NEW UDPATES

master
parent b4cc0f94e0
commit 0047c1e567
  1. BIN
      __pycache__/run.cpython-37.pyc
  2. 700
      breast-cancer-wisconsin.csv
  3. 2
      cachedir/joblib/run/GridSearchForModels/03316dae023356b400b64061e59b4761/metadata.json
  4. BIN
      cachedir/joblib/run/GridSearchForModels/14b7a6af511f576047b7a4433376c746/output.pkl
  5. BIN
      cachedir/joblib/run/GridSearchForModels/173781222c1a10e0c1c932908218f2f0/output.pkl
  6. BIN
      cachedir/joblib/run/GridSearchForModels/1fe55cc0b30f8f663d1bc8b0b49c1cac/output.pkl
  7. BIN
      cachedir/joblib/run/GridSearchForModels/2c4edd3fe62fd40568ca7f7561419075/output.pkl
  8. 2
      cachedir/joblib/run/GridSearchForModels/3294c2d73e0b69b7e2c3488c95dbb85d/metadata.json
  9. 1
      cachedir/joblib/run/GridSearchForModels/37519dd894d05d61acea33c7629ad5df/metadata.json
  10. 1
      cachedir/joblib/run/GridSearchForModels/46b13a7726ed8eeee91902d7222493c3/metadata.json
  11. 1
      cachedir/joblib/run/GridSearchForModels/5d1c5fed33f062d128fe27abdff1a588/metadata.json
  12. 2
      cachedir/joblib/run/GridSearchForModels/74ee6e4e2d4e95a538931d6c565590f3/metadata.json
  13. BIN
      cachedir/joblib/run/GridSearchForModels/82f223a869481609fe37b291b6e15bc2/output.pkl
  14. BIN
      cachedir/joblib/run/GridSearchForModels/836902d529892c54aae1d4228d3c846f/output.pkl
  15. 1
      cachedir/joblib/run/GridSearchForModels/865dc4b6eb9ed2491a5fe265ff3a53c2/metadata.json
  16. 1
      cachedir/joblib/run/GridSearchForModels/9e693891c6d22c678734887be2a6282f/metadata.json
  17. 2
      cachedir/joblib/run/GridSearchForModels/a46dcd4e232a8dcae4536a2e2da671aa/metadata.json
  18. BIN
      cachedir/joblib/run/GridSearchForModels/a8cc5caea6831da1d9820dd1a74d5c71/output.pkl
  19. BIN
      cachedir/joblib/run/GridSearchForModels/aaf8008b46bc250a1ce9f54973d7ef9a/output.pkl
  20. 2
      cachedir/joblib/run/GridSearchForModels/ab217966ac94ecfcb1f16130f136aadd/metadata.json
  21. BIN
      cachedir/joblib/run/GridSearchForModels/ab221a8a839cf8aa754a8871de928b9f/output.pkl
  22. 2
      cachedir/joblib/run/GridSearchForModels/abcb3eec64dd8c6498d463980055e83b/metadata.json
  23. 1
      cachedir/joblib/run/GridSearchForModels/b26d47976b47db54818d974819f582b9/metadata.json
  24. BIN
      cachedir/joblib/run/GridSearchForModels/cf15d7acca337b9036c117dda0a7233d/output.pkl
  25. BIN
      cachedir/joblib/run/GridSearchForModels/db7bcaa025115a8c68aea12b37d63eed/output.pkl
  26. 1
      cachedir/joblib/run/GridSearchForModels/dc2413a05bbf24b34447fc94cb3166f4/metadata.json
  27. 1
      cachedir/joblib/run/GridSearchForModels/ec1b794b874ed8bd2511d49545431aa6/metadata.json
  28. 2
      cachedir/joblib/run/GridSearchForModels/f37dfc7f4090db9277c351e400a7579c/metadata.json
  29. 12
      cachedir/joblib/run/GridSearchForModels/func_code.py
  30. 769
      diabetes.csv
  31. 855
      frontend/package-lock.json
  32. 53
      frontend/package.json
  33. 73
      frontend/src/components/AlgorithmHyperParam.vue
  34. 114
      frontend/src/components/Algorithms.vue
  35. 12
      frontend/src/components/BalancePredictions.vue
  36. 63
      frontend/src/components/BarChart.vue
  37. 91
      frontend/src/components/DataSpace.vue
  38. 44
      frontend/src/components/Export.vue
  39. 3
      frontend/src/components/Heatmap.vue
  40. 47
      frontend/src/components/Main.vue
  41. 17
      frontend/src/components/PCPData.vue
  42. 5
      frontend/src/components/Parameters.vue
  43. 125
      frontend/src/components/PerMetricBarChart.vue
  44. 55
      frontend/src/components/PredictionsSpace.vue
  45. 25
      frontend/src/components/Provenance.vue
  46. 1
      frontend/src/components/ResetClass.vue
  47. 112
      frontend/src/components/ScatterPlot.vue
  48. 24
      insertMongo.py
  49. 152
      iris.csv
  50. 472
      run.py

Binary file not shown.

