StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
StackGenVis/frontend/node_modules/kdbush/README.md

63 lines
2.1 KiB

## KDBush [![Build Status](https://travis-ci.org/mourner/kdbush.svg?branch=master)](https://travis-ci.org/mourner/kdbush) [![Simply Awesome](https://img.shields.io/badge/simply-awesome-brightgreen.svg)](https://github.com/mourner/projects)
A very fast static spatial index for 2D points based on a flat KD-tree.
Compared to [RBush](https://github.com/mourner/rbush):
- points only — no rectangles
- static — you can't add/remove items
- indexing is 5-8 times faster
```js
const index = new KDBush(points); // make an index
const ids1 = index.range(10, 10, 20, 20); // bbox search - minX, minY, maxX, maxY
const ids2 = index.within(10, 10, 5); // radius search - x, y, radius
```
## Install
Install using NPM (`npm install kdbush`) or Yarn (`yarn add kdbush`), then:
```js
// import as a ES module
import KDBush from 'kdbush';
// or require in Node / Browserify
const KDBush = require('kdbush');
```
Or use a browser build directly:
```html
<script src="https://unpkg.com/kdbush@2.0.0/kdbush.min.js"></script>
```
## API
#### new KDBush(points[, getX, getY, nodeSize, arrayType])
Creates an index from the given points.
- `points`: Input array of points.
- `getX`, `getY`: Functions to get `x` and `y` from an input point. By default, it assumes `[x, y]` format.
- `nodeSize`: Size of the KD-tree node, `64` by default. Higher means faster indexing but slower search, and vise versa.
- `arrayType`: Array type to use for storing coordinate values. `Float64Array` by default, but if your coordinates are integer values, `Int32Array` makes things a bit faster.
```js
const index = kdbush(points, p => p.x, p => p.y, 64, Int32Array);
```
#### index.range(minX, minY, maxX, maxY)
Finds all items within the given bounding box and returns an array of indices that refer to the items in the original `points` input array.
```js
const results = index.range(10, 10, 20, 20).map(id => points[id]);
```
#### index.within(x, y, radius)
Finds all items within a given radius from the query point and returns an array of indices.
```js
const results = index.within(10, 10, 5).map(id => points[id]);
```