StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
StackGenVis/frontend/node_modules/alpha-complex/README.md

41 lines
1.1 KiB

alpha-complex
=============
[Alpha shapes](http://en.wikipedia.org/wiki/Alpha_shape) are a generalization of Delaunay triangulations. Given a parameter `alpha` and a point set, they compute a simplicial complex which covers the point set in simplices whose circum radii are less than `1/alpha`.
[To see this in action, try out the demo](https://mikolalysenko.github.io/alpha-complex/index.html)
<img src="alpha.png"></img>
# Example
```javascript
var alphaComplex = require('alpha-complex')
var points = []
for(var i=0; i<100; ++i) {
points.push([Math.random(), Math.random()])
}
console.log(alphaComplex(0.1, points))
```
# Install
This module works in node.js/iojs/browserify and supports point sets in any dimension.
```
npm i alpha-complex
```
# API
#### `var cells = require('alpha-complex')(alpha, points)`
Constructs the alpha complex of the given set of points.
* `alpha` is the curvature of the alpha complex
* `points` is a list of points encoded as arrays
**Returns** The alpha-complex of the point set.
# License
(c) 2015 Mikola Lysenko. MIT License