@ -0,0 +1,700 @@
clump_thic,size_un,shape_un,marg_adh,epith_size,bare_nuc,bland_chr,nor_nuc,mitoses,class*
5,1,1,1,2,1,3,1,1,Benign
5,4,4,5,7,10,3,2,1,Benign
3,1,1,1,2,2,3,1,1,Benign
6,8,8,1,3,4,3,7,1,Benign
4,1,1,3,2,1,3,1,1,Benign
8,10,10,8,7,10,9,7,1,Malignant
1,1,1,1,2,10,3,1,1,Benign
2,1,2,1,2,1,3,1,1,Benign
2,1,1,1,2,1,1,1,5,Benign
4,2,1,1,2,1,2,1,1,Benign
1,1,1,1,1,1,3,1,1,Benign
2,1,1,1,2,1,2,1,1,Benign
5,3,3,3,2,3,4,4,1,Malignant
1,1,1,1,2,3,3,1,1,Benign
8,7,5,10,7,9,5,5,4,Malignant
7,4,6,4,6,1,4,3,1,Malignant
4,1,1,1,2,1,2,1,1,Benign
4,1,1,1,2,1,3,1,1,Benign
10,7,7,6,4,10,4,1,2,Malignant
6,1,1,1,2,1,3,1,1,Benign
7,3,2,10,5,10,5,4,4,Malignant
10,5,5,3,6,7,7,10,1,Malignant
3,1,1,1,2,1,2,1,1,Benign
8,4,5,1,2,4,7,3,1,Malignant
1,1,1,1,2,1,3,1,1,Benign
5,2,3,4,2,7,3,6,1,Malignant
3,2,1,1,1,1,2,1,1,Benign
5,1,1,1,2,1,2,1,1,Benign
2,1,1,1,2,1,2,1,1,Benign
1,1,3,1,2,1,1,1,1,Benign
3,1,1,1,1,1,2,1,1,Benign
2,1,1,1,2,1,3,1,1,Benign
10,7,7,3,8,5,7,4,3,Malignant
2,1,1,2,2,1,3,1,1,Benign
3,1,2,1,2,1,2,1,1,Benign
2,1,1,1,2,1,2,1,1,Benign
10,10,10,8,6,1,8,9,1,Malignant
6,2,1,1,1,1,7,1,1,Benign
5,4,4,9,2,10,5,6,1,Malignant
2,5,3,3,6,7,7,5,1,Malignant
6,6,6,9,6,4,7,8,1,Benign
10,4,3,1,3,3,6,5,2,Malignant
6,10,10,2,8,10,7,3,3,Malignant
5,6,5,6,10,1,3,1,1,Malignant
10,10,10,4,8,1,8,10,1,Malignant
1,1,1,1,2,1,2,1,2,Benign
3,7,7,4,4,9,4,8,1,Malignant
1,1,1,1,2,1,2,1,1,Benign
4,1,1,3,2,1,3,1,1,Benign
7,8,7,2,4,8,3,8,2,Malignant
9,5,8,1,2,3,2,1,5,Malignant
5,3,3,4,2,4,3,4,1,Malignant
10,3,6,2,3,5,4,10,2,Malignant
5,5,5,8,10,8,7,3,7,Malignant
10,5,5,6,8,8,7,1,1,Malignant
10,6,6,3,4,5,3,6,1,Malignant
8,10,10,1,3,6,3,9,1,Malignant
8,2,4,1,5,1,5,4,4,Malignant
5,2,3,1,6,10,5,1,1,Malignant
9,5,5,2,2,2,5,1,1,Malignant
5,3,5,5,3,3,4,10,1,Malignant
1,1,1,1,2,2,2,1,1,Benign
9,10,10,1,10,8,3,3,1,Malignant
6,3,4,1,5,2,3,9,1,Malignant
1,1,1,1,2,1,2,1,1,Benign
10,4,2,1,3,2,4,3,10,Malignant
4,1,1,1,2,1,3,1,1,Benign
5,3,4,1,8,10,4,9,1,Malignant
8,3,8,3,4,9,8,9,8,Malignant
1,1,1,1,2,1,3,2,1,Benign
5,1,3,1,2,1,2,1,1,Benign
6,10,2,8,10,2,7,8,10,Malignant
1,3,3,2,2,1,7,2,1,Benign
9,4,5,10,6,10,4,8,1,Malignant
10,6,4,1,3,4,3,2,3,Malignant
1,1,2,1,2,2,4,2,1,Benign
1,1,4,1,2,1,2,1,1,Benign
5,3,1,2,2,1,2,1,1,Benign
3,1,1,1,2,3,3,1,1,Benign
2,1,1,1,3,1,2,1,1,Benign
2,2,2,1,1,1,7,1,1,Benign
4,1,1,2,2,1,2,1,1,Benign
5,2,1,1,2,1,3,1,1,Benign
3,1,1,1,2,2,7,1,1,Benign
3,5,7,8,8,9,7,10,7,Malignant
5,10,6,1,10,4,4,10,10,Malignant
3,3,6,4,5,8,4,4,1,Malignant
3,6,6,6,5,10,6,8,3,Malignant
4,1,1,1,2,1,3,1,1,Benign
2,1,1,2,3,1,2,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
3,1,1,2,2,1,1,1,1,Benign
4,1,1,1,2,1,3,1,1,Benign
1,1,1,1,2,1,2,1,1,Benign
2,1,1,1,2,1,3,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
2,1,1,2,2,1,1,1,1,Benign
5,1,1,1,2,1,3,1,1,Benign
9,6,9,2,10,6,2,9,10,Malignant
7,5,6,10,5,10,7,9,4,Malignant
10,3,5,1,10,5,3,10,2,Malignant
2,3,4,4,2,5,2,5,1,Malignant
4,1,2,1,2,1,3,1,1,Benign
8,2,3,1,6,3,7,1,1,Malignant
10,10,10,10,10,1,8,8,8,Malignant
7,3,4,4,3,3,3,2,7,Malignant
10,10,10,8,2,10,4,1,1,Malignant
1,6,8,10,8,10,5,7,1,Malignant
1,1,1,1,2,1,2,3,1,Benign
6,5,4,4,3,9,7,8,3,Malignant
1,3,1,2,2,2,5,3,2,Benign
8,6,4,3,5,9,3,1,1,Malignant
10,3,3,10,2,10,7,3,3,Malignant
10,10,10,3,10,8,8,1,1,Malignant
3,3,2,1,2,3,3,1,1,Benign
1,1,1,1,2,5,1,1,1,Benign
8,3,3,1,2,2,3,2,1,Benign
4,5,5,10,4,10,7,5,8,Malignant
1,1,1,1,4,3,1,1,1,Benign
3,2,1,1,2,2,3,1,1,Benign
1,1,2,2,2,1,3,1,1,Benign
4,2,1,1,2,2,3,1,1,Benign
10,10,10,2,10,10,5,3,3,Malignant
5,3,5,1,8,10,5,3,1,Malignant
5,4,6,7,9,7,8,10,1,Malignant
1,1,1,1,2,1,2,1,1,Benign
7,5,3,7,4,10,7,5,5,Malignant
3,1,1,1,2,1,3,1,1,Benign
8,3,5,4,5,10,1,6,2,Malignant
1,1,1,1,10,1,1,1,1,Benign
5,1,3,1,2,1,2,1,1,Benign
2,1,1,1,2,1,3,1,1,Benign
5,10,8,10,8,10,3,6,3,Malignant
3,1,1,1,2,1,2,2,1,Benign
3,1,1,1,3,1,2,1,1,Benign
5,1,1,1,2,2,3,3,1,Benign
4,1,1,1,2,1,2,1,1,Benign
3,1,1,1,2,1,1,1,1,Benign
4,1,2,1,2,1,2,1,1,Benign
1,1,1,1,1,4,2,1,1,Benign
3,1,1,1,2,1,1,1,1,Benign
2,1,1,1,2,1,1,1,1,Benign
9,5,5,4,4,5,4,3,3,Malignant
1,1,1,1,2,5,1,1,1,Benign
2,1,1,1,2,1,2,1,1,Benign
1,1,3,1,2,4,2,1,1,Benign
3,4,5,2,6,8,4,1,1,Malignant
1,1,1,1,3,2,2,1,1,Benign
3,1,1,3,8,1,5,8,1,Benign
8,8,7,4,10,10,7,8,7,Malignant
1,1,1,1,1,1,3,1,1,Benign
7,2,4,1,6,10,5,4,3,Malignant
10,10,8,6,4,5,8,10,1,Malignant
4,1,1,1,2,3,1,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
5,5,5,6,3,10,3,1,1,Malignant
1,2,2,1,2,1,2,1,1,Benign
2,1,1,1,2,1,3,1,1,Benign
1,1,2,1,3,4,1,1,1,Benign
9,9,10,3,6,10,7,10,6,Malignant
10,7,7,4,5,10,5,7,2,Malignant
4,1,1,1,2,1,3,2,1,Benign
3,1,1,1,2,1,3,1,1,Benign
1,1,1,2,1,3,1,1,7,Benign
5,1,1,1,2,4,3,1,1,Benign
4,1,1,1,2,2,3,2,1,Benign
5,6,7,8,8,10,3,10,3,Malignant
10,8,10,10,6,1,3,1,10,Malignant
3,1,1,1,2,1,3,1,1,Benign
1,1,1,2,1,1,1,1,1,Benign
3,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
1,1,1,1,2,1,2,1,1,Benign
6,10,10,10,8,10,10,10,7,Malignant
8,6,5,4,3,10,6,1,1,Malignant
5,8,7,7,10,10,5,7,1,Malignant
2,1,1,1,2,1,3,1,1,Benign
5,10,10,3,8,1,5,10,3,Malignant
4,1,1,1,2,1,3,1,1,Benign
5,3,3,3,6,10,3,1,1,Malignant
1,1,1,1,1,1,3,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
6,1,1,1,2,1,3,1,1,Benign
5,8,8,8,5,10,7,8,1,Malignant
8,7,6,4,4,10,5,1,1,Malignant
2,1,1,1,1,1,3,1,1,Benign
1,5,8,6,5,8,7,10,1,Malignant
10,5,6,10,6,10,7,7,10,Malignant
5,8,4,10,5,8,9,10,1,Malignant
1,2,3,1,2,1,3,1,1,Benign
10,10,10,8,6,8,7,10,1,Malignant
7,5,10,10,10,10,4,10,3,Malignant
5,1,1,1,2,1,2,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
3,1,1,1,2,1,3,1,1,Benign
4,1,1,1,2,1,3,1,1,Benign
8,4,4,5,4,7,7,8,2,Benign
5,1,1,4,2,1,3,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
9,7,7,5,5,10,7,8,3,Malignant
10,8,8,4,10,10,8,1,1,Malignant
1,1,1,1,2,1,3,1,1,Benign
5,1,1,1,2,1,3,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
5,10,10,9,6,10,7,10,5,Malignant
10,10,9,3,7,5,3,5,1,Malignant
1,1,1,1,1,1,3,1,1,Benign
1,1,1,1,1,1,3,1,1,Benign
5,1,1,1,1,1,3,1,1,Benign
8,10,10,10,5,10,8,10,6,Malignant
8,10,8,8,4,8,7,7,1,Malignant
1,1,1,1,2,1,3,1,1,Benign
10,10,10,10,7,10,7,10,4,Malignant
10,10,10,10,3,10,10,6,1,Malignant
8,7,8,7,5,5,5,10,2,Malignant
1,1,1,1,2,1,2,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
6,10,7,7,6,4,8,10,2,Malignant
6,1,3,1,2,1,3,1,1,Benign
1,1,1,2,2,1,3,1,1,Benign
10,6,4,3,10,10,9,10,1,Malignant
4,1,1,3,1,5,2,1,1,Malignant
7,5,6,3,3,8,7,4,1,Malignant
10,5,5,6,3,10,7,9,2,Malignant
1,1,1,1,2,1,2,1,1,Benign
10,5,7,4,4,10,8,9,1,Malignant
8,9,9,5,3,5,7,7,1,Malignant
1,1,1,1,1,1,3,1,1,Benign
10,10,10,3,10,10,9,10,1,Malignant
7,4,7,4,3,7,7,6,1,Malignant
6,8,7,5,6,8,8,9,2,Malignant
8,4,6,3,3,1,4,3,1,Benign
10,4,5,5,5,10,4,1,1,Malignant
3,3,2,1,3,1,3,6,1,Benign
3,1,4,1,2,4,3,1,1,Benign
10,8,8,2,8,10,4,8,10,Malignant
9,8,8,5,6,2,4,10,4,Malignant
8,10,10,8,6,9,3,10,10,Malignant
10,4,3,2,3,10,5,3,2,Malignant
5,1,3,3,2,2,2,3,1,Benign
3,1,1,3,1,1,3,1,1,Benign
2,1,1,1,2,1,3,1,1,Benign
1,1,1,1,2,5,5,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
5,1,1,2,2,2,3,1,1,Benign
8,10,10,8,5,10,7,8,1,Malignant
8,4,4,1,2,9,3,3,1,Malignant
4,1,1,1,2,1,3,6,1,Benign
3,1,1,1,2,4,3,1,1,Benign
1,2,2,1,2,1,1,1,1,Benign
10,4,4,10,2,10,5,3,3,Malignant
6,3,3,5,3,10,3,5,3,Benign
6,10,10,2,8,10,7,3,3,Malignant
9,10,10,1,10,8,3,3,1,Malignant
5,6,6,2,4,10,3,6,1,Malignant
3,1,1,1,2,1,1,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
3,1,1,1,2,1,3,1,1,Benign
5,7,7,1,5,8,3,4,1,Benign
10,5,8,10,3,10,5,1,3,Malignant
5,10,10,6,10,10,10,6,5,Malignant
8,8,9,4,5,10,7,8,1,Malignant
10,4,4,10,6,10,5,5,1,Malignant
7,9,4,10,10,3,5,3,3,Malignant
5,1,4,1,2,1,3,2,1,Benign
10,10,6,3,3,10,4,3,2,Malignant
3,3,5,2,3,10,7,1,1,Malignant
10,8,8,2,3,4,8,7,8,Malignant
1,1,1,1,2,1,3,1,1,Benign
8,4,7,1,3,10,3,9,2,Malignant
5,1,1,1,2,1,3,1,1,Benign
3,3,5,2,3,10,7,1,1,Malignant
7,2,4,1,3,4,3,3,1,Malignant
3,1,1,1,2,1,3,2,1,Benign
3,1,3,1,2,4,2,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
1,1,1,1,2,1,2,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
10,5,7,3,3,7,3,3,8,Malignant
3,1,1,1,2,1,3,1,1,Benign
2,1,1,2,2,1,3,1,1,Benign
1,4,3,10,4,10,5,6,1,Malignant
10,4,6,1,2,10,5,3,1,Malignant
7,4,5,10,2,10,3,8,2,Malignant
8,10,10,10,8,10,10,7,3,Malignant
10,10,10,10,10,10,4,10,10,Malignant
3,1,1,1,3,1,2,1,1,Benign
6,1,3,1,4,5,5,10,1,Malignant
5,6,6,8,6,10,4,10,4,Malignant
1,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
8,8,8,1,2,4,6,10,1,Malignant
10,4,4,6,2,10,2,3,1,Malignant
1,1,1,1,2,4,2,1,1,Benign
5,5,7,8,6,10,7,4,1,Malignant
5,3,4,3,4,5,4,7,1,Benign
5,4,3,1,2,4,2,3,1,Benign
8,2,1,1,5,1,1,1,1,Benign
9,1,2,6,4,10,7,7,2,Malignant
8,4,10,5,4,4,7,10,1,Malignant
1,1,1,1,2,1,3,1,1,Benign
10,10,10,7,9,10,7,10,10,Malignant
1,1,1,1,2,1,3,1,1,Benign
8,3,4,9,3,10,3,3,1,Malignant
10,8,4,4,4,10,3,10,4,Malignant
1,1,1,1,2,1,3,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
7,8,7,6,4,3,8,8,4,Malignant
3,1,1,1,2,5,5,1,1,Benign
2,1,1,1,3,1,2,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
8,6,4,10,10,1,3,5,1,Malignant
1,1,1,1,2,1,1,1,1,Benign
1,1,1,1,1,1,2,1,1,Benign
4,6,5,6,7,4,4,9,1,Benign
5,5,5,2,5,10,4,3,1,Malignant
6,8,7,8,6,8,8,9,1,Malignant
1,1,1,1,5,1,3,1,1,Benign
4,4,4,4,6,5,7,3,1,Benign
7,6,3,2,5,10,7,4,6,Malignant
3,1,1,1,2,4,3,1,1,Benign
3,1,1,1,2,1,3,1,1,Benign
5,4,6,10,2,10,4,1,1,Malignant
1,1,1,1,2,1,3,1,1,Benign
3,2,2,1,2,1,2,3,1,Benign
10,1,1,1,2,10,5,4,1,Malignant
1,1,1,1,2,1,2,1,1,Benign
8,10,3,2,6,4,3,10,1,Malignant
10,4,6,4,5,10,7,1,1,Malignant
10,4,7,2,2,8,6,1,1,Malignant
5,1,1,1,2,1,3,1,2,Benign
5,2,2,2,2,1,2,2,1,Benign
5,4,6,6,4,10,4,3,1,Malignant
8,6,7,3,3,10,3,4,2,Malignant
1,1,1,1,2,1,1,1,1,Benign
6,5,5,8,4,10,3,4,1,Malignant
1,1,1,1,2,1,3,1,1,Benign
1,1,1,1,1,1,2,1,1,Benign
8,5,5,5,2,10,4,3,1,Malignant
10,3,3,1,2,10,7,6,1,Malignant
1,1,1,1,2,1,3,1,1,Benign
