Angelos Chatzimparmpas 4 years ago
parent 43fb59a747
commit 3e6bc53d05
  1. BIN
      __pycache__/run.cpython-38.pyc
  2. 1
      cachedir/joblib/run/randomSearch/06d95882b621744b1f98a9e4a74c2c74/metadata.json
  3. BIN
      cachedir/joblib/run/randomSearch/1c55402796edef8a6b5bac46d0b25c13/output.pkl
  4. BIN
      cachedir/joblib/run/randomSearch/1f00a5570321dc7e1f836094260ca780/output.pkl
  5. BIN
      cachedir/joblib/run/randomSearch/21741d7f2b7f4f9c7fb92b7383a23242/output.pkl
  6. BIN
      cachedir/joblib/run/randomSearch/2bb3a062a7dd745b6a072bf690932512/output.pkl
  7. 1
      cachedir/joblib/run/randomSearch/33930d7096f07eb6b51da58caad51ed7/metadata.json
  8. BIN
      cachedir/joblib/run/randomSearch/35a0689afd921e6a802735bdd14f8d40/output.pkl
  9. BIN
      cachedir/joblib/run/randomSearch/3801a69d6c6bdf2625bd265ebabc099a/output.pkl
  10. 1
      cachedir/joblib/run/randomSearch/38aeb5fa81fe0b415ceada3a9628cda6/metadata.json
  11. 2
      cachedir/joblib/run/randomSearch/394795b7c0f42fea4a08559c442933ec/metadata.json
  12. 1
      cachedir/joblib/run/randomSearch/3d0c7e83f7046123bbd56793b15c3834/metadata.json
  13. 1
      cachedir/joblib/run/randomSearch/41eb9e04ff245b2484996e93dbd27cc5/metadata.json
  14. 1
      cachedir/joblib/run/randomSearch/450e1077322e56cfc3517d46fc567126/metadata.json
  15. 1
      cachedir/joblib/run/randomSearch/47f8386eab2730da77a11b2a4f698ad7/metadata.json
  16. 1
      cachedir/joblib/run/randomSearch/5701f474535efb82abf5085f37a3d5f5/metadata.json
  17. 1
      cachedir/joblib/run/randomSearch/5cc3b100cfa31b8ade7a9449f9d21fa9/metadata.json
  18. 1
      cachedir/joblib/run/randomSearch/6350a22d7fe281ce33f7ff59a8fb9bf9/metadata.json
  19. BIN
      cachedir/joblib/run/randomSearch/6e8f3aaf26a54d6bc4443f029925bfed/output.pkl
  20. BIN
      cachedir/joblib/run/randomSearch/7be38466d3402f657c3aee2462a63204/output.pkl
  21. BIN
      cachedir/joblib/run/randomSearch/86196624e1a300660087125afd8d738e/output.pkl
  22. BIN
      cachedir/joblib/run/randomSearch/8d22a33ee711963bc1f69e25e06b7ddd/output.pkl
  23. 1
      cachedir/joblib/run/randomSearch/8e7e524d6ec6eb43d22ffc2852f448fa/metadata.json
  24. 1
      cachedir/joblib/run/randomSearch/9c9dc8dad506f66ed9749d93d63f3644/metadata.json
  25. BIN
      cachedir/joblib/run/randomSearch/a2ef680d38f3195fc6c56553ff901379/output.pkl
  26. BIN
      cachedir/joblib/run/randomSearch/a4e25e4148e3136b295ffbec3719902c/output.pkl
  27. BIN
      cachedir/joblib/run/randomSearch/a4eff1312220b934927e8b35405bc525/output.pkl
  28. 1
      cachedir/joblib/run/randomSearch/b224cec55c8ee312740350f8f29ce124/metadata.json
  29. BIN
      cachedir/joblib/run/randomSearch/b63f4ad6ce95d0904e77a19156023dae/output.pkl
  30. 1
      cachedir/joblib/run/randomSearch/c0b6ae93ae3358140cb42192f5140723/metadata.json
  31. 2
      cachedir/joblib/run/randomSearch/c4575447d0f5391b949d4431042dc0d4/metadata.json
  32. BIN
      cachedir/joblib/run/randomSearch/c704ef1151c66da638ef2f9a7ba51e1e/output.pkl
  33. BIN
      cachedir/joblib/run/randomSearch/c80650c01cabdf0eab92e0080711d757/output.pkl
  34. BIN
      cachedir/joblib/run/randomSearch/c8c22619e5e5cc0c11a346d6e73b0548/output.pkl
  35. 1
      cachedir/joblib/run/randomSearch/cf8d5e1faada89f54ec408ad11684bef/metadata.json
  36. BIN
      cachedir/joblib/run/randomSearch/d0947f1cb31ddee9a6ac84d242952072/output.pkl
  37. 1
      cachedir/joblib/run/randomSearch/d22e03918cbc8389dcdfdb56753a304a/metadata.json
  38. 1
      cachedir/joblib/run/randomSearch/d9441100431531e5a3447a697adb8ea6/metadata.json
  39. BIN
      cachedir/joblib/run/randomSearch/d94838b56ebf61f3e904b72aa1167ab0/output.pkl
  40. BIN
      cachedir/joblib/run/randomSearch/d9b2ab877c77f63dce34100682f80929/output.pkl
  41. BIN
      cachedir/joblib/run/randomSearch/dd54b69c3c7688e911657b8e733e50ab/output.pkl
  42. 1
      cachedir/joblib/run/randomSearch/e08b33eb170c53ac03d119cab9b2100f/metadata.json
  43. BIN
      cachedir/joblib/run/randomSearch/e34982f08c06e138e2202e6e5ba833b0/output.pkl
  44. 1
      cachedir/joblib/run/randomSearch/f1525731493793574c4bab01f5bc906f/metadata.json
  45. 1
      cachedir/joblib/run/randomSearch/ff5710335de9f50465330e3ca239e4af/metadata.json
  46. 1
      cachedir/joblib/run/randomSearch/func_code.py
  47. 1
      frontend/src/components/Ensemble.vue
  48. 285
      frontend/src/components/History.vue
  49. 18
      frontend/src/components/Main.vue
  50. 26
      frontend/src/components/Predictions.vue
  51. 5
      frontend/src/components/ValidationController.vue
  52. 4
      frontend/src/components/VotingResults.vue
  53. 4
      insertMongo.py
  54. 1276
      new_data_sets/biodegtest.csv
  55. 19
      run.py

Binary file not shown.

