])[j]) + (factorsLocal[16] * Object.values(performanceAlgGradB['f2_micro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGradB['f2_macro'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGradB['f2_weighted'])[j]) + (factorsLocal[19] * Math.abs(Object.values(performanceAlgGradB['matthews_corrcoef'])[j])) | ||||
|           + (factorsLocal[20] * Object.values(performanceAlgGradB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[21] * (1 - Object.values(performanceAlgGradB['log_loss'])[j])) | ||||
|           McGradB.push((sumGradB/divide)*100) | ||||
|         } | ||||
| 
 | ||||
|         var Combined = 0 | ||||
|         if (this.selAlgorithm == 'KNN') {     | ||||
|           Combined = JSON.parse(this.ModelsPerformance[1]) | ||||
|           colorGiv = colors[0] | ||||
|         } else if (this.selAlgorithm == 'SVC') {     | ||||
|           Combined = JSON.parse(this.ModelsPerformance[10]) | ||||
|           colorGiv = colors[1] | ||||
|         } else if (this.selAlgorithm == 'GauNB') {     | ||||
|           Combined = JSON.parse(this.ModelsPerformance[19]) | ||||
|           colorGiv = colors[2] | ||||
|         } else if (this.selAlgorithm == 'MLP') {     | ||||
|           Combined = JSON.parse(this.ModelsPerformance[28]) | ||||
|           colorGiv = colors[3] | ||||
|         } else if (this.selAlgorithm == 'LR') {     | ||||
|           Combined = JSON.parse(this.ModelsPerformance[37]) | ||||
|           colorGiv = colors[4] | ||||
|         } else if (this.selAlgorithm == 'LDA') {     | ||||
|           Combined = JSON.parse(this.ModelsPerformance[46]) | ||||
|           colorGiv = colors[5] | ||||
|         } else if (this.selAlgorithm == 'QDA') {     | ||||
|           Combined = JSON.parse(this.ModelsPerformance[55]) | ||||
|           colorGiv = colors[6] | ||||
|         } else if (this.selAlgorithm == 'RF') {     | ||||
|           Combined = JSON.parse(this.ModelsPerformance[64]) | ||||
|           colorGiv = colors[7] | ||||
|         } else if (this.selAlgorithm == 'ExtraT') {     | ||||
|           Combined = JSON.parse(this.ModelsPerformance[73]) | ||||
|           colorGiv = colors[8] | ||||
|         } else if (this.selAlgorithm == 'AdaB') {     | ||||
|           Combined = JSON.parse(this.ModelsPerformance[82]) | ||||
|           colorGiv = colors[9] | ||||
|         } else { | ||||
|           Combined = JSON.parse(this.ModelsPerformance[91]) | ||||
|           colorGiv = colors[10] | ||||
|         } | ||||
|         var valuesPerf = Object.values(Combined['params']) | ||||
|          | ||||
|         var ObjectsParams = Combined['params'] | ||||
|         var newObjectsParamsΚΝΝ = [] | ||||
|         var newObjectsParamsSVC = [] | ||||
|         var newObjectsParamsGausNB = [] | ||||
|         var newObjectsParamsMLP = [] | ||||
|         var newObjectsParamsLR = [] | ||||
|         var newObjectsParamsLDA = [] | ||||
|         var newObjectsParamsQDA = [] | ||||
|         var newObjectsParamsRF = [] | ||||
|         var newObjectsParamsExtraT = [] | ||||
|         var newObjectsParamsAdaB = [] | ||||
|         var newObjectsParamsGradB = [] | ||||
|         var ArrayCombined = [] | ||||
|         var temp | ||||
|         for (var i = 0; i < valuesPerf.length; i++) { | ||||
|           if (this.keyAllOrClass) { | ||||
|             if (this.selAlgorithm === 'KNN') { | ||||
|               newObjectsParamsΚΝΝ.push({model: i,'# Perf (%) #': McKNN[i],'n_neighbors':ObjectsParams[i].n_neighbors,'metric':ObjectsParams[i].metric,'algorithm':ObjectsParams[i].algorithm,'weights':ObjectsParams[i].weights}) | ||||
|               ArrayCombined[i] = newObjectsParamsΚΝΝ[i] | ||||
|             } else if (this.selAlgorithm === 'SVC') { | ||||
|               newObjectsParamsSVC.push({model: this.SVCModels + i,'# Perf (%) #': McSVC[i],'C':ObjectsParams[i].C,'kernel':ObjectsParams[i].kernel}) | ||||
|               ArrayCombined[i] = newObjectsParamsSVC[i] | ||||
|             } else if (this.selAlgorithm === 'GauNB') { | ||||
|               newObjectsParamsGausNB.push({model: this.GausNBModels + i,'# Perf (%) #': McGausNB[i],'var_smoothing':ObjectsParams[i].var_smoothing}) | ||||
|               ArrayCombined[i] = newObjectsParamsGausNB[i] | ||||
