diff --git a/__pycache__/run.cpython-37.pyc b/__pycache__/run.cpython-37.pyc index b38cf0e..7194580 100644 Binary files a/__pycache__/run.cpython-37.pyc and b/__pycache__/run.cpython-37.pyc differ diff --git a/cachedir/joblib/run/randomSearch/02358b134734520a2f9f2e6a6700b6b2/metadata.json b/cachedir/joblib/run/randomSearch/02358b134734520a2f9f2e6a6700b6b2/metadata.json new file mode 100644 index 0000000..8b11aa6 --- /dev/null +++ b/cachedir/joblib/run/randomSearch/02358b134734520a2f9f2e6a6700b6b2/metadata.json @@ -0,0 +1 @@ +{"duration": 60.5380380153656, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=82, max_iter=300, penalty='none', random_state=42,\n solver='newton-cg')", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/f19c35077031eadb3ad003833af1cb49/metadata.json b/cachedir/joblib/run/randomSearch/0fd67e8b2d136edf1b48240f5b9a01be/metadata.json similarity index 63% rename from cachedir/joblib/run/randomSearch/f19c35077031eadb3ad003833af1cb49/metadata.json rename to cachedir/joblib/run/randomSearch/0fd67e8b2d136edf1b48240f5b9a01be/metadata.json index b6bba45..b3515e6 100644 --- a/cachedir/joblib/run/randomSearch/f19c35077031eadb3ad003833af1cb49/metadata.json +++ b/cachedir/joblib/run/randomSearch/0fd67e8b2d136edf1b48240f5b9a01be/metadata.json @@ -1 +1 @@ -{"duration": 140.90401196479797, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(activation='identity', alpha=0.0008100000000000001,\n hidden_layer_sizes=(98, 2), max_iter=100, random_state=42,\n solver='sgd', tol=0.0008100000000000001)", "params": "{'hidden_layer_sizes': [(60, 3), (61, 1), (62, 1), (63, 3), (64, 2), (65, 1), (66, 1), (67, 1), (68, 3), (69, 1), (70, 3), (71, 3), (72, 3), (73, 1), (74, 3), (75, 2), (76, 1), (77, 1), (78, 1), (79, 1), (80, 1), (81, 3), (82, 3), (83, 1), (84, 3), (85, 1), (86, 3), (87, 3), (88, 3), (89, 3), (90, 2), (91, 1), (92, 2), (93, 3), (94, 2), (95, 1), (96, 1), (97, 3), (98, 2), (99, 2), (100, 2), (101, 1), (102, 1), (103, 2), (104, 1), (105, 1), (106, 2), (107, 1), (108, 2), (109, 2), (110, 3), (111, 2), (112, 1), (113, 3), (114, 2), (115, 3), (116, 1), (117, 2), (118, 1), (119, 3)], 'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "200"}} \ No newline at end of file +{"duration": 187.45918798446655, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(activation='tanh', alpha=1e-05, hidden_layer_sizes=(94, 2),\n max_iter=100, random_state=42, tol=0.0008100000000000001)", "params": "{'hidden_layer_sizes': [(60, 3), (61, 1), (62, 1), (63, 3), (64, 2), (65, 1), (66, 1), (67, 1), (68, 3), (69, 1), (70, 3), (71, 3), (72, 3), (73, 1), (74, 3), (75, 2), (76, 1), (77, 1), (78, 1), (79, 1), (80, 1), (81, 3), (82, 3), (83, 1), (84, 3), (85, 1), (86, 3), (87, 3), (88, 3), (89, 3), (90, 2), (91, 1), (92, 2), (93, 3), (94, 2), (95, 1), (96, 1), (97, 3), (98, 2), (99, 2), (100, 2), (101, 1), (102, 1), (103, 2), (104, 1), (105, 1), (106, 2), (107, 1), (108, 2), (109, 2), (110, 3), (111, 2), (112, 1), (113, 3), (114, 2), (115, 3), (116, 1), (117, 2), (118, 1), (119, 3)], 'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "200"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/1c55d588f2a725cacd0db75efbba66db/output.pkl b/cachedir/joblib/run/randomSearch/1c55d588f2a725cacd0db75efbba66db/output.pkl index 4e8bc71..26cb102 100644 Binary files a/cachedir/joblib/run/randomSearch/1c55d588f2a725cacd0db75efbba66db/output.pkl and b/cachedir/joblib/run/randomSearch/1c55d588f2a725cacd0db75efbba66db/output.pkl differ diff --git a/cachedir/joblib/run/randomSearch/40507c65ce68390237e1932f4fdedf5b/metadata.json b/cachedir/joblib/run/randomSearch/45f1c3542a49390ff9a4ef7017811b01/metadata.json similarity index 75% rename from cachedir/joblib/run/randomSearch/40507c65ce68390237e1932f4fdedf5b/metadata.json rename to cachedir/joblib/run/randomSearch/45f1c3542a49390ff9a4ef7017811b01/metadata.json index f9aa529..8ff22fe 100644 --- a/cachedir/joblib/run/randomSearch/40507c65ce68390237e1932f4fdedf5b/metadata.json +++ b/cachedir/joblib/run/randomSearch/45f1c3542a49390ff9a4ef7017811b01/metadata.json @@ -1 +1 @@ -{"duration": 150.79905891418457, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(criterion='mse', learning_rate=0.01, n_estimators=89,\n random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "400"}} \ No newline at end of file +{"duration": 166.53135991096497, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(learning_rate=0.01, n_estimators=70, random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "400"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/5b038325dd2fce24b03707e069cb9fec/output.pkl b/cachedir/joblib/run/randomSearch/5b038325dd2fce24b03707e069cb9fec/output.pkl index 7902219..610a712 100644 Binary files a/cachedir/joblib/run/randomSearch/5b038325dd2fce24b03707e069cb9fec/output.pkl and b/cachedir/joblib/run/randomSearch/5b038325dd2fce24b03707e069cb9fec/output.pkl differ diff --git a/cachedir/joblib/run/randomSearch/4d139f4fa0148dfbbd33e88c44d1076c/metadata.json b/cachedir/joblib/run/randomSearch/80458ad60b9e9e8bf5a0a61326cda85d/metadata.json similarity index 72% rename from cachedir/joblib/run/randomSearch/4d139f4fa0148dfbbd33e88c44d1076c/metadata.json rename to cachedir/joblib/run/randomSearch/80458ad60b9e9e8bf5a0a61326cda85d/metadata.json index 39725b8..db4a928 100644 --- a/cachedir/joblib/run/randomSearch/4d139f4fa0148dfbbd33e88c44d1076c/metadata.json +++ b/cachedir/joblib/run/randomSearch/80458ad60b9e9e8bf5a0a61326cda85d/metadata.json @@ -1 +1 @@ -{"duration": 15.544848203659058, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='brute', metric='euclidean', n_neighbors=14,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} \ No newline at end of file +{"duration": 21.348681926727295, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', n_neighbors=77)", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "500"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/9048f73c37aedd04922355de19ec1bde/metadata.json