@ -0,0 +1 @@
{"duration": 19.4533109664917, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', metric='manhattan', n_neighbors=93)", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0", "crossValidation": "10", "randomSear": "100"}}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

@ -1 +1 @@
{"duration": 77.61082220077515, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=76, max_iter=50, random_state=42, solver='saga')", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "200", "crossValidation": "10", "randomSear": "200"}} {"duration": 83.79811096191406, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=74, max_iter=350, penalty='none', random_state=42,\n solver='newton-cg')", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "200", "crossValidation": "10", "randomSear": "200"}}

@ -0,0 +1 @@
{"duration": 83.98800611495972, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(criterion='mae', learning_rate=0.01,\n loss='exponential', n_estimators=21, random_state=42,\n subsample=0.7000000000000001)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'loss': ['deviance', 'exponential'], 'learning_rate': [0.01, 0.12, 0.23, 0.34, 0.45], 'subsample': [0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6, 0.7000000000000001, 0.8, 0.9], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "400", "crossValidation": "10", "randomSear": "100"}}

@ -0,0 +1 @@
{"duration": 282.2638130187988, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(alpha=0.0008100000000000001, hidden_layer_sizes=(81, 3),\n max_iter=100, random_state=42, tol=0.0008100000000000001)", "params": "{'hidden_layer_sizes': [(60, 3), (61, 1), (62, 1), (63, 3), (64, 2), (65, 1), (66, 1), (67, 1), (68, 3), (69, 1), (70, 3), (71, 3), (72, 3), (73, 1), (74, 3), (75, 2), (76, 1), (77, 1), (78, 1), (79, 1), (80, 1), (81, 3), (82, 3), (83, 1), (84, 3), (85, 1), (86, 3), (87, 3), (88, 3), (89, 3), (90, 2), (91, 1), (92, 2), (93, 3), (94, 2), (95, 1), (96, 1), (97, 3), (98, 2), (99, 2), (100, 2), (101, 1), (102, 1), (103, 2), (104, 1), (105, 1), (106, 2), (107, 1), (108, 2), (109, 2), (110, 3), (111, 2), (112, 1), (113, 3), (114, 2), (115, 3), (116, 1), (117, 2), (118, 1), (119, 3)], 'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "400", "crossValidation": "10", "randomSear": "200"}}

@ -0,0 +1 @@
{"duration": 62.298343896865845, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=36, max_iter=450, random_state=42)", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "150", "crossValidation": "10", "randomSear": "150"}}

@ -0,0 +1 @@
{"duration": 199.5159022808075, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(criterion='entropy', max_depth=11, n_estimators=26,\n random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_depth': [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "600", "crossValidation": "10", "randomSear": "200"}}

@ -0,0 +1 @@
{"duration": 42.37714505195618, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=98, max_iter=450, penalty='none', random_state=42,\n solver='newton-cg')", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100", "crossValidation": "10", "randomSear": "100"}}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

@ -0,0 +1 @@
{"duration": 240.18228578567505, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(activation='identity', alpha=0.00041000000000000005,\n hidden_layer_sizes=(66, 1), max_iter=100, random_state=42,\n tol=0.00041000000000000005)", "params": "{'hidden_layer_sizes': [(60, 3), (61, 1), (62, 1), (63, 3), (64, 2), (65, 1), (66, 1), (67, 1), (68, 3), (69, 1), (70, 3), (71, 3), (72, 3), (73, 1), (74, 3), (75, 2), (76, 1), (77, 1), (78, 1), (79, 1), (80, 1), (81, 3), (82, 3), (83, 1), (84, 3), (85, 1), (86, 3), (87, 3), (88, 3), (89, 3), (90, 2), (91, 1), (92, 2), (93, 3), (94, 2), (95, 1), (96, 1), (97, 3), (98, 2), (99, 2), (100, 2), (101, 1), (102, 1), (103, 2), (104, 1), (105, 1), (106, 2), (107, 1), (108, 2), (109, 2), (110, 3), (111, 2), (112, 1), (113, 3), (114, 2), (115, 3), (116, 1), (117, 2), (118, 1), (119, 3)], 'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "300", "crossValidation": "10", "randomSear": "150"}}

File diff suppressed because one or more lines are too long

@ -0,0 +1 @@
{"duration": 95.35076880455017, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(criterion='entropy', max_depth=6, n_estimators=52,\n random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_depth': [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "300", "crossValidation": "10", "randomSear": "100"}}

@ -1 +1 @@
{"duration": 22.581008911132812, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', metric='manhattan', n_neighbors=24)", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0", "crossValidation": "10", "randomSear": "200"}} {"duration": 16.793073177337646, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='brute', metric='chebyshev', n_neighbors=54,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0", "crossValidation": "10", "randomSear": "150"}}

File diff suppressed because one or more lines are too long

@ -0,0 +1 @@
{"duration": 165.04137682914734, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(criterion='mae', learning_rate=0.45,\n loss='exponential', n_estimators=82, random_state=42,\n subsample=0.2)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'loss': ['deviance', 'exponential'], 'learning_rate': [0.01, 0.12, 0.23, 0.34, 0.45], 'subsample': [0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6, 0.7000000000000001, 0.8, 0.9], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "800", "crossValidation": "10", "randomSear": "200"}}

@ -0,0 +1 @@
{"duration": 139.34292888641357, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(activation='tanh', alpha=0.00041000000000000005,\n hidden_layer_sizes=(92, 2), max_iter=100, random_state=42,\n tol=0.00041000000000000005)", "params": "{'hidden_layer_sizes': [(60, 3), (61, 1), (62, 1), (63, 3), (64, 2), (65, 1), (66, 1), (67, 1), (68, 3), (69, 1), (70, 3), (71, 3), (72, 3), (73, 1), (74, 3), (75, 2), (76, 1), (77, 1), (78, 1), (79, 1), (80, 1), (81, 3), (82, 3), (83, 1), (84, 3), (85, 1), (86, 3), (87, 3), (88, 3), (89, 3), (90, 2), (91, 1), (92, 2), (93, 3), (94, 2), (95, 1), (96, 1), (97, 3), (98, 2), (99, 2), (100, 2), (101, 1), (102, 1), (103, 2), (104, 1), (105, 1), (106, 2), (107, 1), (108, 2), (109, 2), (110, 3), (111, 2), (112, 1), (113, 3), (114, 2), (115, 3), (116, 1), (117, 2), (118, 1), (119, 3)], 'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "200", "crossValidation": "10", "randomSear": "100"}}