|             } else if (this.selAlgorithm === 'MLP') { | ||||
|               newObjectsParamsMLP.push({model: this.MLPModels + i,'# Perf (%) #': McMLP[i],'alpha':ObjectsParams[i].alpha,'tol':ObjectsParams[i].tol,'activation':ObjectsParams[i].activation,'max_iter':ObjectsParams[i].max_iter,'solver':ObjectsParams[i].solver}) | ||||
|               ArrayCombined[i] = newObjectsParamsMLP[i] | ||||
|             } else if (this.selAlgorithm === 'LR') { | ||||
|               newObjectsParamsLR.push({model: this.LRModels + i,'# Perf (%) #': McLR[i],'C':ObjectsParams[i].C,'max_iter':ObjectsParams[i].max_iter,'solver':ObjectsParams[i].solver,'penalty':ObjectsParams[i].penalty}) | ||||
|               ArrayCombined[i] = newObjectsParamsLR[i] | ||||
|             } else if (this.selAlgorithm === 'LDA') { | ||||
|               newObjectsParamsLDA.push({model: this.LDAModels + i,'# Perf (%) #': McLDA[i],'shrinkage':ObjectsParams[i].shrinkage,'solver':ObjectsParams[i].solver}) | ||||
|               ArrayCombined[i] = newObjectsParamsLDA[i] | ||||
|             } else if (this.selAlgorithm === 'QDA') { | ||||
|               newObjectsParamsQDA.push({model: this.QDAModels + i,'# Perf (%) #': McQDA[i],'reg_param':ObjectsParams[i].reg_param,'tol':ObjectsParams[i].tol}) | ||||
|               ArrayCombined[i] = newObjectsParamsQDA[i] | ||||
|             } else if (this.selAlgorithm === 'RF') { | ||||
|               newObjectsParamsRF.push({model: this.RFModels + i,'# Perf (%) #': McRF[i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion}) | ||||
|               ArrayCombined[i] = newObjectsParamsRF[i] | ||||
|             } else if (this.selAlgorithm === 'ExtraT') { | ||||
|               newObjectsParamsExtraT.push({model: this.ExtraTModels + i,'# Perf (%) #': McExtraT[i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion}) | ||||
|               ArrayCombined[i] = newObjectsParamsExtraT[i] | ||||
|             } else if (this.selAlgorithm === 'AdaB') { | ||||
|               newObjectsParamsAdaB.push({model: this.AdaBModels + i,'# Perf (%) #': McAdaB[i],'n_estimators':ObjectsParams[i].n_estimators,'learning_rate':ObjectsParams[i].learning_rate,'algorithm':ObjectsParams[i].algorithm}) | ||||
|               ArrayCombined[i] = newObjectsParamsAdaB[i] | ||||
|             } else { | ||||
|               newObjectsParamsGradB.push({model: this.GradBModels + i,'# Perf (%) #': McGradB[i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion,'learning_rate':ObjectsParams[i].learning_rate}) | ||||
|               ArrayCombined[i] = newObjectsParamsGradB[i] | ||||
|             } | ||||
|           } else { | ||||
|             if (this.selAlgorithm === 'KNN') { | ||||
|               newObjectsParamsΚΝΝ.push({model: i,'# Perf (%) #': this.listClassPerf[0][i],'n_neighbors':ObjectsParams[i].n_neighbors,'metric':ObjectsParams[i].metric,'algorithm':ObjectsParams[i].algorithm,'weights':ObjectsParams[i].weights}) | ||||
|               ArrayCombined[i] = newObjectsParamsΚΝΝ[i] | ||||
|             } else if (this.selAlgorithm === 'SVC') { | ||||
|               newObjectsParamsSVC.push({model: this.SVCModels + i,'# Perf (%) #': this.listClassPerf[1][i],'C':ObjectsParams[i].C,'kernel':ObjectsParams[i].kernel}) | ||||
|               ArrayCombined[i] = newObjectsParamsSVC[i] | ||||
|             } else if (this.selAlgorithm === 'GauNB') { | ||||
|               newObjectsParamsGausNB.push({model: this.GausNBModels + i,'# Perf (%) #': this.listClassPerf[2][i],'var_smoothing':ObjectsParams[i].var_smoothing}) | ||||
|               ArrayCombined[i] = newObjectsParamsGausNB[i] | ||||
|             } else if (this.selAlgorithm === 'MLP') { | ||||
|               newObjectsParamsMLP.push({model: this.MLPModels + i,'# Perf (%) #': this.listClassPerf[3][i],'alpha':ObjectsParams[i].alpha,'tol':ObjectsParams[i].tol,'activation':ObjectsParams[i].activation,'max_iter':ObjectsParams[i].max_iter,'solver':ObjectsParams[i].solver}) | ||||
|               ArrayCombined[i] = newObjectsParamsMLP[i] | ||||
|             } else if (this.selAlgorithm === 'LR') { | ||||
|               newObjectsParamsLR.push({model: this.LRModels + i,'# Perf (%) #': this.listClassPerf[4][i],'C':ObjectsParams[i].C,'max_iter':ObjectsParams[i].max_iter,'solver':ObjectsParams[i].solver,'penalty':ObjectsParams[i].penalty}) | ||||