b/cachedir/joblib/run/randomSearch/9048f73c37aedd04922355de19ec1bde/metadata.json deleted file mode 100644 index a201a5e..0000000 --- a/cachedir/joblib/run/randomSearch/9048f73c37aedd04922355de19ec1bde/metadata.json +++ /dev/null @@ -1 +0,0 @@ -{"duration": 46.68945908546448, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=62, max_iter=400, random_state=42, solver='sag')", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/ad5ab98d963e85601767dd199e2b41b3/metadata.json b/cachedir/joblib/run/randomSearch/a2aa0c0018aabe2a6a5237dcbb542f1d/metadata.json similarity index 92% rename from cachedir/joblib/run/randomSearch/ad5ab98d963e85601767dd199e2b41b3/metadata.json rename to cachedir/joblib/run/randomSearch/a2aa0c0018aabe2a6a5237dcbb542f1d/metadata.json index bcbb3e5..185e24c 100644 --- a/cachedir/joblib/run/randomSearch/ad5ab98d963e85601767dd199e2b41b3/metadata.json +++ b/cachedir/joblib/run/randomSearch/a2aa0c0018aabe2a6a5237dcbb542f1d/metadata.json @@ -1 +1 @@ -{"duration": 126.85907101631165, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(criterion='entropy', n_estimators=66, random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "300"}} \ No newline at end of file +{"duration": 144.77490973472595, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(criterion='entropy', n_estimators=56, random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "300"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/b2eaebae0c8bac1326b354c9349fb8fc/output.pkl b/cachedir/joblib/run/randomSearch/b2eaebae0c8bac1326b354c9349fb8fc/output.pkl index 250e4fd..4fd0293 100644 Binary files a/cachedir/joblib/run/randomSearch/b2eaebae0c8bac1326b354c9349fb8fc/output.pkl and b/cachedir/joblib/run/randomSearch/b2eaebae0c8bac1326b354c9349fb8fc/output.pkl differ diff --git a/cachedir/joblib/run/randomSearch/bc948e5112c7458861cc66c261433272/output.pkl b/cachedir/joblib/run/randomSearch/bc948e5112c7458861cc66c261433272/output.pkl index b9f8fd5..19246c5 100644 Binary files a/cachedir/joblib/run/randomSearch/bc948e5112c7458861cc66c261433272/output.pkl and b/cachedir/joblib/run/randomSearch/bc948e5112c7458861cc66c261433272/output.pkl differ diff --git a/cachedir/joblib/run/randomSearch/c140450f90e8f2220dc694fcbea916e8/output.pkl b/cachedir/joblib/run/randomSearch/c140450f90e8f2220dc694fcbea916e8/output.pkl new file mode 100644 index 0000000..a4ed893 Binary files /dev/null and b/cachedir/joblib/run/randomSearch/c140450f90e8f2220dc694fcbea916e8/output.pkl differ diff --git a/cachedir/joblib/run/randomSearch/ec7b79af178a4597718aa6998e3ffb77/metadata.json b/cachedir/joblib/run/randomSearch/ec7b79af178a4597718aa6998e3ffb77/metadata.json new file mode 100644 index 0000000..214dd61 --- /dev/null +++ b/cachedir/joblib/run/randomSearch/ec7b79af178a4597718aa6998e3ffb77/metadata.json @@ -0,0 +1 @@ +{"duration": 20.462234020233154, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', metric='euclidean', n_neighbors=57,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/f94f6f45ec13ac95464d12dacae2049a/output.pkl b/cachedir/joblib/run/randomSearch/f94f6f45ec13ac95464d12dacae2049a/output.pkl index 6d89129..990eaf7 100644 Binary files a/cachedir/joblib/run/randomSearch/f94f6f45ec13ac95464d12dacae2049a/output.pkl and b/cachedir/joblib/run/randomSearch/f94f6f45ec13ac95464d12dacae2049a/output.pkl differ diff --git a/cachedir/joblib/run/randomSearch/func_code.py b/cachedir/joblib/run/randomSearch/func_code.py index cd147b1..730a383 100644 --- a/cachedir/joblib/run/randomSearch/func_code.py +++ b/cachedir/joblib/run/randomSearch/func_code.py @@ -1,4 +1,4 @@ -# first line: 581 +# first line: 595 @memory.cache def randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd): diff --git a/frontend/src/components/ActiveScatter.vue b/frontend/src/components/ActiveScatter.vue deleted file mode 100644 index e69de29..0000000 diff --git a/frontend/src/components/AlgorithmHyperParam.vue b/frontend/src/components/AlgorithmHyperParam.vue deleted file mode 100644 index f577a96..0000000 --- a/frontend/src/components/AlgorithmHyperParam.vue +++ /dev/null @@ -1,351 +0,0 @@ - - - \ No newline at end of file diff --git a/frontend/src/components/Algorithms.vue b/frontend/src/components/Algorithms.vue deleted file mode 100644 index 3759f75..0000000 --- a/frontend/src/components/Algorithms.vue +++ /dev/null @@ -1,1113 +0,0 @@ - - - \ No newline at end of file diff --git a/frontend/src/components/Ensemble.vue b/frontend/src/components/Ensemble.vue index 49b7ed4..fdd7dab 100644 --- a/frontend/src/components/Ensemble.vue +++ b/frontend/src/components/Ensemble.vue @@ -8,8 +8,8 @@    Actions: @@ -43,7 +43,8 @@ export default { ScatterPlotResults: '', representationDef: 'mdsCM', storeEnsembleLoc: [], - valueActive: 'Compute performance for active ensemble' + valueActive: 'Compute performance for active ensemble', + pushModelsTempCMSame: [], } }, methods: { @@ -76,7 +77,7 @@ export default { var MDSData= JSON.parse(this.ScatterPlotResults[9]) var TSNEData = JSON.parse(this.ScatterPlotResults[10]) var UMAPData = JSON.parse(this.ScatterPlotResults[11]) - + console.log(modelId) var mergedStoreEnsembleLoc = [].concat.apply([], this.storeEnsembleLoc) var mergedStoreEnsembleLocFormatted = [] for (let i = 0; i < mergedStoreEnsembleLoc.length; i++) { @@ -99,15 +100,25 @@ export default { this.clean(parameters[i]) stringParameters.push(JSON.stringify(parameters[i]).replace(/,/gi, '
')) } - // fix that! + var classifiersInfoProcessing = [] for (let i = 0; i < modelId.length; i++) { - if (i < 100) { + let tempSplit = modelId[i].split(/([0-9]+)/) + if (tempSplit[0] == 'KNN') { classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '
Algorithm: k-nearest neighbor' + '
Parameters: ' + stringParameters[i] } - else { + else if (tempSplit[0] == 'LR') { classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '
Algorithm: logistic regression' + '