@ -0,0 +1 @@
{"duration": 190.53866386413574, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(criterion='entropy', max_depth=13, n_estimators=71,\n random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_depth': [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "450", "crossValidation": "10", "randomSear": "150"}}

@ -0,0 +1 @@
{"duration": 20.35997724533081, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='brute', metric='euclidean', n_neighbors=72,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0", "crossValidation": "10", "randomSear": "200"}}

@ -0,0 +1 @@
{"duration": 174.78210496902466, "input_args": {"XData": " Fbs Slope Trestbps Exang Thalach Age Chol Sex Oldpeak Restecg Cp Ca Thal\n0 1 0 145 0 150 63 233 1 2.3 0 3 0 1\n1 0 0 130 0 187 37 250 1 3.5 1 2 0 2\n2 0 2 130 0 172 41 204 0 1.4 0 1 0 2\n3 0 2 120 0 178 56 236 1 0.8 1 1 0 2\n4 0 2 120 1 163 57 354 0 0.6 1 0 0 2\n.. ... ... ... ... ... ... ... ... ... ... .. .. ...\n298 0 1 140 1 123 57 241 0 0.2 1 0 0 3\n299 0 1 110 0 132 45 264 1 1.2 1 3 0 3\n300 1 1 144 0 141 68 193 1 3.4 1 0 2 3\n301 0 1 130 1 115 57 131 1 1.2 1 0 1 3\n302 0 1 130 0 174 57 236 0 0.0 0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(learning_rate=0.34, loss='exponential',\n n_estimators=63, random_state=42,\n subsample=0.7000000000000001)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'loss': ['deviance', 'exponential'], 'learning_rate': [0.01, 0.12, 0.23, 0.34, 0.45], 'subsample': [0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6, 0.7000000000000001, 0.8, 0.9], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "600", "crossValidation": "10", "randomSear": "150"}}

@ -1,6 +1,7 @@
# first line: 728 # first line: 728
@memory.cache @memory.cache
def randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd,crossValidation,randomSear): def randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd,crossValidation,randomSear):
print('search')
print(clf) print(clf)
search = RandomizedSearchCV( search = RandomizedSearchCV(
estimator=clf, param_distributions=params, n_iter=randomSear, estimator=clf, param_distributions=params, n_iter=randomSear,

@ -328,6 +328,7 @@ export default {
pushModelsRemainingTempCM.push(allModels[i]) pushModelsRemainingTempCM.push(allModels[i])
} }
} }
console.log(ClassifierIDsListCM)
EventBus.$emit('RemainingPointsCM', pushModelsRemainingTempCM) EventBus.$emit('RemainingPointsCM', pushModelsRemainingTempCM)
EventBus.$emit('callValidationData', ResultsAll) EventBus.$emit('callValidationData', ResultsAll)
EventBus.$emit('SendSelectedPointsUpdateIndicatorCM', ClassifierIDsListCM) EventBus.$emit('SendSelectedPointsUpdateIndicatorCM', ClassifierIDsListCM)

