parent
							
								
									4383fdfc00
								
							
						
					
					
						commit
						30a2ac5bbe
					
				
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						| @ -0,0 +1 @@ | ||||
| {"duration": 236.167307138443, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(alpha=0.00021, hidden_layer_sizes=(113, 2), max_iter=100,\n              random_state=42, solver='sgd', tol=0.00041000000000000005)", "params": "{'hidden_layer_sizes': [(60, 2), (61, 1), (62, 2), (63, 3), (64, 3), (65, 1), (66, 2), (67, 2), (68, 1), (69, 2), (70, 2), (71, 3), (72, 2), (73, 3), (74, 2), (75, 1), (76, 2), (77, 2), (78, 1), (79, 3), (80, 1), (81, 3), (82, 3), (83, 1), (84, 2), (85, 1), (86, 1), (87, 2), (88, 3), (89, 2), (90, 2), (91, 3), (92, 1), (93, 1), (94, 1), (95, 1), (96, 2), (97, 1), (98, 3), (99, 2), (100, 1), (101, 3), (102, 1), (103, 3), (104, 3), (105, 1), (106, 1), (107, 1), (108, 3), (109, 1), (110, 1), (111, 3), (112, 2), (113, 2), (114, 1), (115, 2), (116, 2), (117, 3), (118, 3), (119, 2)], 'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "200"}} | ||||
									
										Binary file not shown.
									
								
							
						| @ -0,0 +1 @@ | ||||
| {"duration": 167.10102701187134, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(criterion='mse', learning_rate=0.12, n_estimators=80,\n                           random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "400"}} | ||||
									
										Binary file not shown.
									
								
							
						| @ -1 +0,0 @@ | ||||
| {"duration": 24.977500915527344, "input_args": {"XData": "     Age  Sex  Cp  Trestbps  Chol  Fbs  Restecg  Thalach  Exang  Oldpeak  Slope  Ca  Thal\n0     63    1   3       145   233    1        0      150      0      2.3      0   0     1\n1     37    1   2       130   250    0        1      187      0      3.5      0   0     2\n2     41    0   1       130   204    0        0      172      0      1.4      2   0     2\n3     56    1   1       120   236    0        1      178      0      0.8      2   0     2\n4     57    0   0       120   354    0        1      163      1      0.6      2   0     2\n..   ...  ...  ..       ...   ...  ...      ...      ...    ...      ...    ...  ..   ...\n298   57    0   0       140   241    0        1      123      1      0.2      1   0     3\n299   45    1   3       110   264    0        1      132      0      1.2      1   0     3\n300   68    1   0       144   193    1        1      141      0      3.4      1   2     3\n301   57    1   0       130   131    0        1      115      1      1.2      1   1     3\n302   57    0   1       130   236    0        0      174      0      0.0      1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=51, class_weight=None, dual=False, fit_intercept=True,\n                   intercept_scaling=1, l1_ratio=None, max_iter=250,\n                   multi_class='auto', n_jobs=None, penalty='l2',\n                   random_state=42, solver='newton-cg', tol=0.0001, verbose=0,\n                   warm_start=False)", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100"}} | ||||
| @ -1 +0,0 @@ | ||||
