|  |  | @ -1214,6 +1214,9 @@ def PreprocessingPredEnsemble(): | 
			
		
	
		
		
			
				
					
					|  |  |  |     yDataSortedFirst = [] |  |  |  |     yDataSortedFirst = [] | 
			
		
	
		
		
			
				
					
					|  |  |  |     yDataSortedLast = [] |  |  |  |     yDataSortedLast = [] | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     ResultsGatheredFirst = [0,0,0,0,0,0,0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     ResultsGatheredLast = [0,0,0,0,0,0,0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     for index, item in enumerate(yData): |  |  |  |     for index, item in enumerate(yData): | 
			
		
	
		
		
			
				
					
					|  |  |  |             if (item == 1): |  |  |  |             if (item == 1): | 
			
		
	
		
		
			
				
					
					|  |  |  |                 if (len(predictionsKNN[index]) != 0): |  |  |  |                 if (len(predictionsKNN[index]) != 0): | 
			
		
	
	
		
		
			
				
					|  |  | @ -1268,7 +1271,7 @@ def PreprocessingPredEnsemble(): | 
			
		
	
		
		
			
				
					
					|  |  |  |         predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] |  |  |  |         predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] | 
			
		
	
		
		
			
				
					
					|  |  |  |         yDataSorted = yDataSortedFirst + yDataSortedLast |  |  |  |         yDataSorted = yDataSortedFirst + yDataSortedLast | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] |  |  |  |     return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions, ResultsGatheredLast[6], ResultsGatheredFirst[6]] | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  | def PreprocessingParam(): |  |  |  | def PreprocessingParam(): | 
			
		
	
		
		
			
				
					
					|  |  |  |     dicKNN = allParametersPerformancePerModel[1] |  |  |  |     dicKNN = allParametersPerformancePerModel[1] | 
			
		
	
	
		
		
			
				
					|  |  | @ -4082,6 +4085,9 @@ def PreprocessingPredCM(): | 
			
		
	
		
		
			
				
					
					|  |  |  |     yDataSortedFirst = [] |  |  |  |     yDataSortedFirst = [] | 
			
		
	
		
		
			
				
					
					|  |  |  |     yDataSortedLast = [] |  |  |  |     yDataSortedLast = [] | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     ResultsGatheredFirst = [0,0,0,0,0,0,0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     ResultsGatheredLast = [0,0,0,0,0,0,0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     for index, item in enumerate(yData): |  |  |  |     for index, item in enumerate(yData): | 
			
		
	
		
		
			
				
					
					|  |  |  |             if (item == 1): |  |  |  |             if (item == 1): | 
			
		
	
		
		
			
				
					
					|  |  |  |                 if (len(predictionsKNN[index]) != 0): |  |  |  |                 if (len(predictionsKNN[index]) != 0): | 
			
		
	
	
		
		
			
				
					|  |  | @ -4135,7 +4141,7 @@ def PreprocessingPredCM(): | 
			
		
	
		
		
			
				
					
					|  |  |  |         predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] |  |  |  |         predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] | 
			
		
	
		
		
			
				
					
					|  |  |  |         yDataSorted = yDataSortedFirst + yDataSortedLast |  |  |  |         yDataSorted = yDataSortedFirst + yDataSortedLast | 
			
		
	
		
		
			
				
					
					|  |  |  |      |  |  |  |      | 
			
		
	
		
		
			
				
					
					|  |  |  |     return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] |  |  |  |     return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions, ResultsGatheredLast[6], ResultsGatheredFirst[6]] | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  | def PreprocessingPredCMSecond(): |  |  |  | def PreprocessingPredCMSecond(): | 
			
		
	
		
		
			
				
					
					|  |  |  |     dicKNNCC = allParametersPerfCrossMutr[3] |  |  |  |     dicKNNCC = allParametersPerfCrossMutr[3] | 
			
		
	
	
		
		
			
				
					|  |  | @ -4241,6 +4247,9 @@ def PreprocessingPredCMSecond(): | 
			
		
	
		
		
			
				
					
					|  |  |  |     yDataSortedFirst = [] |  |  |  |     yDataSortedFirst = [] | 
			
		
	
		
		
			
				
					
					|  |  |  |     yDataSortedLast = [] |  |  |  |     yDataSortedLast = [] | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     ResultsGatheredFirst = [0,0,0,0,0,0,0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     ResultsGatheredLast = [0,0,0,0,0,0,0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     for index, item in enumerate(yData): |  |  |  |     for index, item in enumerate(yData): | 
			
		
	
		
		
			
				
					
					|  |  |  |             if (item == 1): |  |  |  |             if (item == 1): | 
			
		
	
		
		
			
				
					
					|  |  |  |                 if (len(predictionsKNN[index]) != 0): |  |  |  |                 if (len(predictionsKNN[index]) != 0): | 
			
		
	
	
		
		
			
				
					|  |  | @ -4294,7 +4303,7 @@ def PreprocessingPredCMSecond(): | 
			
		
	