2,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
7,6,4,8,10,10,9,5,3,Malignant
1,1,1,1,2,1,1,1,1,Benign
5,2,2,2,3,1,1,3,1,Benign
1,1,1,1,1,1,1,3,1,Benign
3,4,4,10,5,1,3,3,1,Malignant
4,2,3,5,3,8,7,6,1,Malignant
5,1,1,3,2,1,1,1,1,Benign
2,1,1,1,2,1,3,1,1,Benign
3,4,5,3,7,3,4,6,1,Benign
2,7,10,10,7,10,4,9,4,Malignant
1,1,1,1,2,1,2,1,1,Benign
4,1,1,1,3,1,2,2,1,Benign
5,3,3,1,3,3,3,3,3,Malignant
8,10,10,7,10,10,7,3,8,Malignant
8,10,5,3,8,4,4,10,3,Malignant
10,3,5,4,3,7,3,5,3,Malignant
6,10,10,10,10,10,8,10,10,Malignant
3,10,3,10,6,10,5,1,4,Malignant
3,2,2,1,4,3,2,1,1,Benign
4,4,4,2,2,3,2,1,1,Benign
2,1,1,1,2,1,3,1,1,Benign
2,1,1,1,2,1,2,1,1,Benign
6,10,10,10,8,10,7,10,7,Malignant
5,8,8,10,5,10,8,10,3,Malignant
1,1,3,1,2,1,1,1,1,Benign
1,1,3,1,1,1,2,1,1,Benign
4,3,2,1,3,1,2,1,1,Benign
1,1,3,1,2,1,1,1,1,Benign
4,1,2,1,2,1,2,1,1,Benign
5,1,1,2,2,1,2,1,1,Benign
3,1,2,1,2,1,2,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,2,1,1,Benign
1,1,1,1,1,1,2,1,1,Benign
3,1,1,4,3,1,2,2,1,Benign
5,3,4,1,4,1,3,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
10,6,3,6,4,10,7,8,4,Malignant
3,2,2,2,2,1,3,2,1,Benign
2,1,1,1,2,1,1,1,1,Benign
2,1,1,1,2,1,1,1,1,Benign
3,3,2,2,3,1,1,2,3,Benign
7,6,6,3,2,10,7,1,1,Malignant
5,3,3,2,3,1,3,1,1,Benign
2,1,1,1,2,1,2,2,1,Benign
5,1,1,1,3,2,2,2,1,Benign
1,1,1,2,2,1,2,1,1,Benign
10,8,7,4,3,10,7,9,1,Malignant
3,1,1,1,2,1,2,1,1,Benign
1,1,1,1,1,1,1,1,1,Benign
1,2,3,1,2,1,2,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
3,1,1,1,2,1,3,1,1,Benign
4,1,1,1,2,1,1,1,1,Benign
3,2,1,1,2,1,2,2,1,Benign
1,2,3,1,2,1,1,1,1,Benign
3,10,8,7,6,9,9,3,8,Malignant
3,1,1,1,2,1,1,1,1,Benign
5,3,3,1,2,1,2,1,1,Benign
3,1,1,1,2,4,1,1,1,Benign
1,2,1,3,2,1,1,2,1,Benign
1,1,1,1,2,1,2,1,1,Benign
4,2,2,1,2,1,2,1,1,Benign
1,1,1,1,2,1,2,1,1,Benign
2,3,2,2,2,2,3,1,1,Benign
3,1,2,1,2,1,2,1,1,Benign
1,1,1,1,2,1,2,1,1,Benign
1,1,1,1,1,4,2,1,1,Benign
10,10,10,6,8,4,8,5,1,Malignant
5,1,2,1,2,1,3,1,1,Benign
8,5,6,2,3,10,6,6,1,Malignant
3,3,2,6,3,3,3,5,1,Benign
8,7,8,5,10,10,7,2,1,Malignant
1,1,1,1,2,1,2,1,1,Benign
5,2,2,2,2,2,3,2,2,Benign
2,3,1,1,5,1,1,1,1,Benign
3,2,2,3,2,3,3,1,1,Benign
10,10,10,7,10,10,8,2,1,Malignant
4,3,3,1,2,1,3,3,1,Benign
5,1,3,1,2,1,2,1,1,Benign
3,1,1,1,2,1,1,1,1,Benign
9,10,10,10,10,10,10,10,1,Malignant
5,3,6,1,2,1,1,1,1,Benign
8,7,8,2,4,2,5,10,1,Malignant
1,1,1,1,2,1,2,1,1,Benign
2,1,1,1,2,1,2,1,1,Benign
1,3,1,1,2,1,2,2,1,Benign
5,1,1,3,4,1,3,2,1,Benign
5,1,1,1,2,1,2,2,1,Benign
3,2,2,3,2,1,1,1,1,Benign
6,9,7,5,5,8,4,2,1,Benign
10,8,10,1,3,10,5,1,1,Malignant
10,10,10,1,6,1,2,8,1,Malignant
4,1,1,1,2,1,1,1,1,Benign
4,1,3,3,2,1,1,1,1,Benign
5,1,1,1,2,1,1,1,1,Benign
10,4,3,10,4,10,10,1,1,Malignant
5,2,2,4,2,4,1,1,1,Benign
1,1,1,3,2,3,1,1,1,Benign
1,1,1,1,2,2,1,1,1,Benign
5,1,1,6,3,1,2,1,1,Benign
2,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
5,1,1,1,2,1,1,1,1,Benign
1,1,1,1,1,1,1,1,1,Benign
5,7,9,8,6,10,8,10,1,Malignant
4,1,1,3,1,1,2,1,1,Benign
5,1,1,1,2,1,1,1,1,Benign
3,1,1,3,2,1,1,1,1,Benign
4,5,5,8,6,10,10,7,1,Malignant
2,3,1,1,3,1,1,1,1,Benign
10,2,2,1,2,6,1,1,2,Malignant
10,6,5,8,5,10,8,6,1,Malignant
8,8,9,6,6,3,10,10,1,Malignant
5,1,2,1,2,1,1,1,1,Benign
5,1,3,1,2,1,1,1,1,Benign
5,1,1,3,2,1,1,1,1,Benign
3,1,1,1,2,5,1,1,1,Benign
6,1,1,3,2,1,1,1,1,Benign
4,1,1,1,2,1,1,2,1,Benign
4,1,1,1,2,1,1,1,1,Benign
10,9,8,7,6,4,7,10,3,Malignant
10,6,6,2,4,10,9,7,1,Malignant
6,6,6,5,4,10,7,6,2,Malignant
4,1,1,1,2,1,1,1,1,Benign
1,1,2,1,2,1,2,1,1,Benign
3,1,1,1,1,1,2,1,1,Benign
6,1,1,3,2,1,1,1,1,Benign
6,1,1,1,1,1,1,1,1,Benign
4,1,1,1,2,1,1,1,1,Benign
5,1,1,1,2,1,1,1,1,Benign
3,1,1,1,2,1,1,1,1,Benign
4,1,2,1,2,1,1,1,1,Benign
4,1,1,1,2,1,1,1,1,Benign
5,2,1,1,2,1,1,1,1,Benign
4,8,7,10,4,10,7,5,1,Malignant
5,1,1,1,1,1,1,1,1,Benign
5,3,2,4,2,1,1,1,1,Benign
9,10,10,10,10,5,10,10,10,Malignant
8,7,8,5,5,10,9,10,1,Malignant
5,1,2,1,2,1,1,1,1,Benign
1,1,1,3,1,3,1,1,1,Benign
3,1,1,1,1,1,2,1,1,Benign
10,10,10,10,6,10,8,1,5,Malignant
3,6,4,10,3,3,3,4,1,Malignant
6,3,2,1,3,4,4,1,1,Malignant
1,1,1,1,2,1,1,1,1,Benign
5,8,9,4,3,10,7,1,1,Malignant
4,1,1,1,1,1,2,1,1,Benign
5,10,10,10,6,10,6,5,2,Malignant
5,1,2,10,4,5,2,1,1,Benign
3,1,1,1,1,1,2,1,1,Benign
1,1,1,1,1,1,1,1,1,Benign
4,2,1,1,2,1,1,1,1,Benign
4,1,1,1,2,1,2,1,1,Benign
4,1,1,1,2,1,2,1,1,Benign
6,1,1,1,2,1,3,1,1,Benign
4,1,1,1,2,1,2,1,1,Benign
4,1,1,2,2,1,2,1,1,Benign
4,1,1,1,2,1,3,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
3,3,1,1,2,1,1,1,1,Benign
8,10,10,10,7,5,4,8,7,Malignant
1,1,1,1,2,4,1,1,1,Benign
5,1,1,1,2,1,1,1,1,Benign
2,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
5,1,1,1,2,1,2,1,1,Benign
5,1,1,1,2,1,1,1,1,Benign
3,1,1,1,1,1,2,1,1,Benign
6,6,7,10,3,10,8,10,2,Malignant
4,10,4,7,3,10,9,10,1,Malignant
1,1,1,1,1,1,1,1,1,Benign
1,1,1,1,1,1,2,1,1,Benign
3,1,2,2,2,1,1,1,1,Benign
4,7,8,3,4,10,9,1,1,Malignant
1,1,1,1,3,1,1,1,1,Benign
4,1,1,1,3,1,1,1,1,Benign
10,4,5,4,3,5,7,3,1,Malignant
7,5,6,10,4,10,5,3,1,Malignant
3,1,1,1,2,1,2,1,1,Benign
3,1,1,2,2,1,1,1,1,Benign
4,1,1,1,2,1,1,1,1,Benign
4,1,1,1,2,1,3,1,1,Benign
6,1,3,2,2,1,1,1,1,Benign
4,1,1,1,1,1,2,1,1,Benign
7,4,4,3,4,10,6,9,1,Malignant
4,2,2,1,2,1,2,1,1,Benign
1,1,1,1,1,1,3,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
2,1,1,1,2,1,2,1,1,Benign
1,1,3,2,2,1,3,1,1,Benign
5,1,1,1,2,1,3,1,1,Benign
5,1,2,1,2,1,3,1,1,Benign
4,1,1,1,2,1,2,1,1,Benign
6,1,1,1,2,1,2,1,1,Benign
5,1,1,1,2,2,2,1,1,Benign
3,1,1,1,2,1,1,1,1,Benign
5,3,1,1,2,1,1,1,1,Benign
4,1,1,1,2,1,2,1,1,Benign
2,1,3,2,2,1,2,1,1,Benign
5,1,1,1,2,1,2,1,1,Benign
6,10,10,10,4,10,7,10,1,Malignant
2,1,1,1,1,1,1,1,1,Benign
3,1,1,1,1,1,1,1,1,Benign
7,8,3,7,4,5,7,8,2,Malignant
3,1,1,1,2,1,2,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
3,2,2,2,2,1,4,2,1,Benign
4,4,2,1,2,5,2,1,2,Benign
3,1,1,1,2,1,1,1,1,Benign
4,3,1,1,2,1,4,8,1,Benign
5,2,2,2,1,1,2,1,1,Benign
5,1,1,3,2,1,1,1,1,Benign
2,1,1,1,2,1,2,1,1,Benign
5,1,1,1,2,1,2,1,1,Benign
5,1,1,1,2,1,3,1,1,Benign
5,1,1,1,2,1,3,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
4,1,1,1,2,1,3,2,1,Benign
5,7,10,10,5,10,10,10,1,Malignant
3,1,2,1,2,1,3,1,1,Benign
4,1,1,1,2,3,2,1,1,Benign
8,4,4,1,6,10,2,5,2,Malignant
10,10,8,10,6,5,10,3,1,Malignant
8,10,4,4,8,10,8,2,1,Malignant
7,6,10,5,3,10,9,10,2,Malignant
3,1,1,1,2,1,2,1,1,Benign
1,1,1,1,2,1,2,1,1,Benign
10,9,7,3,4,2,7,7,1,Malignant
5,1,2,1,2,1,3,1,1,Benign
5,1,1,1,2,1,2,1,1,Benign
1,1,1,1,2,1,2,1,1,Benign
1,1,1,1,2,1,2,1,1,Benign
1,1,1,1,2,1,3,1,1,Benign
5,1,2,1,2,1,2,1,1,Benign
5,7,10,6,5,10,7,5,1,Malignant
6,10,5,5,4,10,6,10,1,Malignant
3,1,1,1,2,1,1,1,1,Benign
5,1,1,6,3,1,1,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
8,10,10,10,6,10,10,10,1,Malignant
5,1,1,1,2,1,2,2,1,Benign
9,8,8,9,6,3,4,1,1,Malignant
5,1,1,1,2,1,1,1,1,Benign
4,10,8,5,4,1,10,1,1,Malignant
2,5,7,6,4,10,7,6,1,Malignant
10,3,4,5,3,10,4,1,1,Malignant
5,1,2,1,2,1,1,1,1,Benign
4,8,6,3,4,10,7,1,1,Malignant
5,1,1,1,2,1,2,1,1,Benign
4,1,2,1,2,1,2,1,1,Benign
5,1,3,1,2,1,3,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
5,2,4,1,1,1,1,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
1,1,1,1,1,1,2,1,1,Benign
4,1,1,1,2,1,2,1,1,Benign
5,4,6,8,4,1,8,10,1,Malignant
5,3,2,8,5,10,8,1,2,Malignant
10,5,10,3,5,8,7,8,3,Malignant
4,1,1,2,2,1,1,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
5,10,10,10,10,10,10,1,1,Malignant
5,1,1,1,2,1,1,1,1,Benign
10,4,3,10,3,10,7,1,2,Malignant
5,10,10,10,5,2,8,5,1,Malignant
8,10,10,10,6,10,10,10,10,Malignant
2,3,1,1,2,1,2,1,1,Benign
2,1,1,1,1,1,2,1,1,Benign
4,1,3,1,2,1,2,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
1,1,1,1,1,4,1,1,1,Benign
4,1,1,1,2,1,2,1,1,Benign
5,1,1,1,2,1,2,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
6,3,3,3,3,2,6,1,1,Benign
7,1,2,3,2,1,2,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
5,1,1,2,1,1,2,1,1,Benign
3,1,3,1,3,4,1,1,1,Benign
4,6,6,5,7,6,7,7,3,Malignant
2,1,1,1,2,5,1,1,1,Benign
2,1,1,1,2,1,1,1,1,Benign
4,1,1,1,2,1,1,1,1,Benign
6,2,3,1,2,1,1,1,1,Benign
5,1,1,1,2,1,2,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
8,7,4,4,5,3,5,10,1,Malignant
3,1,1,1,2,1,1,1,1,Benign
3,1,4,1,2,1,1,1,1,Benign
10,10,7,8,7,1,10,10,3,Malignant
4,2,4,3,2,2,2,1,1,Benign
4,1,1,1,2,1,1,1,1,Benign
5,1,1,3,2,1,1,1,1,Benign
4,1,1,3,2,1,1,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
2,1,1,1,2,1,1,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
1,2,2,1,2,1,1,1,1,Benign
1,1,1,3,2,1,1,1,1,Benign
5,10,10,10,10,2,10,10,10,Malignant
3,1,1,1,2,1,2,1,1,Benign
3,1,1,2,3,4,1,1,1,Benign
1,2,1,3,2,1,2,1,1,Benign
5,1,1,1,2,1,2,2,1,Benign
4,1,1,1,2,1,2,1,1,Benign
3,1,1,1,2,1,3,1,1,Benign
3,1,1,1,2,1,2,1,1,Benign
5,1,1,1,2,1,2,1,1,Benign
5,4,5,1,8,1,3,6,1,Benign
7,8,8,7,3,10,7,2,3,Malignant
1,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,2,1,1,Benign
4,1,1,1,2,1,3,1,1,Benign
1,1,3,1,2,1,2,1,1,Benign
1,1,3,1,2,1,2,1,1,Benign
3,1,1,3,2,1,2,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
5,2,2,2,2,1,1,1,2,Benign
3,1,1,1,2,1,3,1,1,Benign
5,7,4,1,6,1,7,10,3,Malignant
5,10,10,8,5,5,7,10,1,Malignant
3,10,7,8,5,8,7,4,1,Malignant
3,2,1,2,2,1,3,1,1,Benign
2,1,1,1,2,1,3,1,1,Benign
5,3,2,1,3,1,1,1,1,Benign
1,1,1,1,2,1,2,1,1,Benign
4,1,4,1,2,1,1,1,1,Benign
1,1,2,1,2,1,2,1,1,Benign
5,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
2,1,1,1,2,1,1,1,1,Benign
10,10,10,10,5,10,10,10,7,Malignant
5,10,10,10,4,10,5,6,3,Malignant
5,1,1,1,2,1,3,2,1,Benign
1,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,1,1,1,Benign
3,1,1,1,2,1,2,3,1,Benign
4,1,1,1,2,1,1,1,1,Benign
1,1,1,1,2,1,1,1,8,Benign
1,1,1,3,2,1,1,1,1,Benign
5,10,10,5,4,5,4,4,1,Malignant
3,1,1,1,2,1,1,1,1,Benign
3,1,1,1,2,1,2,1,2,Benign
3,1,1,1,3,2,1,1,1,Benign
2,1,1,1,2,1,1,1,1,Benign
5,10,10,3,7,3,8,10,2,Malignant
4,8,6,4,3,4,10,6,1,Malignant
4,8,8,5,4,5,10,4,1,Malignant
unable to load file from base commit