| {"duration": 12.29799771308899, "input_args": {"XData": "     Age  Sex  Cp  Trestbps  Chol  Fbs  Restecg  Thalach  Exang  Oldpeak  Slope  Ca  Thal\n0     63    1   3       145   233    1        0      150      0      2.3      0   0     1\n1     37    1   2       130   250    0        1      187      0      3.5      0   0     2\n2     41    0   1       130   204    0        0      172      0      1.4      2   0     2\n3     56    1   1       120   236    0        1      178      0      0.8      2   0     2\n4     57    0   0       120   354    0        1      163      1      0.6      2   0     2\n..   ...  ...  ..       ...   ...  ...      ...      ...    ...      ...    ...  ..   ...\n601   57    0   0       140   241    0        1      123      1      0.2      1   0     3\n602   45    1   3       110   264    0        1      132      0      1.2      1   0     3\n603   68    1   0       144   193    1        1      141      0      3.4      1   2     3\n604   57    1   0       130   131    0        1      115      1      1.2      1   1     3\n605   57    0   1       130   236    0        0      174      0      0.0      1   1     2\n\n[606 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='brute', leaf_size=30, metric='manhattan',\n                     metric_params=None, n_jobs=None, n_neighbors=73, p=2,\n                     weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} | ||||
| @ -0,0 +1 @@ | ||||
| {"duration": 175.59277415275574, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(criterion='entropy', n_estimators=67, random_state=42)", "params": "{'n_estimators': [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "300"}} | ||||
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						| @ -1 +0,0 @@ | ||||
| {"duration": 7.2485480308532715, "input_args": {"XData": "     Age  Sex  Cp  Trestbps  Chol  Fbs  Restecg  Thalach  Exang  Oldpeak  Slope  Ca  Thal\n0     63    1   3       145   233    1        0      150      0      2.3      0   0     1\n1     37    1   2       130   250    0        1      187      0      3.5      0   0     2\n2     41    0   1       130   204    0        0      172      0      1.4      2   0     2\n3     56    1   1       120   236    0        1      178      0      0.8      2   0     2\n4     57    0   0       120   354    0        1      163      1      0.6      2   0     2\n..   ...  ...  ..       ...   ...  ...      ...      ...    ...      ...    ...  ..   ...\n298   57    0   0       140   241    0        1      123      1      0.2      1   0     3\n299   45    1   3       110   264    0        1      132      0      1.2      1   0     3\n300   68    1   0       144   193    1        1      141      0      3.4      1   2     3\n301   57    1   0       130   131    0        1      115      1      1.2      1   1     3\n302   57    0   1       130   236    0        0      174      0      0.0      1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', leaf_size=30, metric='chebyshev',\n                     metric_params=None, n_jobs=None, n_neighbors=26, p=2,\n                     weights='uniform')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} | ||||
| @ -0,0 +1 @@ | ||||
| {"duration": 23.21109628677368, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='ball_tree', metric='manhattan', n_neighbors=57,\n                     weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} | ||||
									
