VisEvol: Visual Analytics to Support Hyperparameter Search through Evolutionary Optimization
https://doi.org/10.1111/cgf.14300
				
			
			
		
			You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1 lines
						
					
					
						
							3.1 KiB
						
					
					
				
			
		
		
	
	
							1 lines
						
					
					
						
							3.1 KiB
						
					
					
				| {"duration": 236.167307138443, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(alpha=0.00021, hidden_layer_sizes=(113, 2), max_iter=100,\n              random_state=42, solver='sgd', tol=0.00041000000000000005)", "params": "{'hidden_layer_sizes': [(60, 2), (61, 1), (62, 2), (63, 3), (64, 3), (65, 1), (66, 2), (67, 2), (68, 1), (69, 2), (70, 2), (71, 3), (72, 2), (73, 3), (74, 2), (75, 1), (76, 2), (77, 2), (78, 1), (79, 3), (80, 1), (81, 3), (82, 3), (83, 1), (84, 2), (85, 1), (86, 1), (87, 2), (88, 3), (89, 2), (90, 2), (91, 3), (92, 1), (93, 1), (94, 1), (95, 1), (96, 2), (97, 1), (98, 3), (99, 2), (100, 1), (101, 3), (102, 1), (103, 3), (104, 3), (105, 1), (106, 1), (107, 1), (108, 3), (109, 1), (110, 1), (111, 3), (112, 2), (113, 2), (114, 1), (115, 2), (116, 2), (117, 3), (118, 3), (119, 2)], 'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "200"}} |