@ -1 +1 @@
{"duration": 54.30657696723938, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "QuadraticDiscriminantAnalysis(priors=None, reg_param=50, store_covariance=False,\n tol=0.00081)", "params": "{'reg_param': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], 'tol': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001]}", "eachAlgor": "'QDA'", "AlgorithmsIDsEnd": "2196"}} {"duration": 75.22324180603027, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "QuadraticDiscriminantAnalysis(priors=None, reg_param=50, store_covariance=False,\n tol=0.00081)", "params": "{'reg_param': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], 'tol': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001]}", "eachAlgor": "'QDA'", "AlgorithmsIDsEnd": "2196"}}

@ -1 +1 @@
{"duration": 806.5329508781433, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "GradientBoostingClassifier(ccp_alpha=0.0, criterion='mae', init=None,\n learning_rate=0.12, loss='deviance', max_depth=3,\n max_features=None, max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=114,\n n_iter_no_change=None, presort='deprecated',\n random_state=None, subsample=1.0, tol=0.0001,\n validation_fraction=0.1, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "2926"}} {"duration": 934.0173509120941, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "GradientBoostingClassifier(ccp_alpha=0.0, criterion='mae', init=None,\n learning_rate=0.12, loss='deviance', max_depth=3,\n max_features=None, max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=114,\n n_iter_no_change=None, presort='deprecated',\n random_state=None, subsample=1.0, tol=0.0001,\n validation_fraction=0.1, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "2926"}}

@ -1 +0,0 @@
{"duration": 222.3701467514038, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LogisticRegression(C=1.925, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=200,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=None, solver='saga', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [0.5, 0.575, 0.6499999999999999, 0.7249999999999999, 0.7999999999999998, 0.8749999999999998, 0.9499999999999997, 1.0249999999999997, 1.0999999999999996, 1.1749999999999996, 1.2499999999999996, 1.3249999999999995, 1.3999999999999995, 1.4749999999999994, 1.5499999999999994, 1.6249999999999993, 1.6999999999999993, 1.7749999999999992, 1.8499999999999992, 1.9249999999999992], 'max_iter': [50, 100, 150, 200], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "1356"}}

@ -1 +0,0 @@
{"duration": 465.37524604797363, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "SVC(C=4.39, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,\n decision_function_shape='ovr', degree=3, gamma='scale', kernel='sigmoid',\n max_iter=-1, probability=True, random_state=None, shrinking=True, tol=0.001,\n verbose=False)", "params": "{'C': [0.1, 0.21000000000000002, 0.32000000000000006, 0.43000000000000005, 0.54, 0.65, 0.7600000000000001, 0.8700000000000001, 0.9800000000000001, 1.09, 1.2000000000000002, 1.3100000000000003, 1.4200000000000004, 1.5300000000000002, 1.6400000000000003, 1.7500000000000002, 1.8600000000000003, 1.9700000000000004, 2.08, 2.1900000000000004, 2.3000000000000003, 2.4100000000000006, 2.5200000000000005, 2.6300000000000003, 2.7400000000000007, 2.8500000000000005, 2.9600000000000004, 3.0700000000000003, 3.1800000000000006, 3.2900000000000005, 3.4000000000000004, 3.5100000000000007, 3.6200000000000006, 3.7300000000000004, 3.8400000000000007, 3.9500000000000006, 4.0600000000000005, 4.17, 4.28, 4.390000000000001], 'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}", "eachAlgor": "'SVC'", "AlgorithmsIDsEnd": "576"}}

@ -1 +0,0 @@
{"duration": 153.8552680015564, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "MLPClassifier(activation='tanh', alpha=0.00081, batch_size='auto', beta_1=0.9,\n beta_2=0.999, early_stopping=False, epsilon=1e-08,\n hidden_layer_sizes=(100,), learning_rate='constant',\n learning_rate_init=0.001, max_fun=15000, max_iter=100,\n momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,\n power_t=0.5, random_state=None, shuffle=True, solver='sgd',\n tol=0.00081, validation_fraction=0.1, verbose=False,\n warm_start=False)", "params": "{'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "1236"}}

@ -1 +1 @@
{"duration": 604.6331548690796, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "2446"}} {"duration": 779.0136120319366, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "2446"}}

@ -1 +0,0 @@
{"duration": 505.02412009239197, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'ExtraT'", "AlgorithmsIDsEnd": "2606"}}

@ -0,0 +1 @@
{"duration": 476.436359167099, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=1.2,\n n_estimators=79, random_state=None)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], 'learning_rate': [0.1, 1.2000000000000002], 'algorithm': ['SAMME.R', 'SAMME']}", "eachAlgor": "'AdaB'", "AlgorithmsIDsEnd": "2766"}}

@ -1 +1 @@
{"duration": 43.723469972610474, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=0.99,\n solver='eigen', store_covariance=False, tol=0.0001)", "params": "{'shrinkage': [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35000000000000003, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41000000000000003, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47000000000000003, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.5700000000000001, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.6900000000000001, 0.7000000000000001, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.8200000000000001, 0.8300000000000001, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.9400000000000001, 0.9500000000000001, 0.96, 0.97, 0.98, 0.99], 'solver': ['lsqr', 'eigen']}", "eachAlgor": "'LDA'", "AlgorithmsIDsEnd": "1996"}} {"duration": 65.16387891769409, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=0.99,\n solver='eigen', store_covariance=False, tol=0.0001)", "params": "{'shrinkage': [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35000000000000003, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41000000000000003, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47000000000000003, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.5700000000000001, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.6900000000000001, 0.7000000000000001, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.8200000000000001, 0.8300000000000001, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.9400000000000001, 0.9500000000000001, 0.96, 0.97, 0.98, 0.99], 'solver': ['lsqr', 'eigen']}", "eachAlgor": "'LDA'", "AlgorithmsIDsEnd": "1996"}}

@ -1 +1 @@
{"duration": 307.30965399742126, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} {"duration": 373.67042565345764, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}}

File diff suppressed because one or more lines are too long

@ -0,0 +1 @@
{"duration": 286.56338810920715, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LogisticRegression(C=1.925, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=200,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=None, solver='saga', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [0.5, 0.575, 0.6499999999999999, 0.7249999999999999, 0.7999999999999998, 0.8749999999999998, 0.9499999999999997, 1.0249999999999997, 1.0999999999999996, 1.1749999999999996, 1.2499999999999996, 1.3249999999999995, 1.3999999999999995, 1.4749999999999994, 1.5499999999999994, 1.6249999999999993, 1.6999999999999993, 1.7749999999999992, 1.8499999999999992, 1.9249999999999992], 'max_iter': [50, 100, 150, 200], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "1356"}}