										Binary file not shown.
									
								
							
						| @ -1 +0,0 @@ | ||||
| {"duration": 31.870266675949097, "input_args": {"XData": "     Age  Sex  Cp  Trestbps  Chol  Fbs  Restecg  Thalach  Exang  Oldpeak  Slope  Ca  Thal\n0     63    1   3       145   233    1        0      150      0      2.3      0   0     1\n1     37    1   2       130   250    0        1      187      0      3.5      0   0     2\n2     41    0   1       130   204    0        0      172      0      1.4      2   0     2\n3     56    1   1       120   236    0        1      178      0      0.8      2   0     2\n4     57    0   0       120   354    0        1      163      1      0.6      2   0     2\n..   ...  ...  ..       ...   ...  ...      ...      ...    ...      ...    ...  ..   ...\n601   57    0   0       140   241    0        1      123      1      0.2      1   0     3\n602   45    1   3       110   264    0        1      132      0      1.2      1   0     3\n603   68    1   0       144   193    1        1      141      0      3.4      1   2     3\n604   57    1   0       130   131    0        1      115      1      1.2      1   1     3\n605   57    0   1       130   236    0        0      174      0      0.0      1   1     2\n\n[606 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=48, class_weight=None, dual=False, fit_intercept=True,\n                   intercept_scaling=1, l1_ratio=None, max_iter=100,\n                   multi_class='auto', n_jobs=None, penalty='none',\n                   random_state=42, solver='saga', tol=0.0001, verbose=0,\n                   warm_start=False)", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "200"}} | ||||
| @ -1 +0,0 @@ | ||||
| {"duration": 9.726292848587036, "input_args": {"XData": "     Age  Sex  Cp  Trestbps  Chol  Fbs  Restecg  Thalach  Exang  Oldpeak  Slope  Ca  Thal\n0     63    1   3       145   233    1        0      150      0      2.3      0   0     1\n1     37    1   2       130   250    0        1      187      0      3.5      0   0     2\n2     41    0   1       130   204    0        0      172      0      1.4      2   0     2\n3     56    1   1       120   236    0        1      178      0      0.8      2   0     2\n4     57    0   0       120   354    0        1      163      1      0.6      2   0     2\n..   ...  ...  ..       ...   ...  ...      ...      ...    ...      ...    ...  ..   ...\n601   57    0   0       140   241    0        1      123      1      0.2      1   0     3\n602   45    1   3       110   264    0        1      132      0      1.2      1   0     3\n603   68    1   0       144   193    1        1      141      0      3.4      1   2     3\n604   57    1   0       130   131    0        1      115      1      1.2      1   1     3\n605   57    0   1       130   236    0        0      174      0      0.0      1   1     2\n\n[606 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', leaf_size=30, metric='chebyshev',\n                     metric_params=None, n_jobs=None, n_neighbors=17, p=2,\n                     weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "100"}} | ||||
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						| @ -0,0 +1 @@ | ||||
| {"duration": 93.8413097858429, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=15, max_iter=400, random_state=42)", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100"}} | ||||
| @ -0,0 +1,27 @@ | ||||
| <template> | ||||
|   <div> | ||||
|   </div> | ||||
| </template> | ||||
| 
 | ||||
| <script> | ||||
| import * as d3Base from 'd3' | ||||
| import { EventBus } from '../main.js' | ||||
| import $ from 'jquery' | ||||