Parameters: ' + stringParameters[i] } + else if (tempSplit[0] == 'MLP') { + classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '
Algorithm: multilayer perceptron' + '
Parameters: ' + stringParameters[i] + } + else if (tempSplit[0] == 'RF') { + classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '
Algorithm: random forest' + '
Parameters: ' + stringParameters[i] + } + else { + classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '
Algorithm: gradient boosting' + '
Parameters: ' + stringParameters[i] + } } var DataGeneral, maxX, minX, maxY, minY, layout @@ -133,7 +144,7 @@ export default { marker: { line: { color: 'rgb(0, 0, 0)', width: 3 }, color: colorsforScatterPlot, - size: 12, + size: 16, colorscale: 'Viridis', colorbar: { title: '# Performance (%) #', @@ -197,7 +208,7 @@ export default { marker: { line: { color: 'rgb(0, 0, 0)', width: 3 }, color: colorsforScatterPlot, - size: 12, + size: 16, colorscale: 'Viridis', colorbar: { title: '# Performance (%) #', @@ -249,7 +260,7 @@ export default { marker: { line: { color: 'rgb(0, 0, 0)', width: 3 }, color: colorsforScatterPlot, - size: 12, + size: 16, colorscale: 'Viridis', colorbar: { title: '# Performance (%) #', @@ -319,11 +330,17 @@ export default { } }) }, + RemoveEnsemble () { + EventBus.$emit('RemoveFromEnsemble', this.pushModelsTempCMSame) + }, sendUpdateActiveScatter () { EventBus.$emit('sendToServerSelectedScatter') } }, mounted() { + + EventBus.$on('SendSelectedPointsUpdateIndicatorCM', data => { this.pushModelsTempCMSame = data }) + EventBus.$on('SendStoredEnsemble', data => { this.storeEnsembleLoc = data }) EventBus.$on('emittedEventCallingCrossoverMutation', data => { diff --git a/frontend/src/components/History.vue b/frontend/src/components/History.vue index c3027a9..0011d52 100644 --- a/frontend/src/components/History.vue +++ b/frontend/src/components/History.vue @@ -18,7 +18,10 @@ export default { data () { return { WH: [], - RandomSearLoc : 100 + RandomSearLoc : 100, + step: 2, + values: [0,0,0,0,0,0,50,50,50,50,50,0,50,50,50,50,50,0], + loop: 0 } }, methods: { @@ -27,13 +30,16 @@ export default { svg.selectAll("*").remove(); }, SankeyView () { + var valuesLoc = this.values + var localStep = this.step + var numberofModels = 6 var units = "Models"; var initialModels = this.RandomSearLoc * 5 var months = [{month:"RandSear",value:initialModels,loss:null}, {month:"Crossover",value:250,loss:null}, {month:"Mutate",value:250,loss:null}]; //this is the svg canvas attributes: (not buidlign abything just seeting up varaibels) - var margin = {top: 40, right: 40, bottom: 40, left: 100}, //comma is the equivalent of var : + var margin = {top: 10, right: 40, bottom: 10, left: 100}, //comma is the equivalent of var : width = 1200 - margin.left - margin.right, height = 350 - margin.top - margin.bottom; @@ -44,9 +50,9 @@ export default { format = function(d) { return formatNumber(d) + " " + units; } var color = d3.scale.category20b() - var startingAxis = this.RandomSearLoc * 6 + var startingAxis = this.RandomSearLoc var axisScale = d3.scale.linear() - .domain([startingAxis,0]) + .domain([startingAxis*6,0]) .range([0, height]); //Create the Axis @@ -55,6 +61,8 @@ export default { .orient("left") .ticks(10); + + // var lossScale = d3.scale.linear() // .domain([.95,1,1.05]) // .range(["red","black","green"]); @@ -66,6 +74,17 @@ export default { .append("g") //group everything on the vancas together. will edit down on ln38 below .attr("transform", "translate(" + margin.left + "," + margin.top + ") scale(1,-1) translate(" + 0 + "," + -height + ")"); + // Fix that! + d3.select("svg") + .append("text") + .text("Player Count") + .attr("x",30) + .attr("y",17) + .attr("font-family","Pontano Sans") + .attr("font-size",18.5) + .attr("fill","black") + .attr("transform", function(d){ + return "translate(" + 0 + "," + 0 + ") rotate(-90 150 150)";}); // Set the sankey diagram properties var sankey = d3Sankey() //calling the function @@ -112,39 +131,39 @@ export default { // load the data var graph = { "nodes":[ - {"name":"GradB","node":0,"month":"RandSear","color":"#e41a1c"}, - {"name":"RF","node":1,"month":"RandSear","color":"#377eb8"}, - {"name":"MLP","node":2,"month":"RandSear","color":"#4daf4a"}, - {"name":"LR","node":3,"month":"RandSear","color":"#984ea3"}, - {"name":"KNN","node":4,"month":"RandSear","color":"#ff7f00"}, - {"name":"Random search","node":5,"month":"RandSear","color":"#ffffff"}, - {"name":"GradB","node":6,"month":"Crossover","color":"#e41a1c"}, - {"name":"RF","node":7,"month":"Crossover","color":"#377eb8"}, - {"name":"MLP","node":8,"month":"Crossover","color":"#4daf4a"}, - {"name":"LR","node":9,"month":"Crossover","color":"#984ea3"}, - {"name":"KNN","node":10,"month":"Crossover","color":"#ff7f00"}, - {"name":"Mutate","node":11,"month":"Crossover","color":"#ffffff"}, - {"name":"GradB","node":12,"month":"Mutate","color":"#e41a1c"}, - {"name":"RF","node":13,"month":"Mutate","color":"#377eb8"}, - {"name":"MLP","node":14,"month":"Mutate","color":"#4daf4a"}, - {"name":"LR","node":15,"month":"Mutate","color":"#984ea3"}, - {"name":"KNN","node":16,"month":"Mutate","color":"#ff7f00"}, - {"name":"Crossover","node":17,"month":"Crossover","color":"#ffffff"}, + {"name":"GradB","node":0,"month":"RandSear","color":"#e41a1c","dh":height/numberofModels}, + {"name":"RF","node":1,"month":"RandSear","color":"#377eb8","dh":height/numberofModels}, + {"name":"MLP","node":2,"month":"RandSear","color":"#4daf4a","dh":height/numberofModels}, + {"name":"LR","node":3,"month":"RandSear","color":"#984ea3","dh":height/numberofModels}, + {"name":"KNN","node":4,"month":"RandSear","color":"#ff7f00","dh":height/numberofModels}, + {"name":"Random