		
		
			
				
					
					|  |  |  |         predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] |  |  |  |         predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] | 
			
		
	
		
		
			
				
					
					|  |  |  |         yDataSorted = yDataSortedFirst + yDataSortedLast |  |  |  |         yDataSorted = yDataSortedFirst + yDataSortedLast | 
			
		
	
		
		
			
				
					
					|  |  |  |      |  |  |  |      | 
			
		
	
		
		
			
				
					
					|  |  |  |     return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] |  |  |  |     return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions, ResultsGatheredLast[6], ResultsGatheredFirst[6]] | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  | def PreprocessingParamCM(): |  |  |  | def PreprocessingParamCM(): | 
			
		
	
		
		
			
				
					
					|  |  |  |     dicKNNC = allParametersPerfCrossMutr[1] |  |  |  |     dicKNNC = allParametersPerfCrossMutr[1] | 
			
		
	
	
		
		
			
				
					|  |  | @ -4903,6 +4912,9 @@ def PreprocessingPredSel(SelectedIDs): | 
			
		
	
		
		
			
				
					
					|  |  |  |     yDataSortedFirst = [] |  |  |  |     yDataSortedFirst = [] | 
			
		
	
		
		
			
				
					
					|  |  |  |     yDataSortedLast = [] |  |  |  |     yDataSortedLast = [] | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     ResultsGatheredFirst = [0,0,0,0,0,0,0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     ResultsGatheredLast = [0,0,0,0,0,0,0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     for index, item in enumerate(yData): |  |  |  |     for index, item in enumerate(yData): | 
			
		
	
		
		
			
				
					
					|  |  |  |             if (item == 1): |  |  |  |             if (item == 1): | 
			
		
	
		
		
			
				
					
					|  |  |  |                 if (len(predictionsKNN[index]) != 0): |  |  |  |                 if (len(predictionsKNN[index]) != 0): | 
			
		
	
	
		
		
			
				
					|  |  | @ -4956,7 +4968,7 @@ def PreprocessingPredSel(SelectedIDs): | 
			
		
	
		
		
			
				
					
					|  |  |  |         predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] |  |  |  |         predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] | 
			
		
	
		
		
			
				
					
					|  |  |  |         yDataSorted = yDataSortedFirst + yDataSortedLast |  |  |  |         yDataSorted = yDataSortedFirst + yDataSortedLast | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] |  |  |  |     return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions, ResultsGatheredLast[6], ResultsGatheredFirst[6]] | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  | @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) |  |  |  | @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) | 
			
		
	
		
		
			
				
					
					|  |  |  | @app.route('/data/SendtoSeverSelIDs', methods=["GET", "POST"]) |  |  |  | @app.route('/data/SendtoSeverSelIDs', methods=["GET", "POST"]) | 
			
		
	
	
		
		
			
				
					|  |  | @ -5076,6 +5088,9 @@ def PreprocessingPredSelEnsem(SelectedIDsEnsem): | 
			
		
	
		
		
			
				
					
					|  |  |  |     yDataSortedFirst = [] |  |  |  |     yDataSortedFirst = [] | 
			
		
	
		
		
			
				
					
					|  |  |  |     yDataSortedLast = [] |  |  |  |     yDataSortedLast = [] | 
			
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     ResultsGatheredFirst = [0,0,0,0,0,0,0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     ResultsGatheredLast = [0,0,0,0,0,0,0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |     for index, item in enumerate(yData): |  |  |  |     for index, item in enumerate(yData): | 
			
		
	
		
		
			
				
					
					|  |  |  |         if (item == 1): |  |  |  |         if (item == 1): | 
			
		
	
		
		
			
				
					
					|  |  |  |             if (len(predictionsKNN[index]) != 0): |  |  |  |             if (len(predictionsKNN[index]) != 0): | 
			
		
	
	
		
		
			
				
					|  |  | @ -5130,7 +5145,7 @@ def PreprocessingPredSelEnsem(SelectedIDsEnsem): | 
			
		
	
		
		
			
				
					
					|  |  |  |         predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] |  |  |  |         predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] | 
			
		
	
		
		
			
				
					
					|  |  |  |         yDataSorted = yDataSortedFirst + yDataSortedLast |  |  |  |         yDataSorted = yDataSortedFirst + yDataSortedLast | 
			
		
	
		
		
			
				
					
					|  |  |  |      |  |  |  |      | 
			
		
	
		
		
			
				
					
					|  |  |  |     return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] |  |  |  |     return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions, ResultsGatheredLast[6], ResultsGatheredFirst[6]] | 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					|  |  |  | 
 |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  | @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) |  |  |  | @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) | 
			
		
	
		
		
			
				
					
					|  |  |  | @app.route('/data/SendtoSeverSelIDsEnsem', methods=["GET", "POST"]) |  |  |  | @app.route('/data/SendtoSeverSelIDsEnsem', methods=["GET", "POST"]) | 
			
		
	
	
		
		
			
				
					|  |  | 
 |