| import * as colorbr from 'colorbrewer' | ||||
| 
 | ||||
| // attach all d3 plugins to the d3 library | ||||
| const d3 = Object.assign(d3Base) | ||||
| const colorbrewer = Object.assign(colorbr) | ||||
| 
 | ||||
| export default { | ||||
|   name: "AlgorithmsController", | ||||
|   data () { | ||||
|     return { | ||||
| 
 | ||||
|     } | ||||
|   }, | ||||
|   methods: { | ||||
|     reset () { | ||||
| 
 | ||||
|     }, | ||||
| } | ||||
| @ -1,455 +0,0 @@ | ||||
| 
 | ||||
| <template> | ||||
|   <div> | ||||
|     <div id="containerAllCM"></div> | ||||
|     <div id="containerSelectionCM"></div> | ||||
|   </div> | ||||
| </template> | ||||
| 
 | ||||
| <script> | ||||
| import * as d3Base from 'd3' | ||||
| import { EventBus } from '../main.js' | ||||
| import $ from 'jquery' | ||||
| import * as colorbr from 'colorbrewer' | ||||
| 
 | ||||
| // attach all d3 plugins to the d3 library | ||||
| const d3 = Object.assign(d3Base) | ||||
| const colorbrewer = Object.assign(colorbr) | ||||
| 
 | ||||
| export default { | ||||
|   name: "PredictionsCM", | ||||
|   data () { | ||||
|     return { | ||||
|       GetResultsAll: [], | ||||
|       GetResultsSelectionCM: [], | ||||
|       responsiveWidthHeight: [], | ||||
|       predictSelectionCM: [], | ||||
|       StoreIndices: [], | ||||
|     } | ||||
|   }, | ||||
|   methods: { | ||||
|     reset () { | ||||
|       var svg = d3.select("#containerAllCM"); | ||||
|       svg.selectAll("*").remove(); | ||||
|       var svg = d3.select("#containerSelectionCM"); | ||||
|       svg.selectAll("*").remove(); | ||||
|     }, | ||||
|     Grid () { | ||||
| 
 | ||||
|       Array.prototype.multiIndexOf = function (el) {  | ||||
|           var idxs = []; | ||||
|           for (var i = this.length - 1; i >= 0; i--) { | ||||
|               if (this[i] === el) { | ||||
|                   idxs.unshift(i); | ||||
|               } | ||||
|           } | ||||
|           return idxs; | ||||
|       }; | ||||
| 
 | ||||
|       var svg = d3.select("#containerAllCM"); | ||||
|       svg.selectAll("*").remove(); | ||||
| 
 | ||||
|       var yValues = JSON.parse(this.GetResultsAllCM[6]) | ||||
|       var targetNames = JSON.parse(this.GetResultsAllCM[7]) | ||||
| 
 | ||||
|       var getIndices = [] | ||||
|       for (let i = 0; i < targetNames.length; i++) { | ||||
|         getIndices.push(yValues.multiIndexOf(targetNames[i])) | ||||
|       } | ||||
|       getIndices.reverse() | ||||
| 
 | ||||
|       var predictions = JSON.parse(this.GetResultsAllCM[12]) | ||||
|       var KNNPred = predictions[0] | ||||
|       var LRPred = predictions[1] | ||||
|       var PredAver = predictions[2] | ||||
| 
 | ||||
|       var dataAver = [] | ||||
|       var dataAverGetResults = [] | ||||
|       var dataKNN = [] | ||||
|       var dataKNNResults = [] | ||||
|       var dataLR = [] | ||||
|       var dataLRResults = [] | ||||
| 
 | ||||
|       var max = 0 | ||||
|       for (let i = 0; i < targetNames.length; i++) { | ||||
|         if (getIndices[targetNames[i]].length > max) { | ||||
|           max = getIndices[targetNames[i]].length | ||||
|         }  | ||||
|       } | ||||
| 
 | ||||
|       var sqrtSize = Math.ceil(Math.sqrt(max)) | ||||
|       var size = sqrtSize * sqrtSize | ||||
| 
 | ||||
|       for (let i = 0; i < targetNames.length; i++) { | ||||
|         dataAver = []; | ||||
|         dataKNN = [] | ||||
|         dataLR = [] | ||||
|         getIndices[targetNames[i]].forEach(element => { | ||||
|           dataAver.push({ id: element, value: PredAver[element][targetNames[i]] }) | ||||