search","node":5,"month":"RandSear","color":"#ffffff","dh":height/numberofModels}, + {"name":"GradB","node":6,"month":"Crossover","color":"#e41a1c","dh":height/(numberofModels*localStep)}, + {"name":"RF","node":7,"month":"Crossover","color":"#377eb8","dh":height/(numberofModels*localStep)}, + {"name":"MLP","node":8,"month":"Crossover","color":"#4daf4a","dh":height/(numberofModels*localStep)}, + {"name":"LR","node":9,"month":"Crossover","color":"#984ea3","dh":height/(numberofModels*localStep)}, + {"name":"KNN","node":10,"month":"Crossover","color":"#ff7f00","dh":height/(numberofModels*localStep)}, + {"name":"Mutate","node":11,"month":"Crossover","color":"#ffffff","dh":height/(numberofModels*localStep)}, + {"name":"GradB","node":12,"month":"Mutate","color":"#e41a1c","dh":height/(numberofModels*localStep)}, + {"name":"RF","node":13,"month":"Mutate","color":"#377eb8","dh":height/(numberofModels*localStep)}, + {"name":"MLP","node":14,"month":"Mutate","color":"#4daf4a","dh":height/(numberofModels*localStep)}, + {"name":"LR","node":15,"month":"Mutate","color":"#984ea3","dh":height/(numberofModels*localStep)}, + {"name":"KNN","node":16,"month":"Mutate","color":"#ff7f00","dh":height/(numberofModels*localStep)}, + {"name":"Crossover","node":17,"month":"Crossover","color":"#ffffff","dh":height/(numberofModels*localStep)}, ], "links":[ - {"source":5,"target":11,"value":50}, - {"source":5,"target":17,"value":50}, - {"source":0,"target":6,"value":50}, - {"source":0,"target":12,"value":50}, - {"source":1,"target":7,"value":50}, - {"source":1,"target":13,"value":50}, - {"source":2,"target":8,"value":50}, - {"source":2,"target":14,"value":50}, - {"source":3,"target":9,"value":50}, - {"source":3,"target":15,"value":50}, - {"source":4,"target":10,"value":50}, - {"source":4,"target":16,"value":50}, + {"source":5,"target":11,"value":50,"dh":height/(numberofModels*localStep)*(250/(valuesLoc[6]+valuesLoc[7]+valuesLoc[8]+valuesLoc[9]+valuesLoc[10]))}, + {"source":5,"target":17,"value":50,"dh":height/(numberofModels*localStep)*(250/(valuesLoc[12]+valuesLoc[13]+valuesLoc[14]+valuesLoc[15]+valuesLoc[16]))}, + {"source":0,"target":6,"value":valuesLoc[6],"dh":height/(numberofModels*localStep)*(valuesLoc[6]/50)}, + {"source":0,"target":12,"value":valuesLoc[12],"dh":height/(numberofModels*localStep)*(valuesLoc[12]/50)}, + {"source":1,"target":7,"value":valuesLoc[7],"dh":height/(numberofModels*localStep)*(valuesLoc[7]/50)}, + {"source":1,"target":13,"value":valuesLoc[13],"dh":height/(numberofModels*localStep)*(valuesLoc[13]/50)}, + {"source":2,"target":8,"value":valuesLoc[8],"dh":height/(numberofModels*localStep)*(valuesLoc[8]/50)}, + {"source":2,"target":14,"value":valuesLoc[14],"dh":height/(numberofModels*localStep)*(valuesLoc[14]/50)}, + {"source":3,"target":9,"value":valuesLoc[9],"dh":height/(numberofModels*localStep)*(valuesLoc[9]/50)}, + {"source":3,"target":15,"value":valuesLoc[15],"dh":height/(numberofModels*localStep)*(valuesLoc[15]/50)}, + {"source":4,"target":10,"value":valuesLoc[10],"dh":height/(numberofModels*localStep)*(valuesLoc[10]/50)}, + {"source":4,"target":16,"value":valuesLoc[16],"dh":height/(numberofModels*localStep)*(valuesLoc[16]/50)}, ]} sankey.nodes(graph.nodes) @@ -161,8 +180,8 @@ export default { if(d.source.node == 5){ return "transparent"; }}) - .style("stroke-width", function(d) { return Math.max(.5, d.dy); }) //setting the stroke length by the data . d.dy is defined in sankey.js - .sort(function(a, b) { return b.dy - a.dy; }) + .style("stroke-width", function(d) { return Math.max(.5, d.dh); }) //setting the stroke length by the data . d.dh is defined in sankey.js + .sort(function(a, b) { return b.dh - a.dh; }) .on("mouseover",linkmouseover) .on("mouseout",linkmouseout); @@ -187,7 +206,7 @@ export default { // add the rectangles for the nodes node.append("rect") - .attr("height", function(d) {return d.dy; }) + .attr("height", function(d) { return d.dh; }) .attr("width", sankey.nodeWidth( )) .style("fill", function(d) { return d.color; }) //matches name with the colors here! inside the replace is some sort of regex // .style("stroke",function(d) { return d3.rgb(d.color).darker(1); }) //line around the box formatting @@ -195,18 +214,27 @@ export default { .on("mouseover", nodemouseover) .on("mouseout", nodemouseout); - node.append("foreignObject") + if (this.loop == 0) { + node.append("foreignObject") .attr("x", 28) - .attr("y", -21) + .attr("y", -24) .attr("height", 18) .attr("width", 40) .attr("transform", "scale(1,-1)") .append("xhtml:body") .html(function(d) { if (d.node > 5 && d.node != 11 && d.node != 17) { - return '' + return '' } }); + + $("input[type='number']").change( function(d) { + valuesLoc[d.target.id] = parseInt(d.target.value) + console.log(valuesLoc) + EventBus.$emit('changeValues', valuesLoc) + // your code + }); + } // .append("title") // .text(function(d) { // return d.name + "\n" + format(d.value); }); @@ -216,9 +244,9 @@ export default { .attr("x", -6) .attr("y", function(d) { if (d.node <= 5) { - return d.dy - 70; + return d.dh - 81; } else { - return d.dy - 35; + return d.dh - 41; } }) .attr("dy", ".35em") @@ -285,9 +313,12 @@ export default { .attr("transform", "translate(" + -45 + "," + 0 + ") scale(1,-1) translate(" + 0 + "," + -(height) + ")"); - } + }, }, mounted() { + EventBus.$on('changeValues', data => { this.values = data }) + EventBus.$on('changeValues', this.SankeyView ) + EventBus.$on('SendtheChangeinRangePos', data => { this.RandomSearLoc = data }) EventBus.$on('emittedEventCallingSankey', this.SankeyView) diff --git a/frontend/src/components/HyperParameterSpace.vue b/frontend/src/components/HyperParameterSpace.vue index f70dd37..e599f5b 100644 --- a/frontend/src/components/HyperParameterSpace.vue +++ b/frontend/src/components/HyperParameterSpace.vue @@ -60,7 +60,6 @@ export default { Plotly.purge('OverviewPlotly') var modelId = JSON.parse(this.ScatterPlotResults[0]) - var colorsforScatterPlot = JSON.parse(this.ScatterPlotResults[1]) var parametersLoc = JSON.parse(this.ScatterPlotResults[2]) var parameters = JSON.parse(parametersLoc) @@ -75,15 +74,25 @@ export default { this.clean(parameters[i]) stringParameters.push(JSON.stringify(parameters[i]).replace(/,/gi, '