|               ArrayCombined[i] = newObjectsParamsLR[i] | ||||
|             } else if (this.selAlgorithm === 'LDA') { | ||||
|               newObjectsParamsLDA.push({model: this.LDAModels + i,'# Perf (%) #': this.listClassPerf[5][i],'shrinkage':ObjectsParams[i].shrinkage,'solver':ObjectsParams[i].solver}) | ||||
|               ArrayCombined[i] = newObjectsParamsLDA[i] | ||||
|             } else if (this.selAlgorithm === 'QDA') { | ||||
|               newObjectsParamsQDA.push({model: this.QDAModels + i,'# Perf (%) #': this.listClassPerf[6][i],'reg_param':ObjectsParams[i].reg_param,'tol':ObjectsParams[i].tol}) | ||||
|               ArrayCombined[i] = newObjectsParamsQDA[i] | ||||
|             } else if (this.selAlgorithm === 'RF') { | ||||
|               newObjectsParamsRF.push({model: this.RFModels + i,'# Perf (%) #': this.listClassPerf[7][i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion}) | ||||
|               ArrayCombined[i] = newObjectsParamsRF[i] | ||||
|             } else if (this.selAlgorithm === 'ExtraT') { | ||||
|               newObjectsParamsExtraT.push({model: this.ExtraTModels + i,'# Perf (%) #': this.listClassPerf[8][i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion}) | ||||
|               ArrayCombined[i] = newObjectsParamsExtraT[i] | ||||
|             } else if (this.selAlgorithm === 'AdaB') { | ||||
|               newObjectsParamsAdaB.push({model: this.AdaBModels + i,'# Perf (%) #': this.listClassPerf[9][i],'n_estimators':ObjectsParams[i].n_estimators,'learning_rate':ObjectsParams[i].learning_rate,'algorithm':ObjectsParams[i].algorithm}) | ||||
|               ArrayCombined[i] = newObjectsParamsAdaB[i] | ||||
|             } else { | ||||
|               newObjectsParamsGradB.push({model: this.GradBModels + i,'# Perf (%) #': this.listClassPerf[10][i],'n_estimators':ObjectsParams[i].n_estimators,'criterion':ObjectsParams[i].criterion,'learning_rate':ObjectsParams[i].learning_rate}) | ||||
|               ArrayCombined[i] = newObjectsParamsGradB[i] | ||||
|             } | ||||
|           } | ||||
|         } | ||||
|         EventBus.$emit('AllAlModels', ArrayCombined.length) | ||||
|         this.pc = ParCoords()("#PCP") | ||||
|             .data(ArrayCombined) | ||||
|             .color(colorGiv) | ||||
|             .hideAxis(['model']) | ||||
|             .bundlingStrength(0) // set bundling strength | ||||
|             .smoothness(0) | ||||
|             .showControlPoints(false) | ||||
|             .render() | ||||
|             .brushMode('1D-axes') | ||||
|             .reorderable() | ||||
|             .interactive(); | ||||
| 
 | ||||
|         this.pc.on("brushend", function(d) { | ||||
|           EventBus.$emit('AllSelModels', d.length) | ||||
|           EventBus.$emit('UpdateBoxPlot', d) | ||||
|         }); | ||||
|       } | ||||
|     }, | ||||
|     sliders () { | ||||
| 
 | ||||
|     }, | ||||
| 
 | ||||
|     clear () { | ||||
|         d3.selectAll("#PCP > *").remove();  | ||||
|     }, | ||||
|   }, | ||||
|   mounted() { | ||||
|     EventBus.$on('ReturningBrushedPointsModels', this.brushed) | ||||
|     EventBus.$on('emittedEventCallingModelSelect', data => { this.selAlgorithm = data }) | ||||
|     EventBus.$on('emittedEventCallingModel', data => { this.ModelsPerformance = data }) | ||||
|     EventBus.$on('emittedEventCallingModel', this.PCPView) | ||||
|     EventBus.$on('ResponsiveandChange', this.PCPView) | ||||
|     EventBus.$on('emittedEventCallingModelClear', this.clear) | ||||
| 
 | ||||
|     EventBus.$on('CallFactorsView', data => { this.factors = data }) | ||||
|     EventBus.$on('CallFactorsView', this.PCPView) | ||||
| 
 | ||||
|     EventBus.$on('boxplotSet', data => { this.listClassPerf = data }) | ||||
|     EventBus.$on('boxplotCall', data => { this.keyAllOrClass = data }) | ||||
| 
 | ||||
|     // reset view | ||||
|     EventBus.$on('resetViews', this.reset) | ||||
|     EventBus.$on('clearPCP', this.reset) | ||||
|   } | ||||
| } | ||||
| </script> | ||||
									
										
											File diff suppressed because it is too large
											Load Diff
										
									
								
							
						
					Loading…
					
					
				
		Reference in new issue