|           dataKNN.push({ id: element, value: KNNPred[element][targetNames[i]] }) | ||||
|           dataLR.push({ id: element, value: LRPred[element][targetNames[i]] }) | ||||
|         }); | ||||
|         for (let j = 0; j < size - getIndices[targetNames[i]].length; j++) { | ||||
|           dataAver.push({ id: null, value: 1.0 }) | ||||
|           dataKNN.push({ id: null, value: 1.0 }) | ||||
|           dataLR.push({ id: null, value: 1.0 }) | ||||
|         } | ||||
|         dataAverGetResults.push(dataAver) | ||||
|         dataKNNResults.push(dataKNN) | ||||
|         dataLRResults.push(dataLR) | ||||
|       } | ||||
|     dataAverGetResults.reverse() | ||||
|     dataKNNResults.reverse() | ||||
|     dataLRResults.reverse() | ||||
|      | ||||
|     var classArray = [] | ||||
|     this.StoreIndices = [] | ||||
|     for (let i = 0; i < dataAverGetResults.length; i++) { | ||||
|       dataAverGetResults[i].sort((a, b) => (a.value > b.value) ? 1 : -1) | ||||
|       var len = dataAverGetResults[i].length | ||||
|       var indices = new Array(len) | ||||
|       for (let j = 0; j < len; j++) { | ||||
|         indices[j] = dataAverGetResults[i][j].id; | ||||
|       } | ||||
|       this.StoreIndices.push(indices) | ||||
|        | ||||
|       dataKNNResults[i].sort(function(a, b){ | ||||
|         return indices.indexOf(a.id) - indices.indexOf(b.id) | ||||
|       }); | ||||
| 
 | ||||
|       dataLRResults[i].sort(function(a, b){ | ||||
|         return indices.indexOf(a.id) - indices.indexOf(b.id) | ||||
|       }); | ||||
| 
 | ||||
|       classArray.push(dataAverGetResults[i].concat(dataKNNResults[i], dataLRResults[i])); | ||||
|     } | ||||
|      | ||||
|     var classStore = [].concat.apply([], classArray); | ||||
| 
 | ||||
| 		// === Set up canvas === // | ||||
| 
 | ||||
| 		var width = 1200, | ||||
| 				height = 125; | ||||
| 		var colourScale; | ||||
| 
 | ||||
| 
 | ||||
| 		var canvas = d3.select('#containerAllCM') | ||||
| 			.append('canvas') | ||||
| 			.attr('width', width) | ||||
| 			.attr('height', height); | ||||
| 
 | ||||
| 		var context = canvas.node().getContext('2d'); | ||||
| 
 | ||||
| 		// === Bind data to custom elements === // | ||||
| 
 | ||||
| 		var customBase = document.createElement('custom'); | ||||
| 		var custom = d3.select(customBase); // this is our svg replacement | ||||
| 
 | ||||
|     // settings for a grid with 40 cells in a row and 2x5 cells in a group | ||||
| 		var groupSpacing = 60; | ||||
| 		var cellSpacing = 2; | ||||
|     var cellSize = Math.floor((width - 1 * groupSpacing) / (10 * sqrtSize)) - cellSpacing; | ||||
| 
 | ||||
| 		// === First call === // | ||||
| 		databind(classStore, size, sqrtSize); // ...then update the databind function | ||||
| 		 | ||||
| 		var t = d3.timer(function(elapsed) { | ||||
| 			draw(); | ||||
| 			if (elapsed > 300) t.stop(); | ||||
| 		}); // start a timer that runs the draw function for 500 ms (this needs to be higher than the transition in the databind function) | ||||
| 
 | ||||
| 
 | ||||
| 		// === Bind and draw functions === // | ||||
| 
 | ||||
| 		function databind(data, size, sqrtSize) { | ||||
| 
 | ||||
|        | ||||
| 			colourScale = d3.scaleSequential(d3.interpolateReds).domain([1, 0]) | ||||
| 
 | ||||
| 			var join = custom.selectAll('custom.rect') | ||||
|         .data(data); | ||||
|          | ||||
| 			var enterSel = join.enter() | ||||
| 				.append('custom') | ||||
| 				.attr('class', 'rect') | ||||
| 	      .attr('x', function(d, i) { | ||||
| 	        var x0 = Math.floor(i / size) % sqrtSize, x1 = Math.floor(i % sqrtSize); | ||||