')) } - // fix that! + var classifiersInfoProcessing = [] for (let i = 0; i < modelId.length; i++) { - if (i < 100) { + let tempSplit = modelId[i].split(/([0-9]+)/) + if (tempSplit[0] == 'KNN') { classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '
Algorithm: k-nearest neighbor' + '
Parameters: ' + stringParameters[i] } - else { + else if (tempSplit[0] == 'LR') { classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '
Algorithm: logistic regression' + '
Parameters: ' + stringParameters[i] } + else if (tempSplit[0] == 'MLP') { + classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '
Algorithm: multilayer perceptron' + '
Parameters: ' + stringParameters[i] + } + else if (tempSplit[0] == 'RF') { + classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '
Algorithm: random forest' + '
Parameters: ' + stringParameters[i] + } + else { + classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '
Algorithm: gradient boosting' + '
Parameters: ' + stringParameters[i] + } } var DataGeneral, maxX, minX, maxY, minY, layout diff --git a/frontend/src/components/Main.vue b/frontend/src/components/Main.vue index 1f0782f..7d70d57 100755 --- a/frontend/src/components/Main.vue +++ b/frontend/src/components/Main.vue @@ -188,9 +188,7 @@ import Vue from 'vue' import DataSetExecController from './DataSetExecController.vue' import PerformanceMetrics from './PerformanceMetrics.vue' -import Algorithms from './Algorithms.vue' import AlgorithmsController from './AlgorithmsController.vue' -import AlgorithmHyperParam from './AlgorithmHyperParam.vue' import HyperParameterSpace from './HyperParameterSpace.vue' import GlobalParamController from './GlobalParamController' import Ensemble from './Ensemble.vue' @@ -217,9 +215,7 @@ export default Vue.extend({ components: { DataSetExecController, PerformanceMetrics, - Algorithms, AlgorithmsController, - AlgorithmHyperParam, HyperParameterSpace, GlobalParamController, Ensemble, @@ -348,6 +344,7 @@ export default Vue.extend({ this.storeBothEnsCM[0] = this.OverviewResults this.firstTimeExec = false } else { + EventBus.$emit('SendStoredEnsemble', this.storeEnsemble) EventBus.$emit('emittedEventCallingCrossoverMutation', this.OverviewResults) this.PredictSelEnsem = [] EventBus.$emit('emittedEventCallingGrid', this.OverviewResults) @@ -379,6 +376,7 @@ export default Vue.extend({ console.log('Server successfully sent all the data related to visualizations!') EventBus.$emit('emittedEventCallingScatterPlot', this.OverviewResultsCM) this.storeBothEnsCM[0] = this.OverviewResultsCM + EventBus.$emit('emittedEventCallingSankey', this.OverviewResultsCM) //this.PredictSel = [] //EventBus.$emit('emittedEventCallingGrid', this.OverviewResultsCM) //EventBus.$emit('SendSelectedPointsToServerEvent', this.PredictSel) @@ -539,8 +537,8 @@ export default Vue.extend({ }) } }, - RemoveFromStackModels () { - const path = `http://127.0.0.1:5000/data/ServerRemoveFromStack` + RemoveFromEnsembleModels () { + const path = `http://127.0.0.1:5000/data/ServerRemoveFromEnsemble` const postData = { ClassifiersList: this.ClassifierIDsListRemaining, } @@ -555,7 +553,7 @@ export default Vue.extend({ axios.post(path, postData, axiosConfig) .then(response => { console.log('Sent the selected points to the server (scatterplot)!') - this.updatePredictionsSpace() + this.getDatafromtheBackEnd() }) .catch(error => { console.log(error) @@ -904,8 +902,6 @@ export default Vue.extend({ }, sendPointsCrossMutat () { const path = `http://127.0.0.1:5000/data/CrossoverMutation` - - EventBus.$emit('SendStoredEnsemble', this.storeEnsemble) var mergedStoreEnsembleLoc = [].concat.apply([], this.storeEnsemble) @@ -992,11 +988,11 @@ export default Vue.extend({ EventBus.$on('RemainingPointsCM', data => { this.unselectedRemainingPointsEnsem = data }) EventBus.$on('ChangeKey', data => { this.keyNow = data }) - EventBus.$on('SendSelectedPointsUpdateIndicator', data => { this.ClassifierIDsList = data; this.storeEnsemble.push(this.ClassifierIDsList)}) + EventBus.$on('SendSelectedPointsUpdateIndicator', data => { this.ClassifierIDsList = data; this.storeEnsemble.push(this.ClassifierIDsList) }) EventBus.$on('SendSelectedPointsUpdateIndicator', this.SelectedPoints) EventBus.$on('sendToServerSelectedScatter', this.SendSelectedPointsToServer) - EventBus.$on('SendSelectedPointsUpdateIndicatorCM', data => { this.ClassifierIDsListCM = data }) + EventBus.$on('SendSelectedPointsUpdateIndicatorCM', data => { this.ClassifierIDsListCM = data; this.storeEnsemble = []; this.storeEnsemble.push(this.ClassifierIDsListCM) }) EventBus.$on('SendSelectedPointsUpdateIndicatorCM', this.SelectedPointsCM) EventBus.$on('SendSelectedDataPointsToServerEvent', data => { this.DataPointsSel = data }) @@ -1030,8 +1026,8 @@ export default Vue.extend({ EventBus.$on('AllSelModels', data => {this.valueSel = data}) - EventBus.$on('RemoveFromStack', data => { this.ClassifierIDsListRemaining = data }) - EventBus.$on('RemoveFromStack', this.RemoveFromStackModels) + EventBus.$on('RemoveFromEnsemble', data => { this.ClassifierIDsListRemaining = data }) + EventBus.$on('RemoveFromEnsemble', this.RemoveFromEnsembleModels) EventBus.