@ -0,0 +1 @@
{"duration": 515.3227281570435, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "SVC(C=4.39, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,\n decision_function_shape='ovr', degree=3, gamma='scale', kernel='sigmoid',\n max_iter=-1, probability=True, random_state=None, shrinking=True, tol=0.001,\n verbose=False)", "params": "{'C': [0.1, 0.21000000000000002, 0.32000000000000006, 0.43000000000000005, 0.54, 0.65, 0.7600000000000001, 0.8700000000000001, 0.9800000000000001, 1.09, 1.2000000000000002, 1.3100000000000003, 1.4200000000000004, 1.5300000000000002, 1.6400000000000003, 1.7500000000000002, 1.8600000000000003, 1.9700000000000004, 2.08, 2.1900000000000004, 2.3000000000000003, 2.4100000000000006, 2.5200000000000005, 2.6300000000000003, 2.7400000000000007, 2.8500000000000005, 2.9600000000000004, 3.0700000000000003, 3.1800000000000006, 3.2900000000000005, 3.4000000000000004, 3.5100000000000007, 3.6200000000000006, 3.7300000000000004, 3.8400000000000007, 3.9500000000000006, 4.0600000000000005, 4.17, 4.28, 4.390000000000001], 'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}", "eachAlgor": "'SVC'", "AlgorithmsIDsEnd": "576"}}

@ -0,0 +1 @@
{"duration": 610.0474598407745, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'ExtraT'", "AlgorithmsIDsEnd": "2606"}}

@ -1 +1 @@
{"duration": 396.95492720603943, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=1.2,\n n_estimators=79, random_state=None)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], 'learning_rate': [0.1, 1.2000000000000002], 'algorithm': ['SAMME.R', 'SAMME']}", "eachAlgor": "'AdaB'", "AlgorithmsIDsEnd": "2766"}} {"duration": 243.32867527008057, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "MLPClassifier(activation='tanh', alpha=0.00081, batch_size='auto', beta_1=0.9,\n beta_2=0.999, early_stopping=False, epsilon=1e-08,\n hidden_layer_sizes=(100,), learning_rate='constant',\n learning_rate_init=0.001, max_fun=15000, max_iter=100,\n momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,\n power_t=0.5, random_state=None, shuffle=True, solver='sgd',\n tol=0.00081, validation_fraction=0.1, verbose=False,\n warm_start=False)", "params": "{'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "1236"}}

@ -1,7 +1,7 @@
# first line: 542 # first line: 556
@memory.cache @memory.cache
def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd): def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
print('test') print('start')
# instantiate spark session # instantiate spark session
spark = ( spark = (
SparkSession SparkSession
@ -82,6 +82,12 @@ def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
loop = 10 loop = 10
# influence calculation for all the instances
inputs = range(len(XData))
num_cores = multiprocessing.cpu_count()
impDataInst = Parallel(n_jobs=num_cores)(delayed(processInput)(i,XData,yData,crossValidation,clf) for i in inputs)
for eachModelParameters in parametersLocalNew: for eachModelParameters in parametersLocalNew:
clf.set_params(**eachModelParameters) clf.set_params(**eachModelParameters)
@ -177,8 +183,10 @@ def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
results.append(PerFeatureAccuracyPandas) # Position: 3 and so on results.append(PerFeatureAccuracyPandas) # Position: 3 and so on
results.append(perm_imp_eli5PD) # Position: 4 and so on results.append(perm_imp_eli5PD) # Position: 4 and so on
results.append(featureScores) # Position: 5 and so on results.append(featureScores) # Position: 5 and so on
metrics = metrics.clip(lower=0)
metrics = metrics.to_json() metrics = metrics.to_json()
results.append(metrics) # Position: 6 and so on results.append(metrics) # Position: 6 and so on
results.append(perModelProbPandas) # Position: 7 and so on results.append(perModelProbPandas) # Position: 7 and so on
results.append(json.dumps(impDataInst)) # Position: 8 and so on
return results return results