| 	        return groupSpacing * x0 + (cellSpacing + cellSize) * (x1 + x0 * 10); | ||||
| 	      }) | ||||
| 	      .attr('y', function(d, i) { | ||||
| 	        var y0 = Math.floor(i / data.length), y1 = Math.floor(i % size / sqrtSize); | ||||
| 	        return groupSpacing * y0 + (cellSpacing + cellSize) * (y1 + y0 * 10); | ||||
| 	      }) | ||||
| 				.attr('width', 0) | ||||
| 				.attr('height', 0); | ||||
| 
 | ||||
| 			join | ||||
| 				.merge(enterSel) | ||||
| 				.transition() | ||||
| 				.attr('width', cellSize) | ||||
| 				.attr('height', cellSize) | ||||
|         .attr('fillStyle', function(d) { return colourScale(d.value); }) | ||||
| 
 | ||||
| 			var exitSel = join.exit() | ||||
| 				.transition() | ||||
| 				.attr('width', 0) | ||||
| 				.attr('height', 0) | ||||
| 				.remove(); | ||||
| 
 | ||||
| 		} // databind() | ||||
| 
 | ||||
| 
 | ||||
| 		// === Draw canvas === // | ||||
| 
 | ||||
| 		function draw() { | ||||
| 
 | ||||
| 			// clear canvas | ||||
| 			 | ||||
| 			context.fillStyle = '#fff'; | ||||
| 			context.fillRect(0, 0, width, height); | ||||
| 
 | ||||
| 			 | ||||
| 			// draw each individual custom element with their properties | ||||
| 			 | ||||
| 			var elements = custom.selectAll('custom.rect') // this is the same as the join variable, but used here to draw | ||||
| 			 | ||||
| 			elements.each(function(d,i) { | ||||
| 
 | ||||
| 				// for each virtual/custom element... | ||||
| 
 | ||||
| 				var node = d3.select(this); | ||||
| 				context.fillStyle = node.attr('fillStyle'); | ||||
| 				context.fillRect(node.attr('x'), node.attr('y'), node.attr('width'), node.attr('height')) | ||||
| 
 | ||||
| 			}); | ||||
| 
 | ||||
| 		} // draw() | ||||
| 
 | ||||
|   }, | ||||
|   GridSelection () { | ||||
| 
 | ||||
|       Array.prototype.multiIndexOf = function (el) {  | ||||
|           var idxs = []; | ||||
|           for (var i = this.length - 1; i >= 0; i--) { | ||||
|               if (this[i] === el) { | ||||
|                   idxs.unshift(i); | ||||
|               } | ||||
|           } | ||||
|           return idxs; | ||||
|       }; | ||||
| 
 | ||||
|       var svg = d3.select("#containerSelectionCM"); | ||||
|       svg.selectAll("*").remove(); | ||||
| 
 | ||||
|       var predictionsAll = JSON.parse(this.GetResultsSelectionCM[12]) | ||||
| 
 | ||||
|       if (this.predictSelectionCM.length != 0) { | ||||
|         var predictions = this.predictSelectionCM | ||||
|         var KNNPred = predictions[0] | ||||
|         var LRPred = predictions[1] | ||||
|         var PredAver = predictions[2] | ||||
|       } else { | ||||
|         var KNNPred = predictionsAll[0] | ||||
|         var LRPred = predictionsAll[1] | ||||
|         var PredAver = predictionsAll[2] | ||||
|       } | ||||
|       var KNNPredAll = predictionsAll[0] | ||||
|       var LRPredAll = predictionsAll[1] | ||||
|       var PredAverAll = predictionsAll[2] | ||||
| 
 | ||||
|       var yValues = JSON.parse(this.GetResultsSelectionCM[6]) | ||||
|       var targetNames = JSON.parse(this.GetResultsSelectionCM[7]) | ||||
| 
 | ||||
|       var getIndices = [] | ||||
|       for (let i = 0; i < targetNames.length; i++) { | ||||
|         getIndices.push(yValues.multiIndexOf(targetNames[i])) | ||||
|       } | ||||
|       getIndices.reverse() | ||||
| 
 | ||||
|       var dataAver = [] | ||||
|       var dataAverGetResults = [] | ||||
|       var dataKNN = [] | ||||
|       var dataKNNResults = [] | ||||
|       var dataLR = [] | ||||
|       var dataLRResults = [] | ||||
| 
 | ||||
|       var max = 0 | ||||
|       for (let i = 0; i < targetNames.length; i++) { | ||||