$on('OpenModal', this.openModalFun) diff --git a/run.py b/run.py index 0be316d..84a1a65 100644 --- a/run.py +++ b/run.py @@ -76,6 +76,9 @@ def reset(): global KNNModelsCount global LRModelsCount + global MLPModelsCount + global RFModelsCount + global GradBModelsCount global factors factors = [1,1,1,1,0,0,0,0] @@ -182,6 +185,9 @@ def reset(): global names_labels names_labels = [] + global keySend + keySend=0 + return 'The reset was done!' # retrieve data from client and select the correct data set @@ -208,12 +214,6 @@ def retrieveFileName(): global keyData keyData = 0 - global KNNModelsCount - global LRModelsCount - global MLPModelsCount - global RFModelsCount - global GradBModelsCount - global factors factors = data['Factors'] @@ -223,12 +223,6 @@ def retrieveFileName(): global randomSearchVar randomSearchVar = int(data['RandomSearch']) - KNNModelsCount = 0 - LRModelsCount = KNNModelsCount+randomSearchVar - MLPModelsCount = LRModelsCount+randomSearchVar - RFModelsCount = MLPModelsCount+randomSearchVar - GradBModelsCount = RFModelsCount+randomSearchVar - global XData XData = [] @@ -333,6 +327,9 @@ def retrieveFileName(): global names_labels names_labels = [] + global keySend + keySend=0 + DataRawLength = -1 DataRawLengthTest = -1 @@ -538,7 +535,6 @@ def retrieveModel(): global XData global yData - global LRModelsCount global countAllModels # loop through the algorithms @@ -576,6 +572,7 @@ def retrieveModel(): params = {'n_estimators': list(range(20, 100)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels + countAllModels = countAllModels + randomSearchVar allParametersPerformancePerModel = randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd) HistoryPreservation = allParametersPerformancePerModel.copy() # call the function that sends the results to the frontend @@ -758,7 +755,6 @@ def EnsembleIDs(): global numberIDMLPGlob global numberIDRFGlob global numberIDGradBGlob - numberIDKNNGlob = [] numberIDLRGlob = [] numberIDMLPGlob = [] @@ -786,7 +782,6 @@ def EnsembleIDs(): def PreprocessingPredEnsemble(): global EnsembleActive - numberIDKNN = [] numberIDLR = [] numberIDMLP = [] @@ -1009,6 +1004,7 @@ def InitializeEnsemble(): global ModelSpaceTSNE global allParametersPerformancePerModel global EnsembleActive + global keySend XModels = XModels.fillna(0) @@ -1022,8 +1018,8 @@ def InitializeEnsemble(): else: PredictionProbSel = PreprocessingPredEnsemble() ModelsIds = EnsembleIDs() - key = 0 - EnsembleModel(ModelsIds, key) + EnsembleModel(ModelsIds, keySend) + keySend=1 returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionProbSel) @@ -1044,12 +1040,14 @@ def EnsembleModel (Models, keyRetrieved): global yData global sclf + global randomSearchVar + greater = randomSearchVar*5 + global numberIDKNNGlob global numberIDLRGlob global numberIDMLPGlob global numberIDRFGlob global numberIDGradBGlob - all_classifiers = [] columnsInit = [] columnsInit = [XData.columns.get_loc(c) for c in XData.columns if c in XData] @@ -1064,7 +1062,10 @@ def EnsembleModel (Models, keyRetrieved): dfParamKNN = pd.DataFrame.from_dict(tempDic) dfParamKNNFilt = dfParamKNN.iloc[:,0] for eachelem in numberIDKNNGlob: - arg = dfParamKNNFilt[eachelem] + if (eachelem >= greater): + arg = dfParamKNNFilt[eachelem-addKNN] + else: + arg = dfParamKNNFilt[eachelem-KNNModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), KNeighborsClassifier().set_params(**arg))) temp = allParametersPerformancePerModel[5] temp = temp['params'] @@ -1075,7 +1076,10 @@ def EnsembleModel (Models, keyRetrieved): dfParamLR = pd.DataFrame.from_dict(tempDic) dfParamLRFilt = dfParamLR.iloc[:,0] for eachelem in numberIDLRGlob: - arg = dfParamLRFilt[eachelem-LRModelsCount] + if (eachelem >= greater): + arg = dfParamLRFilt[eachelem-addLR] + else: + arg = dfParamLRFilt[eachelem-LRModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), LogisticRegression(random_state=RANDOM_SEED).set_params(**arg))) temp = allParametersPerformancePerModel[9] @@ -1087,7 +1091,10 @@ def EnsembleModel (Models, keyRetrieved): dfParamMLP = pd.DataFrame.from_dict(tempDic) dfParamMLPFilt = dfParamMLP.iloc[:,0] for eachelem in numberIDMLPGlob: - arg = dfParamMLPFilt[eachelem-MLPModelsCount] + if (eachelem >= greater): + arg = dfParamMLPFilt[eachelem-addMLP] + else: + arg = dfParamMLPFilt[eachelem-MLPModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), MLPClassifier(random_state=RANDOM_SEED).set_params(**arg))) temp = allParametersPerformancePerModel[13] @@ -1099,7 +1106,10 @@ def EnsembleModel (Models, keyRetrieved): dfParamRF = pd.DataFrame.from_dict(tempDic) dfParamRFFilt = dfParamRF.iloc[:,0] for eachelem in numberIDRFGlob: - arg = dfParamRFFilt[eachelem-RFModelsCount] + if (eachelem >= greater): + arg = dfParamRFFilt[eachelem-addRF] + else: + arg = dfParamRFFilt[eachelem-RFModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), RandomForestClassifier(random_state=RANDOM_SEED).set_params(**arg))) temp = allParametersPerformancePerModel[17] @@ -1111,7 +1121,10 @@ def EnsembleModel (Models, keyRetrieved): dfParamGradB = pd.DataFrame.from_dict(tempDic) dfParamGradBFilt = dfParamGradB.iloc[:,0] for eachelem in numberIDGradBGlob: - arg = dfParamGradBFilt[eachelem-GradBModelsCount] + if (eachelem >= greater): + arg = dfParamGradBFilt[eachelem-addGradB] + else: + arg = dfParamGradBFilt[eachelem-GradBModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), GradientBoostingClassifier(random_state=RANDOM_SEED).set_params(**arg))) global sclf @@ -1283,6 +1296,7 @@ def CrossoverMutateFun(): EnsembleActive = json.loads(EnsembleActive) EnsembleActive = EnsembleActive['StoreEnsemble'] + random.seed(RANDOM_SEED) global XData @@ -1298,6 +1312,9 @@ def CrossoverMutateFun(): global allParametersPerfCrossMutr global HistoryPreservation + global randomSearchVar + greater = randomSearchVar*5 + KNNIDs = list(filter(lambda k: 'KNN' in k, RemainingIds)) LRIDs = list(filter(lambda k: 'LR' in k, RemainingIds)) MLPIDs = list(filter(lambda k: 'MLP' in k, RemainingIds)) @@ -1320,9 +1337,13 @@ def CrossoverMutateFun(): localCrossMutr = [] allParametersPerfCrossMutrKNNC = [] + while countKNN < setMaxLoopValue: for dr in KNNIDs: - KNNIntIndex.append(int(re.findall('\d+', dr)[0])) + if (int(re.findall('\d+', dr)[0]) >= greater): + KNNIntIndex.append(int(re.findall('\d+', dr)[0])-addKNN) + else: + KNNIntIndex.append(int(re.findall('\d+', dr)[0])) KNNPickPair = random.sample(KNNIntIndex,2) pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() @@ -1364,7 +1385,10 @@ def CrossoverMutateFun(): while countKNN < setMaxLoopValue: for dr in KNNIDs: - KNNIntIndex.append(int(re.findall('\d+', dr)[0])) + if (int(re.findall('\d+', dr)[0]) >= greater): + KNNIntIndex.append(int(re.findall('\d+', dr)[0])-addKNN) + else: + KNNIntIndex.append(int(re.findall('\d+', dr)[0])) KNNPickPair = random.sample(KNNIntIndex,1) pairDF = paramAllAlgs.iloc[KNNPickPair] @@ -1409,10 +1433,15 @@ def CrossoverMutateFun(): while countLR < setMaxLoopValue: for dr in LRIDs: - LRIntIndex.append(int(re.findall('\d+', dr)[0])) + if (int(re.findall('\d+', dr)[0]) >= greater): + LRIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar)) + else: + LRIntIndex.append(int(re.findall('\d+', dr)[0])) + print(LRIntIndex) LRPickPair = random.sample(LRIntIndex,2) - + print(paramAllAlgs) pairDF = paramAllAlgs.iloc[LRPickPair] + print(pairDF) crossoverDF = pd.DataFrame() for column in pairDF: listData = [] @@ -1452,7 +1481,10 @@ def CrossoverMutateFun(): while countLR < setMaxLoopValue: for dr in LRIDs: - LRIntIndex.append(int(re.findall('\d+', dr)[0])) + if (int(re.findall('\d+', dr)[0]) >= greater): + LRIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar)) + else: + LRIntIndex.append(int(re.findall('\d+', dr)[0])) LRPickPair = random.sample(LRIntIndex,1) pairDF = paramAllAlgs.iloc[LRPickPair] @@ -1497,7 +1529,10 @@ def CrossoverMutateFun(): while countMLP < setMaxLoopValue: for dr in MLPIDs: - MLPIntIndex.append(int(re.findall('\d+', dr)[0])) + if (int(re.findall('\d+', dr)[0]) >= greater): + MLPIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*2)) + else: + MLPIntIndex.append(int(re.findall('\d+', dr)[0])) MLPPickPair = random.sample(MLPIntIndex,2) pairDF = paramAllAlgs.iloc[MLPPickPair] @@ -1540,7 +1575,10 @@ def CrossoverMutateFun(): while countMLP < setMaxLoopValue: for dr in MLPIDs: - MLPIntIndex.append(int(re.findall('\d+', dr)[0])) + if (int(re.findall('\d+', dr)[0]) >= greater): + MLPIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*2)) + else: + MLPIntIndex.append(int(re.findall('\d+', dr)[0])) MLPPickPair = random.sample(MLPIntIndex,1) pairDF = paramAllAlgs.iloc[MLPPickPair] @@ -1585,7 +1623,10 @@ def CrossoverMutateFun(): while countRF < setMaxLoopValue: for dr in RFIDs: - RFIntIndex.append(int(re.findall('\d+', dr)[0])) + if (int(re.findall('\d+', dr)[0]) >= greater): + RFIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*3)) + else: + RFIntIndex.append(int(re.findall('\d+', dr)[0])) RFPickPair = random.sample(RFIntIndex,2) pairDF = paramAllAlgs.iloc[RFPickPair] @@ -1627,7 +1668,9 @@ def CrossoverMutateFun(): allParametersPerfCrossMutrRFM = [] while countRF < setMaxLoopValue: - for dr in RFIDs: + if (int(re.findall('\d+', dr)[0]) >= greater): + RFIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*3)) + else: RFIntIndex.append(int(re.findall('\d+', dr)[0])) RFPickPair = random.sample(RFIntIndex,1) @@ -1673,7 +1716,10 @@ def CrossoverMutateFun(): while countGradB < setMaxLoopValue: for dr in GradBIDs: - GradBIntIndex.append(int(re.findall('\d+', dr)[0])) + if (int(re.findall('\d+', dr)[0]) >= greater): + GradBIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*4)) + else: + GradBIntIndex.append(int(re.findall('\d+', dr)[0])) GradBPickPair = random.sample(GradBIntIndex,2) pairDF = paramAllAlgs.iloc[GradBPickPair] @@ -1716,7 +1762,10 @@ def CrossoverMutateFun(): while countGradB < setMaxLoopValue: for dr in GradBIDs: - GradBIntIndex.append(int(re.findall('\d+', dr)[0])) + if (int(re.findall('\d+', dr)[0]) >= greater): + GradBIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*4)) + else: + GradBIntIndex.append(int(re.findall('\d+', dr)[0])) GradPickPair = random.sample(GradBIntIndex,1) pairDF = paramAllAlgs.iloc[GradBPickPair] @@ -1737,7 +1786,7 @@ def CrossoverMutateFun(): clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'learning_rate': [crossoverDF['learning_rate'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countGradB - localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RF', AlgorithmsIDsEnd) + localCrossMutr = crossoverMutation(XData, yData, clf, params, 'GradB', AlgorithmsIDsEnd) countGradB += 1 crossoverDF = pd.DataFrame() @@ -1759,13 +1808,12 @@ def CrossoverMutateFun(): localCrossMutr.clear() allParametersPerfCrossMutr = allParametersPerfCrossMutrKNNC + allParametersPerfCrossMutrKNNM + allParametersPerfCrossMutrLRC + allParametersPerfCrossMutrLRM + allParametersPerfCrossMutrMLPC + allParametersPerfCrossMutrMLPM + allParametersPerfCrossMutrRFC + allParametersPerfCrossMutrRFM + allParametersPerfCrossMutrGradBC + allParametersPerfCrossMutrGradBM + allParametersPerformancePerModel[0] = allParametersPerformancePerModel[0] + allParametersPerfCrossMutrKNNC[0] + allParametersPerfCrossMutrKNNM[0] - allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrKNNC[0] + allParametersPerfCrossMutrKNNM[0] - - allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNC[1]], ignore_index=True) - allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNM[1]], ignore_index=True) - allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrKNNC[2]], ignore_index=True) - allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrKNNM[2]], ignore_index=True) + allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNC[1]], ignore_index=True) + allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNM[1]], ignore_index=True) + allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNC[2]], ignore_index=True) + allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNM[2]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNC[3]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNM[3]], ignore_index=True) @@ -1781,39 +1829,39 @@ def