@ -23,6 +23,7 @@ export default {
PerFCM: [], PerFCM: [],
storedEnsem: [], storedEnsem: [],
storedCM: [], storedCM: [],
previouslyIDs: [],
percentageOverall: [], percentageOverall: [],
values: [0,0,0,0,0,0,50,50,50,50,50,0,50,50,50,50,50,0], values: [0,0,0,0,0,0,50,50,50,50,50,0,50,50,50,50,50,0],
valuesStage2: [0,0,0,0,0,0,50,50,50,50,50,0,50,50,50,50,50,0,25,25,25,25,25,0,25,25,25,25,25,0,25,25,25,25,25,0,25,25,25,25,25,0], valuesStage2: [0,0,0,0,0,0,50,50,50,50,50,0,50,50,50,50,50,0,25,25,25,25,25,0,25,25,25,25,25,0,25,25,25,25,25,0,25,25,25,25,25,0],
@ -39,16 +40,85 @@ export default {
svgLeg.selectAll("*").remove(); svgLeg.selectAll("*").remove();
}, },
computePerformanceDiffS () { computePerformanceDiffS () {
var colorsforScatterPlot = this.PerF
var mergedStoreEnsembleLoc = [].concat.apply([], this.storedEnsem) var max = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
var mergedStoreEnsembleLocFormatted = [] var min = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
for (let i = 0; i < mergedStoreEnsembleLoc.length; i++) { var tempDataKNNC = []
mergedStoreEnsembleLocFormatted.push(parseInt(mergedStoreEnsembleLoc[i].replace(/\D/g,''))) var tempDataLRC = []
var tempDataMLPC = []
var tempDataRFC = []
var tempDataGradBC = []
var tempDataKNNM = []
var tempDataLRM = []
var tempDataMLPM = []
var tempDataRFM = []
var tempDataGradBM = []
var splitData = []
console.log(this.previouslyIDs)
for (let i = 0; i < this.previouslyIDs.length; i++) {
let tempSplit = this.previouslyIDs[i].split(/([0-9]+)/)
if (tempSplit[0] == 'KNNC') {
tempDataKNNC.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'LRC') {
tempDataLRC.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'MLPC') {
tempDataMLPC.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'RFC') {
tempDataRFC.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'GradBC') {
tempDataGradBC.push(this.previouslyIDs[i])
} else if (tempSplit[0] == 'KNNM') {
tempDataKNNM.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'LRM') {
tempDataLRM.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'MLPM') {
tempDataMLPM.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'RFM') {
tempDataRFM.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'GradBM') {
tempDataGradBM.push(this.previouslyIDs[i])
}
else {
}
} }
splitData.push(tempDataKNNC)
splitData.push(tempDataLRC)
splitData.push(tempDataMLPC)
splitData.push(tempDataRFC)
splitData.push(tempDataGradBC)
splitData.push(tempDataKNNM)
splitData.push(tempDataLRM)
splitData.push(tempDataMLPM)
splitData.push(tempDataRFM)
splitData.push(tempDataGradBM)
for (let i = 0; i < splitData.length; i++) {
var colorsforScatterPlot = this.PerF
if (splitData[i].length != 0) {
var mergedStoreEnsembleLoc = [].concat.apply([], splitData[i])
var mergedStoreEnsembleLocFormatted = []
for (let j = 0; j < mergedStoreEnsembleLoc.length; j++) {
mergedStoreEnsembleLocFormatted.push(parseInt(mergedStoreEnsembleLoc[j].replace(/\D/g,'')))
}
colorsforScatterPlot = mergedStoreEnsembleLocFormatted.map((item) => colorsforScatterPlot[item])
max[i] = Math.max.apply(Math, colorsforScatterPlot)
min[i] = Math.min.apply(Math, colorsforScatterPlot)
}
colorsforScatterPlot = mergedStoreEnsembleLocFormatted.map((item) => colorsforScatterPlot[item]) }
var max = Math.max.apply(Math, colorsforScatterPlot)
var min = Math.min.apply(Math, colorsforScatterPlot) console.log(max)
console.log(min)
var countMax = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] var countMax = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
var countMin = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] var countMin = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
@ -57,199 +127,200 @@ export default {
let tempSplit = this.storedCM[i].split(/([0-9]+)/) let tempSplit = this.storedCM[i].split(/([0-9]+)/)
if (tempSplit[0] == 'KNNCC') { if (tempSplit[0] == 'KNNCC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[0]) {
countMax[0] = countMax[0] + 1 countMax[0] = countMax[0] + 1
} else if (this.PerFCM[i] < min) { } else if (this.PerFCM[i] < min[0]) {
countMin[0] = countMin[0] + 1 countMin[0] = countMin[0] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'KNNCM') { else if (tempSplit[0] == 'KNNCM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[0]) {
countMax[1] = countMax[1] + 1 countMax[1] = countMax[1] + 1
} else if (this.PerFCM[i] < min) { } else if (this.PerFCM[i] < min[0]) {
countMin[1] = countMin[1] + 1 countMin[1] = countMin[1] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'LRCC') { else if (tempSplit[0] == 'LRCC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[1]) {
countMax[2] = countMax[2] + 1 countMax[2] = countMax[2] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[1]) {
countMin[2] = countMin[2] + 1 countMin[2] = countMin[2] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'LRCM') { else if (tempSplit[0] == 'LRCM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[1]) {
countMax[3] = countMax[3] + 1 countMax[3] = countMax[3] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[1]) {
countMin[3] = countMin[3] + 1 countMin[3] = countMin[3] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'MLPCC') { else if (tempSplit[0] == 'MLPCC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[2]) {
countMax[4] = countMax[4] + 1 countMax[4] = countMax[4] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[2]) {
countMin[4] = countMin[4] + 1 countMin[4] = countMin[4] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'MLPCM') { else if (tempSplit[0] == 'MLPCM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[2]) {
countMax[5] = countMax[5] + 1 countMax[5] = countMax[5] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[2]) {
countMin[5] = countMin[5] + 1 countMin[5] = countMin[5] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'RFCC') { else if (tempSplit[0] == 'RFCC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[3]) {
countMax[6] = countMax[6] + 1 countMax[6] = countMax[6] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[3]) {
countMin[6] = countMin[6] + 1 countMin[6] = countMin[6] + 1
} }
} }
else if (tempSplit[0] == 'RFCM') { else if (tempSplit[0] == 'RFCM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[3]) {
countMax[7] = countMax[7] + 1 countMax[7] = countMax[7] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[3]) {
countMin[7] = countMin[7] + 1 countMin[7] = countMin[7] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'GradBCC') { else if (tempSplit[0] == 'GradBCC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[4]) {
countMax[8] = countMax[8] + 1 countMax[8] = countMax[8] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[4]) {
countMin[8] = countMin[8] + 1 countMin[8] = countMin[8] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'GradBCM') { else if (tempSplit[0] == 'GradBCM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[4]) {
countMax[9] = countMax[9] + 1 countMax[9] = countMax[9] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[4]) {
countMin[9] = countMin[9] + 1 countMin[9] = countMin[9] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'KNNMC') { else if (tempSplit[0] == 'KNNMC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[5]) {
countMax[10] = countMax[10] + 1 countMax[10] = countMax[10] + 1
} else if (this.PerFCM[i] < min) { } else if (this.PerFCM[i] < min[5]) {
countMin[10] = countMin[10] + 1 countMin[10] = countMin[10] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'KNNMM') { else if (tempSplit[0] == 'KNNMM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[5]) {
countMax[11] = countMax[11] + 1 countMax[11] = countMax[11] + 1
} else if (this.PerFCM[i] < min) { } else if (this.PerFCM[i] < min[5]) {
countMin[11] = countMin[11] + 1 countMin[11] = countMin[11] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'LRMC') { else if (tempSplit[0] == 'LRMC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[6]) {
countMax[12] = countMax[12] + 1 countMax[12] = countMax[12] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[6]) {
countMin[12] = countMin[12] + 1 countMin[12] = countMin[12] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'LRMM') { else if (tempSplit[0] == 'LRMM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[6]) {
countMax[13] = countMax[13] + 1 countMax[13] = countMax[13] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[6]) {
countMin[13] = countMin[13] + 1 countMin[13] = countMin[13] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'MLPMC') { else if (tempSplit[0] == 'MLPMC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[7]) {
countMax[14] = countMax[14] + 1 countMax[14] = countMax[14] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[7]) {
countMin[14] = countMin[14] + 1 countMin[14] = countMin[14] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'MLPMM') { else if (tempSplit[0] == 'MLPMM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[7]) {
countMax[15] = countMax[15] + 1 countMax[15] = countMax[15] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[7]) {
countMin[15] = countMin[15] + 1 countMin[15] = countMin[15] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'RFMC') { else if (tempSplit[0] == 'RFMC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[8]) {
countMax[16] = countMax[16] + 1 countMax[16] = countMax[16] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[8]) {
countMin[16] = countMin[16] + 1 countMin[16] = countMin[16] + 1
} }
} }