|         if (getIndices[targetNames[i]].length > max) { | ||||
|           max = getIndices[targetNames[i]].length | ||||
|         }  | ||||
|       } | ||||
| 
 | ||||
|       var sqrtSize = Math.ceil(Math.sqrt(max)) | ||||
|       var size = sqrtSize * sqrtSize | ||||
| 
 | ||||
|       for (let i = 0; i < targetNames.length; i++) { | ||||
|         dataAver = []; | ||||
|         dataKNN = [] | ||||
|         dataLR = [] | ||||
|         getIndices[targetNames[i]].forEach(element => { | ||||
|           dataAver.push({ id: element, value: PredAver[element][targetNames[i]] - PredAverAll[element][targetNames[i]] }) | ||||
|           dataKNN.push({ id: element, value: KNNPred[element][targetNames[i]] - KNNPredAll[element][targetNames[i]] }) | ||||
|           dataLR.push({ id: element, value: LRPred[element][targetNames[i]] - LRPredAll[element][targetNames[i]] }) | ||||
|         }); | ||||
|         for (let j = 0; j < size - getIndices[targetNames[i]].length; j++) { | ||||
|           dataAver.push({ id: null, value: 0 }) | ||||
|           dataKNN.push({ id: null, value: 0 }) | ||||
|           dataLR.push({ id: null, value: 0 }) | ||||
|         } | ||||
|         dataAverGetResults.push(dataAver) | ||||
|         dataKNNResults.push(dataKNN) | ||||
|         dataLRResults.push(dataLR) | ||||
|       } | ||||
|     dataAverGetResults.reverse() | ||||
|     dataKNNResults.reverse() | ||||
|     dataLRResults.reverse() | ||||
|      | ||||
|     var classArray = [] | ||||
| 
 | ||||
|     for (let i = 0; i < dataAverGetResults.length; i++) { | ||||
|        | ||||
|       var indices = this.StoreIndices[i] | ||||
|       dataAverGetResults[i].sort(function(a, b){ | ||||
|         return indices.indexOf(a.id) - indices.indexOf(b.id) | ||||
|       }); | ||||
| 
 | ||||
|       dataKNNResults[i].sort(function(a, b){ | ||||
|         return indices.indexOf(a.id) - indices.indexOf(b.id) | ||||
|       }); | ||||
| 
 | ||||
|       dataLRResults[i].sort(function(a, b){ | ||||
|         return indices.indexOf(a.id) - indices.indexOf(b.id) | ||||
|       }); | ||||
| 
 | ||||
|       classArray.push(dataAverGetResults[i].concat(dataKNNResults[i], dataLRResults[i])); | ||||
|     } | ||||
|      | ||||
|     var classStore = [].concat.apply([], classArray); | ||||
| 		// === Set up canvas === // | ||||
| 
 | ||||
| 		var width = 1200, | ||||
| 				height = 125; | ||||
| 		var colourScale; | ||||
| 
 | ||||
| 
 | ||||
| 		var canvas = d3.select('#containerSelectionCM') | ||||
| 			.append('canvas') | ||||
| 			.attr('width', width) | ||||
| 			.attr('height', height); | ||||
| 
 | ||||
| 		var context = canvas.node().getContext('2d'); | ||||
| 
 | ||||
| 		// === Bind data to custom elements === // | ||||
| 
 | ||||
| 		var customBase = document.createElement('custom'); | ||||
| 		var custom = d3.select(customBase); // this is our svg replacement | ||||
| 
 | ||||
|     // settings for a grid with 40 cells in a row and 2x5 cells in a group | ||||
| 		var groupSpacing = 60; | ||||
| 		var cellSpacing = 2; | ||||
|     var cellSize = Math.floor((width - 1 * groupSpacing) / (10 * sqrtSize)) - cellSpacing; | ||||
| 
 | ||||
| 		// === First call === // | ||||
| 		databind(classStore, size, sqrtSize); // ...then update the databind function | ||||
| 		 | ||||
| 		var t = d3.timer(function(elapsed) { | ||||
| 			draw(); | ||||
| 			if (elapsed > 300) t.stop(); | ||||
| 		}); // start a timer that runs the draw function for 500 ms (this needs to be higher than the transition in the databind function) | ||||
| 
 | ||||
| 
 | ||||
| 		// === Bind and draw functions === // | ||||