@ -0,0 +1,769 @@
Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DPF,Age,Outcome*
6,148,72,35,0,33.6,0.627,50,Positive
1,85,66,29,0,26.6,0.351,31,Negative
8,183,64,0,0,23.3,0.672,32,Positive
1,89,66,23,94,28.1,0.167,21,Negative
0,137,40,35,168,43.1,2.288,33,Positive
5,116,74,0,0,25.6,0.201,30,Negative
3,78,50,32,88,31,0.248,26,Positive
10,115,0,0,0,35.3,0.134,29,Negative
2,197,70,45,543,30.5,0.158,53,Positive
8,125,96,0,0,0,0.232,54,Positive
4,110,92,0,0,37.6,0.191,30,Negative
10,168,74,0,0,38,0.537,34,Positive
10,139,80,0,0,27.1,1.441,57,Negative
1,189,60,23,846,30.1,0.398,59,Positive
5,166,72,19,175,25.8,0.587,51,Positive
7,100,0,0,0,30,0.484,32,Positive
0,118,84,47,230,45.8,0.551,31,Positive
7,107,74,0,0,29.6,0.254,31,Positive
1,103,30,38,83,43.3,0.183,33,Negative
1,115,70,30,96,34.6,0.529,32,Positive
3,126,88,41,235,39.3,0.704,27,Negative
8,99,84,0,0,35.4,0.388,50,Negative
7,196,90,0,0,39.8,0.451,41,Positive
9,119,80,35,0,29,0.263,29,Positive
11,143,94,33,146,36.6,0.254,51,Positive
10,125,70,26,115,31.1,0.205,41,Positive
7,147,76,0,0,39.4,0.257,43,Positive
1,97,66,15,140,23.2,0.487,22,Negative
13,145,82,19,110,22.2,0.245,57,Negative
5,117,92,0,0,34.1,0.337,38,Negative
5,109,75,26,0,36,0.546,60,Negative
3,158,76,36,245,31.6,0.851,28,Positive
3,88,58,11,54,24.8,0.267,22,Negative
6,92,92,0,0,19.9,0.188,28,Negative
10,122,78,31,0,27.6,0.512,45,Negative
4,103,60,33,192,24,0.966,33,Negative
11,138,76,0,0,33.2,0.42,35,Negative
9,102,76,37,0,32.9,0.665,46,Positive
2,90,68,42,0,38.2,0.503,27,Positive
4,111,72,47,207,37.1,1.39,56,Positive
3,180,64,25,70,34,0.271,26,Negative
7,133,84,0,0,40.2,0.696,37,Negative
7,106,92,18,0,22.7,0.235,48,Negative
9,171,110,24,240,45.4,0.721,54,Positive
7,159,64,0,0,27.4,0.294,40,Negative
0,180,66,39,0,42,1.893,25,Positive
1,146,56,0,0,29.7,0.564,29,Negative
2,71,70,27,0,28,0.586,22,Negative
7,103,66,32,0,39.1,0.344,31,Positive
7,105,0,0,0,0,0.305,24,Negative
1,103,80,11,82,19.4,0.491,22,Negative
1,101,50,15,36,24.2,0.526,26,Negative
5,88,66,21,23,24.4,0.342,30,Negative
8,176,90,34,300,33.7,0.467,58,Positive
7,150,66,42,342,34.7,0.718,42,Negative
1,73,50,10,0,23,0.248,21,Negative
7,187,68,39,304,37.7,0.254,41,Positive
0,100,88,60,110,46.8,0.962,31,Negative
0,146,82,0,0,40.5,1.781,44,Negative
0,105,64,41,142,41.5,0.173,22,Negative
2,84,0,0,0,0,0.304,21,Negative
8,133,72,0,0,32.9,0.27,39,Positive
5,44,62,0,0,25,0.587,36,Negative
2,141,58,34,128,25.4,0.699,24,Negative
7,114,66,0,0,32.8,0.258,42,Positive
5,99,74,27,0,29,0.203,32,Negative
0,109,88,30,0,32.5,0.855,38,Positive
2,109,92,0,0,42.7,0.845,54,Negative
1,95,66,13,38,19.6,0.334,25,Negative
4,146,85,27,100,28.9,0.189,27,Negative
2,100,66,20,90,32.9,0.867,28,Positive
5,139,64,35,140,28.6,0.411,26,Negative
13,126,90,0,0,43.4,0.583,42,Positive
4,129,86,20,270,35.1,0.231,23,Negative
1,79,75,30,0,32,0.396,22,Negative
1,0,48,20,0,24.7,0.14,22,Negative
7,62,78,0,0,32.6,0.391,41,Negative
5,95,72,33,0,37.7,0.37,27,Negative
0,131,0,0,0,43.2,0.27,26,Positive
2,112,66,22,0,25,0.307,24,Negative
3,113,44,13,0,22.4,0.14,22,Negative
2,74,0,0,0,0,0.102,22,Negative
7,83,78,26,71,29.3,0.767,36,Negative
0,101,65,28,0,24.6,0.237,22,Negative
5,137,108,0,0,48.8,0.227,37,Positive
2,110,74,29,125,32.4,0.698,27,Negative
13,106,72,54,0,36.6,0.178,45,Negative
2,100,68,25,71,38.5,0.324,26,Negative
15,136,70,32,110,37.1,0.153,43,Positive
1,107,68,19,0,26.5,0.165,24,Negative
1,80,55,0,0,19.1,0.258,21,Negative
4,123,80,15,176,32,0.443,34,Negative
7,81,78,40,48,46.7,0.261,42,Negative
4,134,72,0,0,23.8,0.277,60,Positive
2,142,82,18,64,24.7,0.761,21,Negative
6,144,72,27,228,33.9,0.255,40,Negative
2,92,62,28,0,31.6,0.13,24,Negative
1,71,48,18,76,20.4,0.323,22,Negative
6,93,50,30,64,28.7,0.356,23,Negative
1,122,90,51,220,49.7,0.325,31,Positive
1,163,72,0,0,39,1.222,33,Positive
1,151,60,0,0,26.1,0.179,22,Negative
0,125,96,0,0,22.5,0.262,21,Negative
1,81,72,18,40,26.6,0.283,24,Negative
2,85,65,0,0,39.6,0.93,27,Negative
1,126,56,29,152,28.7,0.801,21,Negative
1,96,122,0,0,22.4,0.207,27,Negative
4,144,58,28,140,29.5,0.287,37,Negative
3,83,58,31,18,34.3,0.336,25,Negative
0,95,85,25,36,37.4,0.247,24,Positive
3,171,72,33,135,33.3,0.199,24,Positive
8,155,62,26,495,34,0.543,46,Positive
1,89,76,34,37,31.2,0.192,23,Negative
4,76,62,0,0,34,0.391,25,Negative
7,160,54,32,175,30.5,0.588,39,Positive
4,146,92,0,0,31.2,0.539,61,Positive
5,124,74,0,0,34,0.22,38,Positive
5,78,48,0,0,33.7,0.654,25,Negative
4,97,60,23,0,28.2,0.443,22,Negative
4,99,76,15,51,23.2,0.223,21,Negative
0,162,76,56,100,53.2,0.759,25,Positive
6,111,64,39,0,34.2,0.26,24,Negative
2,107,74,30,100,33.6,0.404,23,Negative
5,132,80,0,0,26.8,0.186,69,Negative
0,113,76,0,0,33.3,0.278,23,Positive
1,88,30,42,99,55,0.496,26,Positive
3,120,70,30,135,42.9,0.452,30,Negative
1,118,58,36,94,33.3,0.261,23,Negative
1,117,88,24,145,34.5,0.403,40,Positive
0,105,84,0,0,27.9,0.741,62,Positive
4,173,70,14,168,29.7,0.361,33,Positive
9,122,56,0,0,33.3,1.114,33,Positive
3,170,64,37,225,34.5,0.356,30,Positive
8,84,74,31,0,38.3,0.457,39,Negative
2,96,68,13,49,21.1,0.647,26,Negative
2,125,60,20,140,33.8,0.088,31,Negative
0,100,70,26,50,30.8,0.597,21,Negative
0,93,60,25,92,28.7,0.532,22,Negative
0,129,80,0,0,31.2,0.703,29,Negative
5,105,72,29,325,36.9,0.159,28,Negative
3,128,78,0,0,21.1,0.268,55,Negative
5,106,82,30,0,39.5,0.286,38,Negative
2,108,52,26,63,32.5,0.318,22,Negative
10,108,66,0,0,32.4,0.272,42,Positive
4,154,62,31,284,32.8,0.237,23,Negative
0,102,75,23,0,0,0.572,21,Negative
9,57,80,37,0,32.8,0.096,41,Negative
2,106,64,35,119,30.5,1.4,34,Negative
5,147,78,0,0,33.7,0.218,65,Negative
2,90,70,17,0,27.3,0.085,22,Negative
1,136,74,50,204,37.4,0.399,24,Negative
4,114,65,0,0,21.9,0.432,37,Negative
9,156,86,28,155,34.3,1.189,42,Positive
1,153,82,42,485,40.6,0.687,23,Negative
8,188,78,0,0,47.9,0.137,43,Positive
7,152,88,44,0,50,0.337,36,Positive
2,99,52,15,94,24.6,0.637,21,Negative
1,109,56,21,135,25.2,0.833,23,Negative
2,88,74,19,53,29,0.229,22,Negative
17,163,72,41,114,40.9,0.817,47,Positive
4,151,90,38,0,29.7,0.294,36,Negative
7,102,74,40,105,37.2,0.204,45,Negative
0,114,80,34,285,44.2,0.167,27,Negative
2,100,64,23,0,29.7,0.368,21,Negative
0,131,88,0,0,31.6,0.743,32,Positive
6,104,74,18,156,29.9,0.722,41,Positive
3,148,66,25,0,32.5,0.256,22,Negative
4,120,68,0,0,29.6,0.709,34,Negative
4,110,66,0,0,31.9,0.471,29,Negative
3,111,90,12,78,28.4,0.495,29,Negative
6,102,82,0,0,30.8,0.18,36,Positive
6,134,70,23,130,35.4,0.542,29,Positive
2,87,0,23,0,28.9,0.773,25,Negative
1,79,60,42,48,43.5,0.678,23,Negative
2,75,64,24,55,29.7,0.37,33,Negative
8,179,72,42,130,32.7,0.719,36,Positive
6,85,78,0,0,31.2,0.382,42,Negative
0,129,110,46,130,67.1,0.319,26,Positive
5,143,78,0,0,45,0.19,47,Negative
5,130,82,0,0,39.1,0.956,37,Positive
6,87,80,0,0,23.2,0.084,32,Negative
0,119,64,18,92,34.9,0.725,23,Negative
1,0,74,20,23,27.7,0.299,21,Negative
5,73,60,0,0,26.8,0.268,27,Negative
4,141,74,0,0,27.6,0.244,40,Negative
7,194,68,28,0,35.9,0.745,41,Positive
8,181,68,36,495,30.1,0.615,60,Positive
1,128,98,41,58,32,1.321,33,Positive
8,109,76,39,114,27.9,0.64,31,Positive
5,139,80,35,160,31.6,0.361,25,Positive
3,111,62,0,0,22.6,0.142,21,Negative
9,123,70,44,94,33.1,0.374,40,Negative
7,159,66,0,0,30.4,0.383,36,Positive
11,135,0,0,0,52.3,0.578,40,Positive
8,85,55,20,0,24.4,0.136,42,Negative
5,158,84,41,210,39.4,0.395,29,Positive
1,105,58,0,0,24.3,0.187,21,Negative
3,107,62,13,48,22.9,0.678,23,Positive
4,109,64,44,99,34.8,0.905,26,Positive
4,148,60,27,318,30.9,0.15,29,Positive
0,113,80,16,0,31,0.874,21,Negative
1,138,82,0,0,40.1,0.236,28,Negative
0,108,68,20,0,27.3,0.787,32,Negative
2,99,70,16,44,20.4,0.235,27,Negative
6,103,72,32,190,37.7,0.324,55,Negative
5,111,72,28,0,23.9,0.407,27,Negative
8,196,76,29,280,37.5,0.605,57,Positive
5,162,104,0,0,37.7,0.151,52,Positive
1,96,64,27,87,33.2,0.289,21,Negative
7,184,84,33,0,35.5,0.355,41,Positive
2,81,60,22,0,27.7,0.29,25,Negative
0,147,85,54,0,42.8,0.375,24,Negative
7,179,95,31,0,34.2,0.164,60,Negative
0,140,65,26,130,42.6,0.431,24,Positive
9,112,82,32,175,34.2,0.26,36,Positive
12,151,70,40,271,41.8,0.742,38,Positive
5,109,62,41,129,35.8,0.514,25,Positive
6,125,68,30,120,30,0.464,32,Negative
5,85,74,22,0,29,1.224,32,Positive
5,112,66,0,0,37.8,0.261,41,Positive
0,177,60,29,478,34.6,1.072,21,Positive
2,158,90,0,0,31.6,0.805,66,Positive
7,119,0,0,0,25.2,0.209,37,Negative
7,142,60,33,190,28.8,0.687,61,Negative
1,100,66,15,56,23.6,0.666,26,Negative
1,87,78,27,32,34.6,0.101,22,Negative
0,101,76,0,0,35.7,0.198,26,Negative
3,162,52,38,0,37.2,0.652,24,Positive
4,197,70,39,744,36.7,2.329,31,Negative
0,117,80,31,53,45.2,0.089,24,Negative
4,142,86,0,0,44,0.645,22,Positive
6,134,80,37,370,46.2,0.238,46,Positive
1,79,80,25,37,25.4,0.583,22,Negative
4,122,68,0,0,35,0.394,29,Negative
3,74,68,28,45,29.7,0.293,23,Negative
4,171,72,0,0,43.6,0.479,26,Positive
7,181,84,21,192,35.9,0.586,51,Positive
0,179,90,27,0,44.1,0.686,23,Positive
9,164,84,21,0,30.8,0.831,32,Positive
0,104,76,0,0,18.4,0.582,27,Negative