else if (tempSplit[0] == 'RFMM') { else if (tempSplit[0] == 'RFMM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[8]) {
countMax[17] = countMax[17] + 1 countMax[17] = countMax[17] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[8]) {
countMin[17] = countMin[17] + 1 countMin[17] = countMin[17] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'GradBMC') { else if (tempSplit[0] == 'GradBMC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[9]) {
countMax[18] = countMax[18] + 1 countMax[18] = countMax[18] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[9]) {
countMin[18] = countMin[18] + 1 countMin[18] = countMin[18] + 1
} else { } else {
continue continue
} }
} }
else { else {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[9]) {
countMax[19] = countMax[19] + 1 countMax[19] = countMax[19] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[9]) {
countMin[19] = countMin[19] + 1 countMin[19] = countMin[19] + 1
} else { } else {
continue continue
} }
} }
} }
console.log(countMax)
console.log(countMin)
// var percentage = [] // var percentage = []
// for (let j = 0; j < countMax.length; j++) { // for (let j = 0; j < countMax.length; j++) {
// if (j >= 15) { // if (j >= 15) {
@ -279,8 +350,7 @@ export default {
// } // }
// } // }
//CORRECT //CORRECT
console.log(countMax)
console.log(countMin)
var percentage = [] var percentage = []
for (let j = 0; j < countMax.length; j++) { for (let j = 0; j < countMax.length; j++) {
if (j >= 15) { if (j >= 15) {
@ -314,7 +384,7 @@ console.log(countMin)
}, },
SankeyViewStage3 () { SankeyViewStage3 () {
var valuesLoc = this.valuesStage2 var valuesLoc = this.valuesStage2
console.log(valuesLoc)
var localStep = 2 var localStep = 2
var numberofModels = 6 var numberofModels = 6
var units = "Models"; var units = "Models";
@ -440,9 +510,9 @@ console.log(countMin)
var colorDiff var colorDiff
colorDiff = d3v5.scaleSequential(d3v5.interpolatePRGn).domain([-100, 100]) colorDiff = d3v5.scaleSequential(d3v5.interpolatePRGn).domain([-100, 100])
var percentage = this.percentageOverall var percentage = this.percentageOverall
console.log(percentage)
var previousPercentage = this.storePreviousPercentage var previousPercentage = this.storePreviousPercentage
console.log(previousPercentage)
// add in the links // add in the links
var link = svg.append("g").selectAll(".link") var link = svg.append("g").selectAll(".link")
.data(graph.links) .data(graph.links)
@ -630,19 +700,60 @@ console.log(countMin)
}, },
computePerformanceDiff () { computePerformanceDiff () {
var colorsforScatterPlot = this.PerF
var mergedStoreEnsembleLoc = [].concat.apply([], this.storedEnsem) var max = [0, 0, 0, 0, 0]
var mergedStoreEnsembleLocFormatted = [] var min = [0, 0, 0, 0, 0]
for (let i = 0; i < mergedStoreEnsembleLoc.length; i++) { var tempDataKNN = []
mergedStoreEnsembleLocFormatted.push(parseInt(mergedStoreEnsembleLoc[i].replace(/\D/g,''))) var tempDataLR = []
var tempDataMLP = []
var tempDataRF = []
var tempDataGradB = []
var splitData = []
for (let i = 0; i < this.previouslyIDs.length; i++) {
let tempSplit = this.previouslyIDs[i].split(/([0-9]+)/)
if (tempSplit[0] == 'KNN') {
tempDataKNN.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'LR') {
tempDataLR.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'MLP') {
tempDataMLP.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'RF') {
tempDataRF.push(this.previouslyIDs[i])
}
else if (tempSplit[0] == 'GradB') {
tempDataGradB.push(this.previouslyIDs[i])
}
else {
}
} }
splitData.push(tempDataKNN)
splitData.push(tempDataLR)
splitData.push(tempDataMLP)
splitData.push(tempDataRF)
splitData.push(tempDataGradB)
for (let i = 0; i < splitData.length; i++) {
var colorsforScatterPlot = this.PerF
if (splitData[i].length != 0) {
var mergedStoreEnsembleLoc = [].concat.apply([], splitData[i])
var mergedStoreEnsembleLocFormatted = []
for (let j = 0; j < mergedStoreEnsembleLoc.length; j++) {
mergedStoreEnsembleLocFormatted.push(parseInt(mergedStoreEnsembleLoc[j].replace(/\D/g,'')))
}
colorsforScatterPlot = mergedStoreEnsembleLocFormatted.map((item) => colorsforScatterPlot[item]) colorsforScatterPlot = mergedStoreEnsembleLocFormatted.map((item) => colorsforScatterPlot[item])
var max = Math.max.apply(Math, colorsforScatterPlot) max[i] = Math.max.apply(Math, colorsforScatterPlot)
var min = Math.min.apply(Math, colorsforScatterPlot) min[i] = Math.min.apply(Math, colorsforScatterPlot)
}
}
console.log(max)
console.log(min)
var countMax = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] var countMax = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
var countMin = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] var countMin = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
@ -650,104 +761,104 @@ console.log(countMin)
let tempSplit = this.storedCM[i].split(/([0-9]+)/) let tempSplit = this.storedCM[i].split(/([0-9]+)/)
if (tempSplit[0] == 'KNNC') { if (tempSplit[0] == 'KNNC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[0]) {
countMax[0] = countMax[0] + 1 countMax[0] = countMax[0] + 1
} else if (this.PerFCM[i] < min) { } else if (this.PerFCM[i] < min[0]) {
countMin[0] = countMin[0] + 1 countMin[0] = countMin[0] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'KNNM') { else if (tempSplit[0] == 'KNNM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[0]) {
countMax[1] = countMax[1] + 1 countMax[1] = countMax[1] + 1
} else if (this.PerFCM[i] < min) { } else if (this.PerFCM[i] < min[0]) {
countMin[1] = countMin[1] + 1 countMin[1] = countMin[1] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'LRC') { else if (tempSplit[0] == 'LRC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[1]) {
countMax[2] = countMax[2] + 1 countMax[2] = countMax[2] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[1]) {
countMin[2] = countMin[2] + 1 countMin[2] = countMin[2] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'LRM') { else if (tempSplit[0] == 'LRM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[1]) {
countMax[3] = countMax[3] + 1 countMax[3] = countMax[3] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[1]) {
countMin[3] = countMin[3] + 1 countMin[3] = countMin[3] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'MLPC') { else if (tempSplit[0] == 'MLPC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[2]) {
countMax[4] = countMax[4] + 1 countMax[4] = countMax[4] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[2]) {
countMin[4] = countMin[4] + 1 countMin[4] = countMin[4] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'MLPM') { else if (tempSplit[0] == 'MLPM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[2]) {
countMax[5] = countMax[5] + 1 countMax[5] = countMax[5] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[2]) {
countMin[5] = countMin[5] + 1 countMin[5] = countMin[5] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'RFC') { else if (tempSplit[0] == 'RFC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[3]) {
countMax[6] = countMax[6] + 1 countMax[6] = countMax[6] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[3]) {
countMin[6] = countMin[6] + 1 countMin[6] = countMin[6] + 1
} }
} }
else if (tempSplit[0] == 'RFM') { else if (tempSplit[0] == 'RFM') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[3]) {
countMax[7] = countMax[7] + 1 countMax[7] = countMax[7] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[3]) {
countMin[7] = countMin[7] + 1 countMin[7] = countMin[7] + 1
} else { } else {
continue continue
} }
} }
else if (tempSplit[0] == 'GradBC') { else if (tempSplit[0] == 'GradBC') {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[4]) {
countMax[8] = countMax[8] + 1 countMax[8] = countMax[8] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[4]) {
countMin[8] = countMin[8] + 1 countMin[8] = countMin[8] + 1
} else { } else {
continue continue
} }
} }
else { else {
if (this.PerFCM[i] > max) { if (this.PerFCM[i] > max[4]) {
countMax[9] = countMax[9] + 1 countMax[9] = countMax[9] + 1
} }
else if (this.PerFCM[i] < min) { else if (this.PerFCM[i] < min[4]) {
countMin[9] = countMin[9] + 1 countMin[9] = countMin[9] + 1
} else { } else {
continue continue
} }
} }
} }
console.log(countMax) console.log(countMax)
console.log(countMin) console.log(countMin)
// var percentage = [] // var percentage = []
// for (let j = 0; j < countMax.length; j++) { // for (let j = 0; j < countMax.length; j++) {
// if (j >= 5) { // if (j >= 5) {
@ -1357,6 +1468,10 @@ console.log(countMin)
mounted() { mounted() {
//EventBus.$on('emittedEventCallingSankeyLegend', this.LegendStable) //EventBus.$on('emittedEventCallingSankeyLegend', this.LegendStable)
EventBus.$on('updateRandomS', data => { this.RandomSearLoc = data })
EventBus.$on('updateStage1', data => { this.values = data })
EventBus.$on('updateStage2', data => { this.valuesStage2 = data })
EventBus.$on('emittedEventCallingSankeyStage2', this.SankeyViewStage2) EventBus.$on('emittedEventCallingSankeyStage2', this.SankeyViewStage2)
EventBus.$on('emittedEventCallingSankeyStage3', this.SankeyViewStage3) EventBus.$on('emittedEventCallingSankeyStage3', this.SankeyViewStage3)
@ -1375,6 +1490,8 @@ console.log(countMin)
EventBus.$on('ResponsiveandChange', data => { EventBus.$on('ResponsiveandChange', data => {
this.WH = data}) this.WH = data})
EventBus.$on('SendModelsAll', data => { this.previouslyIDs = data })
EventBus.$on('SendPerformance', data => { EventBus.$on('SendPerformance', data => {
this.PerF = data}) this.PerF = data})
EventBus.$on('SendPerformanceCM', data => { EventBus.$on('SendPerformanceCM', data => {