| 
 | ||||
| 		function databind(data, size, sqrtSize) { | ||||
| 
 | ||||
|        | ||||
| 			colourScale = d3.scaleSequential(d3.interpolatePRGn).domain([-1, 1]) | ||||
| 
 | ||||
| 			var join = custom.selectAll('custom.rect') | ||||
|         .data(data); | ||||
|          | ||||
| 			var enterSel = join.enter() | ||||
| 				.append('custom') | ||||
| 				.attr('class', 'rect') | ||||
| 	      .attr('x', function(d, i) { | ||||
| 	        var x0 = Math.floor(i / size) % sqrtSize, x1 = Math.floor(i % sqrtSize); | ||||
| 	        return groupSpacing * x0 + (cellSpacing + cellSize) * (x1 + x0 * 10); | ||||
| 	      }) | ||||
| 	      .attr('y', function(d, i) { | ||||
| 	        var y0 = Math.floor(i / data.length), y1 = Math.floor(i % size / sqrtSize); | ||||
| 	        return groupSpacing * y0 + (cellSpacing + cellSize) * (y1 + y0 * 10); | ||||
| 	      }) | ||||
| 				.attr('width', 0) | ||||
| 				.attr('height', 0); | ||||
| 
 | ||||
| 			join | ||||
| 				.merge(enterSel) | ||||
| 				.transition() | ||||
| 				.attr('width', cellSize) | ||||
| 				.attr('height', cellSize) | ||||
|         .attr('fillStyle', function(d) { return colourScale(d.value); }) | ||||
| 
 | ||||
| 			var exitSel = join.exit() | ||||
| 				.transition() | ||||
| 				.attr('width', 0) | ||||
| 				.attr('height', 0) | ||||
| 				.remove(); | ||||
| 
 | ||||
| 		} // databind() | ||||
| 
 | ||||
| 
 | ||||
| 		// === Draw canvas === // | ||||
| 
 | ||||
| 		function draw() { | ||||
| 
 | ||||
| 			// clear canvas | ||||
| 			 | ||||
| 			context.fillStyle = '#fff'; | ||||
| 			context.fillRect(0, 0, width, height); | ||||
| 
 | ||||
| 			 | ||||
| 			// draw each individual custom element with their properties | ||||
| 			 | ||||
| 			var elements = custom.selectAll('custom.rect') // this is the same as the join variable, but used here to draw | ||||
| 			 | ||||
| 			elements.each(function(d,i) { | ||||
| 
 | ||||
| 				// for each virtual/custom element... | ||||
| 
 | ||||
| 				var node = d3.select(this); | ||||
| 				context.fillStyle = node.attr('fillStyle'); | ||||
| 				context.fillRect(node.attr('x'), node.attr('y'), node.attr('width'), node.attr('height')) | ||||
| 
 | ||||
| 			}); | ||||
| 
 | ||||
| 		} // draw() | ||||
| 
 | ||||
|   }, | ||||
|   }, | ||||
|   mounted () { | ||||
|       EventBus.$on('emittedEventCallingGridCrossoverMutation', data => { this.GetResultsAllCM = data; }) | ||||
|       EventBus.$on('emittedEventCallingGridCrossoverMutation', this.Grid) | ||||
| 
 | ||||
|       EventBus.$on('emittedEventCallingGridSelectionCrossoverMutation', data => { this.GetResultsSelectionCM = data; }) | ||||
|       EventBus.$on('emittedEventCallingGridSelectionCrossoverMutation', this.GridSelection) | ||||
| 
 | ||||
|       EventBus.$on('SendSelectedPointsToServerEventCM', data => { this.predictSelectionCM = data; }) | ||||
|       EventBus.$on('SendSelectedPointsToServerEventCM', this.GridSelection) | ||||
| 
 | ||||
|       EventBus.$on('Responsive', data => { | ||||
|       this.responsiveWidthHeight = data}) | ||||
|       EventBus.$on('ResponsiveandChange', data => { | ||||
|       this.responsiveWidthHeight = data}) | ||||
| 
 | ||||
|       // reset the views | ||||
|       EventBus.$on('resetViews', this.reset) | ||||
|     } | ||||
| } | ||||
| </script> | ||||
| 
 | ||||
| <style type="text/css"> | ||||
| 		canvas { | ||||
| 			border:  1px dotted #ccc; | ||||
| 		} | ||||
| </style> | ||||
| @ -0,0 +1,4 @@ | ||||
| flask_cors | ||||
| scikit-learn | ||||
| pandas | ||||
| scikit-learn-extra | ||||
					Loading…
					
					
				
		Reference in new issue