CrossoverMutateFun(): allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRC[3]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRM[3]], ignore_index=True) - allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrMLPC[0] + allParametersPerfCrossMutrMLPM[0] + allParametersPerformancePerModel[8] = allParametersPerformancePerModel[8] + allParametersPerfCrossMutrMLPC[0] + allParametersPerfCrossMutrMLPM[0] - allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrMLPC[1]], ignore_index=True) - allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrMLPM[1]], ignore_index=True) - allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrMLPC[2]], ignore_index=True) - allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrMLPM[2]], ignore_index=True) + allParametersPerformancePerModel[9] = pd.concat([allParametersPerformancePerModel[9], allParametersPerfCrossMutrMLPC[1]], ignore_index=True) + allParametersPerformancePerModel[9] = pd.concat([allParametersPerformancePerModel[9], allParametersPerfCrossMutrMLPM[1]], ignore_index=True) + allParametersPerformancePerModel[10] = pd.concat([allParametersPerformancePerModel[10], allParametersPerfCrossMutrMLPC[2]], ignore_index=True) + allParametersPerformancePerModel[10] = pd.concat([allParametersPerformancePerModel[10], allParametersPerfCrossMutrMLPM[2]], ignore_index=True) allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPC[3]], ignore_index=True) allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPM[3]], ignore_index=True) - allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrRFC[0] + allParametersPerfCrossMutrRFM[0] + allParametersPerformancePerModel[12] = allParametersPerformancePerModel[12] + allParametersPerfCrossMutrRFC[0] + allParametersPerfCrossMutrRFM[0] - allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrRFC[1]], ignore_index=True) - allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrRFM[1]], ignore_index=True) - allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrRFC[2]], ignore_index=True) - allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrRFM[2]], ignore_index=True) + allParametersPerformancePerModel[13] = pd.concat([allParametersPerformancePerModel[13], allParametersPerfCrossMutrRFC[1]], ignore_index=True) + allParametersPerformancePerModel[13] = pd.concat([allParametersPerformancePerModel[13], allParametersPerfCrossMutrRFM[1]], ignore_index=True) + allParametersPerformancePerModel[14] = pd.concat([allParametersPerformancePerModel[14], allParametersPerfCrossMutrRFC[2]], ignore_index=True) + allParametersPerformancePerModel[14] = pd.concat([allParametersPerformancePerModel[14], allParametersPerfCrossMutrRFM[2]], ignore_index=True) allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFC[3]], ignore_index=True) allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFM[3]], ignore_index=True) - allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrGradBC[0] + allParametersPerfCrossMutrGradBM[0] + allParametersPerformancePerModel[16] = allParametersPerformancePerModel[16] + allParametersPerfCrossMutrGradBC[0] + allParametersPerfCrossMutrGradBM[0] - allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrGradBC[1]], ignore_index=True) - allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrGradBM[1]], ignore_index=True) - allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrGradBC[2]], ignore_index=True) - allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrGradBM[2]], ignore_index=True) + allParametersPerformancePerModel[17] = pd.concat([allParametersPerformancePerModel[17], allParametersPerfCrossMutrGradBC[1]], ignore_index=True) + allParametersPerformancePerModel[17] = pd.concat([allParametersPerformancePerModel[17], allParametersPerfCrossMutrGradBM[1]], ignore_index=True) + allParametersPerformancePerModel[18] = pd.concat([allParametersPerformancePerModel[18], allParametersPerfCrossMutrGradBC[2]], ignore_index=True) + allParametersPerformancePerModel[18] = pd.concat([allParametersPerformancePerModel[18], allParametersPerfCrossMutrGradBM[2]], ignore_index=True) allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBC[3]], ignore_index=True) allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBM[3]], ignore_index=True) - addKNN = addLR + addKNN = addGradB - addLR = addLR + setMaxLoopValue*2 + addLR = addKNN + setMaxLoopValue*2 addMLP = addLR + setMaxLoopValue*2 @@ -1824,6 +1872,9 @@ def CrossoverMutateFun(): return 'Everything Okay' def crossoverMutation(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd): + print(AlgorithmsIDsEnd) + print(clf) + print(params) search = GridSearchCV( estimator=clf, param_grid=params, cv=crossValidation, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) @@ -2219,7 +2270,6 @@ def CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,Predict metricsPerModel = preProcMetricsAllAndSelCM() sumPerClassifier = preProcsumPerMetricCM(factors) ModelsIDs = PreprocessingIDsCM() - parametersGenPD = parametersGen.to_json(orient='records') XDataJSONEntireSet = XData.to_json(orient='records') @@ -2342,7 +2392,7 @@ def RetrieveSelIDsPredict(): RetrieveIDsSelection = request.get_data().decode('utf8').replace("'", '"') RetrieveIDsSelection = json.loads(RetrieveIDsSelection) RetrieveIDsSelection = RetrieveIDsSelection['predictSelectionIDs'] - + ResultsSelPred = PreprocessingPredSel(RetrieveIDsSelection) return 'Everything Okay' @@ -2372,11 +2422,11 @@ def PreprocessingPredSelEnsem(SelectedIDsEnsem): elif (items[0] == 'LR'): numberIDLR.append(int(items[1])) elif (items[0] == 'MLP'): - numberIDLR.append(int(items[1])) + numberIDMLP.append(int(items[1])) elif (items[0] == 'RF'): - numberIDLR.append(int(items[1])) + numberIDRF.append(int(items[1])) else: - numberIDLR.append(int(items[1])) + numberIDGradB.append(int(items[1])) dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] @@ -2465,4 +2515,17 @@ def RetrieveSelClassifiersID(): EnsembleModel(ClassifierIDsList, 1) + return 'Everything Okay' + +@cross_origin(origin='localhost',headers=['Content-Type','Authorization']) +@app.route('/data/ServerRemoveFromEnsemble', methods=["GET", "POST"]) +def RetrieveSelClassifiersIDandRemoveFromEnsemble(): + global EnsembleActive + ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"') + ClassifierIDsList = json.loads(ClassifierIDsList) + ClassifierIDsListCleaned = ClassifierIDsList['ClassifiersList'] + + EnsembleActive = [] + EnsembleActive = ClassifierIDsListCleaned.copy() + return 'Everything Okay' \ No newline at end of file