1,91,64,24,0,29.2,0.192,21,Negative
4,91,70,32,88,33.1,0.446,22,Negative
3,139,54,0,0,25.6,0.402,22,Positive
6,119,50,22,176,27.1,1.318,33,Positive
2,146,76,35,194,38.2,0.329,29,Negative
9,184,85,15,0,30,1.213,49,Positive
10,122,68,0,0,31.2,0.258,41,Negative
0,165,90,33,680,52.3,0.427,23,Negative
9,124,70,33,402,35.4,0.282,34,Negative
1,111,86,19,0,30.1,0.143,23,Negative
9,106,52,0,0,31.2,0.38,42,Negative
2,129,84,0,0,28,0.284,27,Negative
2,90,80,14,55,24.4,0.249,24,Negative
0,86,68,32,0,35.8,0.238,25,Negative
12,92,62,7,258,27.6,0.926,44,Positive
1,113,64,35,0,33.6,0.543,21,Positive
3,111,56,39,0,30.1,0.557,30,Negative
2,114,68,22,0,28.7,0.092,25,Negative
1,193,50,16,375,25.9,0.655,24,Negative
11,155,76,28,150,33.3,1.353,51,Positive
3,191,68,15,130,30.9,0.299,34,Negative
3,141,0,0,0,30,0.761,27,Positive
4,95,70,32,0,32.1,0.612,24,Negative
3,142,80,15,0,32.4,0.2,63,Negative
4,123,62,0,0,32,0.226,35,Positive
5,96,74,18,67,33.6,0.997,43,Negative
0,138,0,0,0,36.3,0.933,25,Positive
2,128,64,42,0,40,1.101,24,Negative
0,102,52,0,0,25.1,0.078,21,Negative
2,146,0,0,0,27.5,0.24,28,Positive
10,101,86,37,0,45.6,1.136,38,Positive
2,108,62,32,56,25.2,0.128,21,Negative
3,122,78,0,0,23,0.254,40,Negative
1,71,78,50,45,33.2,0.422,21,Negative
13,106,70,0,0,34.2,0.251,52,Negative
2,100,70,52,57,40.5,0.677,25,Negative
7,106,60,24,0,26.5,0.296,29,Positive
0,104,64,23,116,27.8,0.454,23,Negative
5,114,74,0,0,24.9,0.744,57,Negative
2,108,62,10,278,25.3,0.881,22,Negative
0,146,70,0,0,37.9,0.334,28,Positive
10,129,76,28,122,35.9,0.28,39,Negative
7,133,88,15,155,32.4,0.262,37,Negative
7,161,86,0,0,30.4,0.165,47,Positive
2,108,80,0,0,27,0.259,52,Positive
7,136,74,26,135,26,0.647,51,Negative
5,155,84,44,545,38.7,0.619,34,Negative
1,119,86,39,220,45.6,0.808,29,Positive
4,96,56,17,49,20.8,0.34,26,Negative
5,108,72,43,75,36.1,0.263,33,Negative
0,78,88,29,40,36.9,0.434,21,Negative
0,107,62,30,74,36.6,0.757,25,Positive
2,128,78,37,182,43.3,1.224,31,Positive
1,128,48,45,194,40.5,0.613,24,Positive
0,161,50,0,0,21.9,0.254,65,Negative
6,151,62,31,120,35.5,0.692,28,Negative
2,146,70,38,360,28,0.337,29,Positive
0,126,84,29,215,30.7,0.52,24,Negative
14,100,78,25,184,36.6,0.412,46,Positive
8,112,72,0,0,23.6,0.84,58,Negative
0,167,0,0,0,32.3,0.839,30,Positive
2,144,58,33,135,31.6,0.422,25,Positive
5,77,82,41,42,35.8,0.156,35,Negative
5,115,98,0,0,52.9,0.209,28,Positive
3,150,76,0,0,21,0.207,37,Negative
2,120,76,37,105,39.7,0.215,29,Negative
10,161,68,23,132,25.5,0.326,47,Positive
0,137,68,14,148,24.8,0.143,21,Negative
0,128,68,19,180,30.5,1.391,25,Positive
2,124,68,28,205,32.9,0.875,30,Positive
6,80,66,30,0,26.2,0.313,41,Negative
0,106,70,37,148,39.4,0.605,22,Negative
2,155,74,17,96,26.6,0.433,27,Positive
3,113,50,10,85,29.5,0.626,25,Negative
7,109,80,31,0,35.9,1.127,43,Positive
2,112,68,22,94,34.1,0.315,26,Negative
3,99,80,11,64,19.3,0.284,30,Negative
3,182,74,0,0,30.5,0.345,29,Positive
3,115,66,39,140,38.1,0.15,28,Negative
6,194,78,0,0,23.5,0.129,59,Positive
4,129,60,12,231,27.5,0.527,31,Negative
3,112,74,30,0,31.6,0.197,25,Positive
0,124,70,20,0,27.4,0.254,36,Positive
13,152,90,33,29,26.8,0.731,43,Positive
2,112,75,32,0,35.7,0.148,21,Negative
1,157,72,21,168,25.6,0.123,24,Negative
1,122,64,32,156,35.1,0.692,30,Positive
10,179,70,0,0,35.1,0.2,37,Negative
2,102,86,36,120,45.5,0.127,23,Positive
6,105,70,32,68,30.8,0.122,37,Negative
8,118,72,19,0,23.1,1.476,46,Negative
2,87,58,16,52,32.7,0.166,25,Negative
1,180,0,0,0,43.3,0.282,41,Positive
12,106,80,0,0,23.6,0.137,44,Negative
1,95,60,18,58,23.9,0.26,22,Negative
0,165,76,43,255,47.9,0.259,26,Negative
0,117,0,0,0,33.8,0.932,44,Negative
5,115,76,0,0,31.2,0.343,44,Positive
9,152,78,34,171,34.2,0.893,33,Positive
7,178,84,0,0,39.9,0.331,41,Positive
1,130,70,13,105,25.9,0.472,22,Negative
1,95,74,21,73,25.9,0.673,36,Negative
1,0,68,35,0,32,0.389,22,Negative
5,122,86,0,0,34.7,0.29,33,Negative
8,95,72,0,0,36.8,0.485,57,Negative
8,126,88,36,108,38.5,0.349,49,Negative
1,139,46,19,83,28.7,0.654,22,Negative
3,116,0,0,0,23.5,0.187,23,Negative
3,99,62,19,74,21.8,0.279,26,Negative
5,0,80,32,0,41,0.346,37,Positive
4,92,80,0,0,42.2,0.237,29,Negative
4,137,84,0,0,31.2,0.252,30,Negative
3,61,82,28,0,34.4,0.243,46,Negative
1,90,62,12,43,27.2,0.58,24,Negative
3,90,78,0,0,42.7,0.559,21,Negative
9,165,88,0,0,30.4,0.302,49,Positive
1,125,50,40,167,33.3,0.962,28,Positive
13,129,0,30,0,39.9,0.569,44,Positive
12,88,74,40,54,35.3,0.378,48,Negative
1,196,76,36,249,36.5,0.875,29,Positive
5,189,64,33,325,31.2,0.583,29,Positive
5,158,70,0,0,29.8,0.207,63,Negative
5,103,108,37,0,39.2,0.305,65,Negative
4,146,78,0,0,38.5,0.52,67,Positive
4,147,74,25,293,34.9,0.385,30,Negative
5,99,54,28,83,34,0.499,30,Negative
6,124,72,0,0,27.6,0.368,29,Positive
0,101,64,17,0,21,0.252,21,Negative
3,81,86,16,66,27.5,0.306,22,Negative
1,133,102,28,140,32.8,0.234,45,Positive
3,173,82,48,465,38.4,2.137,25,Positive
0,118,64,23,89,0,1.731,21,Negative
0,84,64,22,66,35.8,0.545,21,Negative
2,105,58,40,94,34.9,0.225,25,Negative
2,122,52,43,158,36.2,0.816,28,Negative
12,140,82,43,325,39.2,0.528,58,Positive
0,98,82,15,84,25.2,0.299,22,Negative
1,87,60,37,75,37.2,0.509,22,Negative
4,156,75,0,0,48.3,0.238,32,Positive
0,93,100,39,72,43.4,1.021,35,Negative
1,107,72,30,82,30.8,0.821,24,Negative
0,105,68,22,0,20,0.236,22,Negative
1,109,60,8,182,25.4,0.947,21,Negative
1,90,62,18,59,25.1,1.268,25,Negative
1,125,70,24,110,24.3,0.221,25,Negative
1,119,54,13,50,22.3,0.205,24,Negative
5,116,74,29,0,32.3,0.66,35,Positive
8,105,100,36,0,43.3,0.239,45,Positive
5,144,82,26,285,32,0.452,58,Positive
3,100,68,23,81,31.6,0.949,28,Negative
1,100,66,29,196,32,0.444,42,Negative
5,166,76,0,0,45.7,0.34,27,Positive
1,131,64,14,415,23.7,0.389,21,Negative
4,116,72,12,87,22.1,0.463,37,Negative
4,158,78,0,0,32.9,0.803,31,Positive
2,127,58,24,275,27.7,1.6,25,Negative
3,96,56,34,115,24.7,0.944,39,Negative
0,131,66,40,0,34.3,0.196,22,Positive
3,82,70,0,0,21.1,0.389,25,Negative
3,193,70,31,0,34.9,0.241,25,Positive
4,95,64,0,0,32,0.161,31,Positive
6,137,61,0,0,24.2,0.151,55,Negative
5,136,84,41,88,35,0.286,35,Positive
9,72,78,25,0,31.6,0.28,38,Negative
5,168,64,0,0,32.9,0.135,41,Positive
2,123,48,32,165,42.1,0.52,26,Negative
4,115,72,0,0,28.9,0.376,46,Positive
0,101,62,0,0,21.9,0.336,25,Negative
8,197,74,0,0,25.9,1.191,39,Positive
1,172,68,49,579,42.4,0.702,28,Positive
6,102,90,39,0,35.7,0.674,28,Negative
1,112,72,30,176,34.4,0.528,25,Negative
1,143,84,23,310,42.4,1.076,22,Negative
1,143,74,22,61,26.2,0.256,21,Negative
0,138,60,35,167,34.6,0.534,21,Positive
3,173,84,33,474,35.7,0.258,22,Positive
1,97,68,21,0,27.2,1.095,22,Negative
4,144,82,32,0,38.5,0.554,37,Positive
1,83,68,0,0,18.2,0.624,27,Negative
3,129,64,29,115,26.4,0.219,28,Positive
1,119,88,41,170,45.3,0.507,26,Negative
2,94,68,18,76,26,0.561,21,Negative
0,102,64,46,78,40.6,0.496,21,Negative
2,115,64,22,0,30.8,0.421,21,Negative
8,151,78,32,210,42.9,0.516,36,Positive
4,184,78,39,277,37,0.264,31,Positive
0,94,0,0,0,0,0.256,25,Negative
1,181,64,30,180,34.1,0.328,38,Positive
0,135,94,46,145,40.6,0.284,26,Negative
1,95,82,25,180,35,0.233,43,Positive
2,99,0,0,0,22.2,0.108,23,Negative
3,89,74,16,85,30.4,0.551,38,Negative
1,80,74,11,60,30,0.527,22,Negative
2,139,75,0,0,25.6,0.167,29,Negative
1,90,68,8,0,24.5,1.138,36,Negative
0,141,0,0,0,42.4,0.205,29,Positive
12,140,85,33,0,37.4,0.244,41,Negative
5,147,75,0,0,29.9,0.434,28,Negative
1,97,70,15,0,18.2,0.147,21,Negative
6,107,88,0,0,36.8,0.727,31,Negative
0,189,104,25,0,34.3,0.435,41,Positive
2,83,66,23,50,32.2,0.497,22,Negative
4,117,64,27,120,33.2,0.23,24,Negative
8,108,70,0,0,30.5,0.955,33,Positive
4,117,62,12,0,29.7,0.38,30,Positive
0,180,78,63,14,59.4,2.42,25,Positive
1,100,72,12,70,25.3,0.658,28,Negative
0,95,80,45,92,36.5,0.33,26,Negative
0,104,64,37,64,33.6,0.51,22,Positive
0,120,74,18,63,30.5,0.285,26,Negative
1,82,64,13,95,21.2,0.415,23,Negative
2,134,70,0,0,28.9,0.542,23,Positive
0,91,68,32,210,39.9,0.381,25,Negative
2,119,0,0,0,19.6,0.832,72,Negative
2,100,54,28,105,37.8,0.498,24,Negative
14,175,62,30,0,33.6,0.212,38,Positive
1,135,54,0,0,26.7,0.687,62,Negative
5,86,68,28,71,30.2,0.364,24,Negative
10,148,84,48,237,37.6,1.001,51,Positive
9,134,74,33,60,25.9,0.46,81,Negative
9,120,72,22,56,20.8,0.733,48,Negative
1,71,62,0,0,21.8,0.416,26,Negative
8,74,70,40,49,35.3,0.705,39,Negative
5,88,78,30,0,27.6,0.258,37,Negative
10,115,98,0,0,24,1.022,34,Negative
0,124,56,13,105,21.8,0.452,21,Negative
0,74,52,10,36,27.8,0.269,22,Negative
0,97,64,36,100,36.8,0.6,25,Negative
8,120,0,0,0,30,0.183,38,Positive
6,154,78,41,140,46.1,0.571,27,Negative
1,144,82,40,0,41.3,0.607,28,Negative
0,137,70,38,0,33.2,0.17,22,Negative
0,119,66,27,0,38.8,0.259,22,Negative
7,136,90,0,0,29.9,0.21,50,Negative
4,114,64,0,0,28.9,0.126,24,Negative
0,137,84,27,0,27.3,0.231,59,Negative
2,105,80,45,191,33.7,0.711,29,Positive
7,114,76,17,110,23.8,0.466,31,Negative
8,126,74,38,75,25.9,0.162,39,Negative
4,132,86,31,0,28,0.419,63,Negative
3,158,70,30,328,35.5,0.344,35,Positive
0,123,88,37,0,35.2,0.197,29,Negative