@ -40,7 +40,7 @@
<b-row class="md-3"> <b-row class="md-3">
<b-col cols="6"> <b-col cols="6">
<mdb-card style="margin-top: 15px;"> <mdb-card style="margin-top: 15px;">
<mdb-card-header color="primary-color" tag="h5" class="text-center">Solution Space of Hyper-Parameters <mdb-card-header color="primary-color" tag="h5" class="text-center">Hyper-Parameters' Space
[Sel: {{OverSelLength}} / All: {{OverAllLength}}]<small class="float-right"></small><span class="badge badge-info badge-pill float-right">Projection<span class="badge badge-light" style="margin-left:4px; margin-bottom:1px">1</span></span> [Sel: {{OverSelLength}} / All: {{OverAllLength}}]<small class="float-right"></small><span class="badge badge-info badge-pill float-right">Projection<span class="badge badge-light" style="margin-left:4px; margin-bottom:1px">1</span></span>
</mdb-card-header> </mdb-card-header>
<mdb-card-body> <mdb-card-body>
@ -88,7 +88,7 @@
</b-col> </b-col>
<b-col cols="3"> <b-col cols="3">
<mdb-card style="margin-top: 15px;"> <mdb-card style="margin-top: 15px;">
<mdb-card-header color="primary-color" tag="h5" class="text-center"><span class="float-left"><font-awesome-icon icon="calculator" /></span>Predictive Results for Majority-Voting Ensemble<span class="badge badge-primary badge-pill float-right">Active<span class="badge badge-light" style="margin-left:4px; margin-bottom:1px">2</span></span> <mdb-card-header color="primary-color" tag="h5" class="text-center"><span class="float-left"><font-awesome-icon icon="calculator" /></span>Performance for Majority-Voting Ensemble<span class="badge badge-primary badge-pill float-right">Active<span class="badge badge-light" style="margin-left:4px; margin-bottom:1px">2</span></span>
</mdb-card-header> </mdb-card-header>
<mdb-card-body> <mdb-card-body>
<mdb-card-text class="text-center" style="min-height: 270px"> <mdb-card-text class="text-center" style="min-height: 270px">
@ -312,11 +312,12 @@ export default Vue.extend({
EventBus.$emit('callAlgorithhms') EventBus.$emit('callAlgorithhms')
this.Status = " (S) Stage 1" this.Status = " (S) Stage 1"
} else { } else {
var IDsPreviously = JSON.parse(this.OverviewResults[16])
var Performance = JSON.parse(this.OverviewResults[1]) var Performance = JSON.parse(this.OverviewResults[1])
console.log(this.storeEnsemblePermanently) EventBus.$emit('SendModelsAll', IDsPreviously)
EventBus.$emit('SendPerformance', Performance)
EventBus.$emit('SendStoredEnsembleHist', this.storeEnsemblePermanently) EventBus.$emit('SendStoredEnsembleHist', this.storeEnsemblePermanently)
EventBus.$emit('SendStoredEnsemble', this.storeEnsemblePermanently) EventBus.$emit('SendStoredEnsemble', this.storeEnsemblePermanently)
EventBus.$emit('SendPerformance', Performance)
EventBus.$emit('emittedEventCallingCrossoverMutation', this.OverviewResults) EventBus.$emit('emittedEventCallingCrossoverMutation', this.OverviewResults)
this.PredictSelEnsem = [] this.PredictSelEnsem = []
this.storeBothEnsCM[1] = this.OverviewResults this.storeBothEnsCM[1] = this.OverviewResults
@ -706,8 +707,11 @@ export default Vue.extend({
axios.post(path, postData, axiosConfig) axios.post(path, postData, axiosConfig)
.then(response => { .then(response => {
console.log('File name was sent successfully!') console.log('File name was sent successfully!')
this.CMNumberofModelsOFFICIAL = [0,0,0,0,0,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0], this.CMNumberofModelsOFFICIAL = [0,0,0,0,0,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0]
this.CMNumberofModelsOFFICIALS2 = [0,0,0,0,0,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0], this.CMNumberofModelsOFFICIALS2 = [0,0,0,0,0,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,this.RandomSear/2,0,Math.floor(this.RandomSear/4),this.RandomSear/4,Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),0,Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),0,Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),0,Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),Math.floor(this.RandomSear/4),0]
EventBus.$emit('updateRandomS', this.RandomSear)
EventBus.$emit('updateStage1', this.CMNumberofModelsOFFICIAL)
EventBus.$emit('updateStage2', this.CMNumberofModelsOFFICIALS2)
this.SendAlgorithmsToServer() this.SendAlgorithmsToServer()
}) })
.catch(error => { .catch(error => {
@ -923,7 +927,7 @@ export default Vue.extend({
this.storeEnsemblePermanently.push(this.storeEnsemble[i]) this.storeEnsemblePermanently.push(this.storeEnsemble[i])
} }
var mergedStoreEnsembleLoc = [].concat.apply([], this.storeEnsemblePermanently) var mergedStoreEnsembleLoc = [].concat.apply([], this.storeEnsemblePermanently)
console.log(mergedStoreEnsembleLoc)
if (this.CurrentStage == 1) { if (this.CurrentStage == 1) {
var postData = { var postData = {
RemainingPoints: this.unselectedRemainingPoints, RemainingPoints: this.unselectedRemainingPoints,

@ -64,7 +64,6 @@ export default {
} }
getIndices.push(clTemp) getIndices.push(clTemp)
} }
} }
else { else {
var tempFirst = [] var tempFirst = []
@ -78,12 +77,10 @@ export default {
getIndices.push(tempFirst) getIndices.push(tempFirst)
getIndices.push(tempLast) getIndices.push(tempLast)
} }
if (this.RetrieveValueFi == "heartC") { if (this.RetrieveValueFi == "heartC") {
getIndices.reverse() getIndices.reverse()
} }
var predictions = JSON.parse(this.GetResultsAll[12]) var predictions = JSON.parse(this.GetResultsAll[12])
var KNNPred = predictions[0] var KNNPred = predictions[0]
var LRPred = predictions[1] var LRPred = predictions[1]
@ -227,8 +224,13 @@ export default {
var cellSpacing = 2; var cellSpacing = 2;
var cellSize = 4 var cellSize = 4
if (!this.flag) {
var lengthOverall = classStore.length
} else {
var lengthOverall = 2028
}
// === First call === // // === First call === //
databind(classStore, size, sqrtSize); // ...then update the databind function databind(classStore, size, sqrtSize, lengthOverall); // ...then update the databind function
var t = d3.timer(function(elapsed) { var t = d3.timer(function(elapsed) {
draw(); draw();
@ -238,7 +240,7 @@ export default {
// === Bind and draw functions === // // === Bind and draw functions === //
function databind(data, size, sqrtSize) { function databind(data, size, sqrtSize, lengthOverallLocal) {
colourScale = d3.scaleSequential(d3.interpolateGreens).domain([0, 100]) colourScale = d3.scaleSequential(d3.interpolateGreens).domain([0, 100])
@ -253,7 +255,7 @@ export default {
return groupSpacing * x0 + (cellSpacing + cellSize) * (x1 + x0 * 10); return groupSpacing * x0 + (cellSpacing + cellSize) * (x1 + x0 * 10);
}) })
.attr('y', function(d, i) { .attr('y', function(d, i) {
var y0 = Math.floor(i / 2028), y1 = Math.floor(i % size / sqrtSize); var y0 = Math.floor(i / lengthOverallLocal), y1 = Math.floor(i % size / sqrtSize);
return groupSpacing * y0 + (cellSpacing + cellSize) * (y1 + y0 * 10); return groupSpacing * y0 + (cellSpacing + cellSize) * (y1 + y0 * 10);
}) })
.attr('width', 0) .attr('width', 0)
@ -503,8 +505,14 @@ export default {
var cellSpacing = 2; var cellSpacing = 2;
var cellSize = 4 var cellSize = 4
if (!this.flag) {
var lengthOverall = classStore.length
} else {
var lengthOverall = 2028
}
// === First call === // // === First call === //
databind(classStore, size, sqrtSize); // ...then update the databind function databind(classStore, size, sqrtSize, lengthOverall); // ...then update the databind function
var t = d3.timer(function(elapsed) { var t = d3.timer(function(elapsed) {
draw(); draw();
@ -514,7 +522,7 @@ export default {
// === Bind and draw functions === // // === Bind and draw functions === //
function databind(data, size, sqrtSize) { function databind(data, size, sqrtSize, lengthOverallLocal) {
colourScale = d3.scaleSequential(d3.interpolatePRGn).domain([-100, 100]) colourScale = d3.scaleSequential(d3.interpolatePRGn).domain([-100, 100])
@ -529,7 +537,7 @@ export default {
return groupSpacing * x0 + (cellSpacing + cellSize) * (x1 + x0 * 10); return groupSpacing * x0 + (cellSpacing + cellSize) * (x1 + x0 * 10);
}) })
.attr('y', function(d, i) { .attr('y', function(d, i) {
var y0 = Math.floor(i / 2028), y1 = Math.floor(i % size / sqrtSize); var y0 = Math.floor(i / lengthOverallLocal), y1 = Math.floor(i % size / sqrtSize);
return groupSpacing * y0 + (cellSpacing + cellSize) * (y1 + y0 * 10); return groupSpacing * y0 + (cellSpacing + cellSize) * (y1 + y0 * 10);
}) })
.attr('width', 0) .attr('width', 0)

@ -104,6 +104,7 @@ export default {
activeLines.push('meanSelection') activeLines.push('meanSelection')
} }
} else { } else {
var valid = JSON.parse(this.ResultsValid[3]) var valid = JSON.parse(this.ResultsValid[3])
var mergedStoreEnsembleLoc = [].concat.apply([], this.storedEnsemble) var mergedStoreEnsembleLoc = [].concat.apply([], this.storedEnsemble)
@ -139,8 +140,8 @@ export default {
} }
if (this.selectedEnsem.length != 0) { if (this.selectedEnsem.length != 0) {
if (this.selectedEnsem.includes(mergedStoreEnsembleLoc[i])) { if (this.selectedEnsem.includes(mergedStoreEnsembleLoc[i])) {
sumGlobalSel[j] = sumGlobalSel[j] + tempValid[i] sumGlobalSel[j-measure] = sumGlobalSel[j-measure] + tempValid[i]
countValuesSel[j] = countValuesSel[j] + 1 countValuesSel[j-measure] = countValuesSel[j-measure] + 1
} }
} }
} }

@ -172,8 +172,8 @@ export default {
.attr('class', 'score') .attr('class', 'score')
.text(function(d){return d[rCol];}); .text(function(d){return d[rCol];});
chart.append("text").attr("x",width/3).attr("y", 20).attr("class","title").text(info[0]); chart.append("text").attr("x",width/3).attr("y", 20).attr("class","title").text(info[0]+' (%)');
chart.append("text").attr("x",width/3+rightOffset).attr("y", 20).attr("class","title").text(info[1]); chart.append("text").attr("x",width/3+rightOffset).attr("y", 20).attr("class","title").text(info[1]+' (%)');
chart.append("text").attr("x",width+labelArea/3).attr("y", 20).attr("class","title").text("Metrics"); chart.append("text").attr("x",width+labelArea/3).attr("y", 20).attr("class","title").text("Metrics");
}, },
legendColFinal () { legendColFinal () {

@ -10,7 +10,7 @@ def import_content(filepath):
mng_client = pymongo.MongoClient('localhost', 27017) mng_client = pymongo.MongoClient('localhost', 27017)
mng_db = mng_client['mydb'] mng_db = mng_client['mydb']
#collection_name = 'StanceCTest' #collection_name = 'StanceCTest'
collection_name = 'biodegC' collection_name = 'biodegCTest'
db_cm = mng_db[collection_name] db_cm = mng_db[collection_name]
cdir = os.path.dirname(__file__) cdir = os.path.dirname(__file__)
file_res = os.path.join(cdir, filepath) file_res = os.path.join(cdir, filepath)
@ -21,5 +21,5 @@ def import_content(filepath):
db_cm.insert(data_json) db_cm.insert(data_json)
if __name__ == "__main__": if __name__ == "__main__":
filepath = '/Users/anchaa/Documents/Research/HyperSearVis_code/new_data_sets/biodeg.csv' filepath = '/Users/anchaa/Documents/Research/HyperSearVis_code/new_data_sets/biodegtest.csv'
import_content(filepath) import_content(filepath)

File diff suppressed because it is too large Load Diff

@ -333,6 +333,18 @@ def retrieveFileName():
global addGradB global addGradB
addGradB = addRF+randomSearchVar addGradB = addRF+randomSearchVar
global KNNModelsCount
global LRModelsCount
global MLPModelsCount
global RFModelsCount
global GradBModelsCount
KNNModelsCount = 0
LRModelsCount = KNNModelsCount+randomSearchVar
MLPModelsCount = LRModelsCount+randomSearchVar
RFModelsCount = MLPModelsCount+randomSearchVar
GradBModelsCount = RFModelsCount+randomSearchVar
# Initializing models # Initializing models
global RetrieveModelsList global RetrieveModelsList
@ -398,6 +410,7 @@ def retrieveFileName():
global fileInput global fileInput
fileInput = data['fileName'] fileInput = data['fileName']
DataRawLength = -1 DataRawLength = -1
DataRawLengthTest = -1 DataRawLengthTest = -1
print(data['fileName']) print(data['fileName'])
@ -983,7 +996,6 @@ def PreprocessingPred():
predictionsRF = ResultsGatheredFirst[4] + ResultsGatheredLast[4] predictionsRF = ResultsGatheredFirst[4] + ResultsGatheredLast[4]
predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5]
yDataSorted = yDataSortedFirst + yDataSortedLast yDataSorted = yDataSortedFirst + yDataSortedLast
return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions]
def computeClusters(dataLocal,one,two,three,four,five,flagLocal): def computeClusters(dataLocal,one,two,three,four,five,flagLocal):
@ -1813,12 +1825,10 @@ def EnsembleModel (Models, keyRetrieved):
sclf.fit(XData, yData) sclf.fit(XData, yData)
y_pred = sclf.predict(XDataTest) y_pred = sclf.predict(XDataTest)
print('Test data set') print('Test data set')
print(accuracy_score(yDataTest, y_pred))
print(classification_report(yDataTest, y_pred)) print(classification_report(yDataTest, y_pred))
y_pred = sclf.predict(XDataExternal) y_pred = sclf.predict(XDataExternal)
print('External data set') print('External data set')
print(accuracy_score(yDataExternal, y_pred))
print(classification_report(yDataExternal, y_pred)) print(classification_report(yDataExternal, y_pred))
return 'Okay' return 'Okay'
@ -1867,6 +1877,8 @@ def returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,parametersGen,sumP
XDataJSONEntireSet = XData.to_json(orient='records') XDataJSONEntireSet = XData.to_json(orient='records')
XDataColumns = XData.columns.tolist() XDataColumns = XData.columns.tolist()
ModelsIDsPreviously = PreprocessingIDs()
Results.append(json.dumps(ModelsIDs)) Results.append(json.dumps(ModelsIDs))
Results.append(json.dumps(sumPerClassifier)) Results.append(json.dumps(sumPerClassifier))
Results.append(json.dumps(parametersGenPD)) Results.append(json.dumps(parametersGenPD))
@ -1883,6 +1895,7 @@ def returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,parametersGen,sumP
Results.append(json.dumps(names_labels)) Results.append(json.dumps(names_labels))
Results.append(json.dumps(yDataSorted)) Results.append(json.dumps(yDataSorted))
Results.append(json.dumps(mode)) Results.append(json.dumps(mode))
Results.append(json.dumps(ModelsIDsPreviously))
return Results return Results

Loading…
Cancel
Save