4,85,58,22,49,27.8,0.306,28,Negative
0,84,82,31,125,38.2,0.233,23,Negative
0,145,0,0,0,44.2,0.63,31,Positive
0,135,68,42,250,42.3,0.365,24,Positive
1,139,62,41,480,40.7,0.536,21,Negative
0,173,78,32,265,46.5,1.159,58,Negative
4,99,72,17,0,25.6,0.294,28,Negative
8,194,80,0,0,26.1,0.551,67,Negative
2,83,65,28,66,36.8,0.629,24,Negative
2,89,90,30,0,33.5,0.292,42,Negative
4,99,68,38,0,32.8,0.145,33,Negative
4,125,70,18,122,28.9,1.144,45,Positive
3,80,0,0,0,0,0.174,22,Negative
6,166,74,0,0,26.6,0.304,66,Negative
5,110,68,0,0,26,0.292,30,Negative
2,81,72,15,76,30.1,0.547,25,Negative
7,195,70,33,145,25.1,0.163,55,Positive
6,154,74,32,193,29.3,0.839,39,Negative
2,117,90,19,71,25.2,0.313,21,Negative
3,84,72,32,0,37.2,0.267,28,Negative
6,0,68,41,0,39,0.727,41,Positive
7,94,64,25,79,33.3,0.738,41,Negative
3,96,78,39,0,37.3,0.238,40,Negative
10,75,82,0,0,33.3,0.263,38,Negative
0,180,90,26,90,36.5,0.314,35,Positive
1,130,60,23,170,28.6,0.692,21,Negative
2,84,50,23,76,30.4,0.968,21,Negative
8,120,78,0,0,25,0.409,64,Negative
12,84,72,31,0,29.7,0.297,46,Positive
0,139,62,17,210,22.1,0.207,21,Negative
9,91,68,0,0,24.2,0.2,58,Negative
2,91,62,0,0,27.3,0.525,22,Negative
3,99,54,19,86,25.6,0.154,24,Negative
3,163,70,18,105,31.6,0.268,28,Positive
9,145,88,34,165,30.3,0.771,53,Positive
7,125,86,0,0,37.6,0.304,51,Negative
13,76,60,0,0,32.8,0.18,41,Negative
6,129,90,7,326,19.6,0.582,60,Negative
2,68,70,32,66,25,0.187,25,Negative
3,124,80,33,130,33.2,0.305,26,Negative
6,114,0,0,0,0,0.189,26,Negative
9,130,70,0,0,34.2,0.652,45,Positive
3,125,58,0,0,31.6,0.151,24,Negative
3,87,60,18,0,21.8,0.444,21,Negative
1,97,64,19,82,18.2,0.299,21,Negative
3,116,74,15,105,26.3,0.107,24,Negative
0,117,66,31,188,30.8,0.493,22,Negative
0,111,65,0,0,24.6,0.66,31,Negative
2,122,60,18,106,29.8,0.717,22,Negative
0,107,76,0,0,45.3,0.686,24,Negative
1,86,66,52,65,41.3,0.917,29,Negative
6,91,0,0,0,29.8,0.501,31,Negative
1,77,56,30,56,33.3,1.251,24,Negative
4,132,0,0,0,32.9,0.302,23,Positive
0,105,90,0,0,29.6,0.197,46,Negative
0,57,60,0,0,21.7,0.735,67,Negative
0,127,80,37,210,36.3,0.804,23,Negative
3,129,92,49,155,36.4,0.968,32,Positive
8,100,74,40,215,39.4,0.661,43,Positive
3,128,72,25,190,32.4,0.549,27,Positive
10,90,85,32,0,34.9,0.825,56,Positive
4,84,90,23,56,39.5,0.159,25,Negative
1,88,78,29,76,32,0.365,29,Negative
8,186,90,35,225,34.5,0.423,37,Positive
5,187,76,27,207,43.6,1.034,53,Positive
4,131,68,21,166,33.1,0.16,28,Negative
1,164,82,43,67,32.8,0.341,50,Negative
4,189,110,31,0,28.5,0.68,37,Negative
1,116,70,28,0,27.4,0.204,21,Negative
3,84,68,30,106,31.9,0.591,25,Negative
6,114,88,0,0,27.8,0.247,66,Negative
1,88,62,24,44,29.9,0.422,23,Negative
1,84,64,23,115,36.9,0.471,28,Negative
7,124,70,33,215,25.5,0.161,37,Negative
1,97,70,40,0,38.1,0.218,30,Negative
8,110,76,0,0,27.8,0.237,58,Negative
11,103,68,40,0,46.2,0.126,42,Negative
11,85,74,0,0,30.1,0.3,35,Negative
6,125,76,0,0,33.8,0.121,54,Positive
0,198,66,32,274,41.3,0.502,28,Positive
1,87,68,34,77,37.6,0.401,24,Negative
6,99,60,19,54,26.9,0.497,32,Negative
0,91,80,0,0,32.4,0.601,27,Negative
2,95,54,14,88,26.1,0.748,22,Negative
1,99,72,30,18,38.6,0.412,21,Negative
6,92,62,32,126,32,0.085,46,Negative
4,154,72,29,126,31.3,0.338,37,Negative
0,121,66,30,165,34.3,0.203,33,Positive
3,78,70,0,0,32.5,0.27,39,Negative
2,130,96,0,0,22.6,0.268,21,Negative
3,111,58,31,44,29.5,0.43,22,Negative
2,98,60,17,120,34.7,0.198,22,Negative
1,143,86,30,330,30.1,0.892,23,Negative
1,119,44,47,63,35.5,0.28,25,Negative
6,108,44,20,130,24,0.813,35,Negative
2,118,80,0,0,42.9,0.693,21,Positive
10,133,68,0,0,27,0.245,36,Negative
2,197,70,99,0,34.7,0.575,62,Positive
0,151,90,46,0,42.1,0.371,21,Positive
6,109,60,27,0,25,0.206,27,Negative
12,121,78,17,0,26.5,0.259,62,Negative
8,100,76,0,0,38.7,0.19,42,Negative
8,124,76,24,600,28.7,0.687,52,Positive
1,93,56,11,0,22.5,0.417,22,Negative
8,143,66,0,0,34.9,0.129,41,Positive
6,103,66,0,0,24.3,0.249,29,Negative
3,176,86,27,156,33.3,1.154,52,Positive
0,73,0,0,0,21.1,0.342,25,Negative
11,111,84,40,0,46.8,0.925,45,Positive
2,112,78,50,140,39.4,0.175,24,Negative
3,132,80,0,0,34.4,0.402,44,Positive
2,82,52,22,115,28.5,1.699,25,Negative
6,123,72,45,230,33.6,0.733,34,Negative
0,188,82,14,185,32,0.682,22,Positive
0,67,76,0,0,45.3,0.194,46,Negative
1,89,24,19,25,27.8,0.559,21,Negative
1,173,74,0,0,36.8,0.088,38,Positive
1,109,38,18,120,23.1,0.407,26,Negative
1,108,88,19,0,27.1,0.4,24,Negative
6,96,0,0,0,23.7,0.19,28,Negative
1,124,74,36,0,27.8,0.1,30,Negative
7,150,78,29,126,35.2,0.692,54,Positive
4,183,0,0,0,28.4,0.212,36,Positive
1,124,60,32,0,35.8,0.514,21,Negative
1,181,78,42,293,40,1.258,22,Positive
1,92,62,25,41,19.5,0.482,25,Negative
0,152,82,39,272,41.5,0.27,27,Negative
1,111,62,13,182,24,0.138,23,Negative
3,106,54,21,158,30.9,0.292,24,Negative
3,174,58,22,194,32.9,0.593,36,Positive
7,168,88,42,321,38.2,0.787,40,Positive
6,105,80,28,0,32.5,0.878,26,Negative
11,138,74,26,144,36.1,0.557,50,Positive
3,106,72,0,0,25.8,0.207,27,Negative
6,117,96,0,0,28.7,0.157,30,Negative
2,68,62,13,15,20.1,0.257,23,Negative
9,112,82,24,0,28.2,1.282,50,Positive
0,119,0,0,0,32.4,0.141,24,Positive
2,112,86,42,160,38.4,0.246,28,Negative
2,92,76,20,0,24.2,1.698,28,Negative
6,183,94,0,0,40.8,1.461,45,Negative
0,94,70,27,115,43.5,0.347,21,Negative
2,108,64,0,0,30.8,0.158,21,Negative
4,90,88,47,54,37.7,0.362,29,Negative
0,125,68,0,0,24.7,0.206,21,Negative
0,132,78,0,0,32.4,0.393,21,Negative
5,128,80,0,0,34.6,0.144,45,Negative
4,94,65,22,0,24.7,0.148,21,Negative
7,114,64,0,0,27.4,0.732,34,Positive
0,102,78,40,90,34.5,0.238,24,Negative
2,111,60,0,0,26.2,0.343,23,Negative
1,128,82,17,183,27.5,0.115,22,Negative
10,92,62,0,0,25.9,0.167,31,Negative
13,104,72,0,0,31.2,0.465,38,Positive
5,104,74,0,0,28.8,0.153,48,Negative
2,94,76,18,66,31.6,0.649,23,Negative
7,97,76,32,91,40.9,0.871,32,Positive
1,100,74,12,46,19.5,0.149,28,Negative
0,102,86,17,105,29.3,0.695,27,Negative
4,128,70,0,0,34.3,0.303,24,Negative
6,147,80,0,0,29.5,0.178,50,Positive
4,90,0,0,0,28,0.61,31,Negative
3,103,72,30,152,27.6,0.73,27,Negative
2,157,74,35,440,39.4,0.134,30,Negative
1,167,74,17,144,23.4,0.447,33,Positive
0,179,50,36,159,37.8,0.455,22,Positive
11,136,84,35,130,28.3,0.26,42,Positive
0,107,60,25,0,26.4,0.133,23,Negative
1,91,54,25,100,25.2,0.234,23,Negative
1,117,60,23,106,33.8,0.466,27,Negative
5,123,74,40,77,34.1,0.269,28,Negative
2,120,54,0,0,26.8,0.455,27,Negative
1,106,70,28,135,34.2,0.142,22,Negative
2,155,52,27,540,38.7,0.24,25,Positive
2,101,58,35,90,21.8,0.155,22,Negative
1,120,80,48,200,38.9,1.162,41,Negative
11,127,106,0,0,39,0.19,51,Negative
3,80,82,31,70,34.2,1.292,27,Positive
10,162,84,0,0,27.7,0.182,54,Negative
1,199,76,43,0,42.9,1.394,22,Positive
8,167,106,46,231,37.6,0.165,43,Positive
9,145,80,46,130,37.9,0.637,40,Positive
6,115,60,39,0,33.7,0.245,40,Positive
1,112,80,45,132,34.8,0.217,24,Negative
4,145,82,18,0,32.5,0.235,70,Positive
10,111,70,27,0,27.5,0.141,40,Positive
6,98,58,33,190,34,0.43,43,Negative
9,154,78,30,100,30.9,0.164,45,Negative
6,165,68,26,168,33.6,0.631,49,Negative
1,99,58,10,0,25.4,0.551,21,Negative
10,68,106,23,49,35.5,0.285,47,Negative
3,123,100,35,240,57.3,0.88,22,Negative
8,91,82,0,0,35.6,0.587,68,Negative
6,195,70,0,0,30.9,0.328,31,Positive
9,156,86,0,0,24.8,0.23,53,Positive
0,93,60,0,0,35.3,0.263,25,Negative
3,121,52,0,0,36,0.127,25,Positive
2,101,58,17,265,24.2,0.614,23,Negative
2,56,56,28,45,24.2,0.332,22,Negative
0,162,76,36,0,49.6,0.364,26,Positive
0,95,64,39,105,44.6,0.366,22,Negative
4,125,80,0,0,32.3,0.536,27,Positive
5,136,82,0,0,0,0.64,69,Negative
2,129,74,26,205,33.2,0.591,25,Negative
3,130,64,0,0,23.1,0.314,22,Negative
1,107,50,19,0,28.3,0.181,29,Negative
1,140,74,26,180,24.1,0.828,23,Negative
1,144,82,46,180,46.1,0.335,46,Positive
8,107,80,0,0,24.6,0.856,34,Negative
13,158,114,0,0,42.3,0.257,44,Positive
2,121,70,32,95,39.1,0.886,23,Negative
7,129,68,49,125,38.5,0.439,43,Positive
2,90,60,0,0,23.5,0.191,25,Negative
7,142,90,24,480,30.4,0.128,43,Positive
3,169,74,19,125,29.9,0.268,31,Positive
0,99,0,0,0,25,0.253,22,Negative
4,127,88,11,155,34.5,0.598,28,Negative
4,118,70,0,0,44.5,0.904,26,Negative
2,122,76,27,200,35.9,0.483,26,Negative
6,125,78,31,0,27.6,0.565,49,Positive
1,168,88,29,0,35,0.905,52,Positive
2,129,0,0,0,38.5,0.304,41,Negative
4,110,76,20,100,28.4,0.118,27,Negative
6,80,80,36,0,39.8,0.177,28,Negative
10,115,0,0,0,0,0.261,30,Positive
2,127,46,21,335,34.4,0.176,22,Negative
9,164,78,0,0,32.8,0.148,45,Positive
2,93,64,32,160,38,0.674,23,Positive
3,158,64,13,387,31.2,0.295,24,Negative
5,126,78,27,22,29.6,0.439,40,Negative
10,129,62,36,0,41.2,0.441,38,Positive
0,134,58,20,291,26.4,0.352,21,Negative
3,102,74,0,0,29.5,0.121,32,Negative
7,187,50,33,392,33.9,0.826,34,Positive
3,173,78,39,185,33.8,0.97,31,Positive
10,94,72,18,0,23.1,0.595,56,Negative
1,108,60,46,178,35.5,0.415,24,Negative
5,97,76,27,0,35.6,0.378,52,Positive
4,83,86,19,0,29.3,0.317,34,Negative
1,114,66,36,200,38.1,0.289,21,Negative
1,149,68,29,127,29.3,0.349,42,Positive
5,117,86,30,105,39.1,0.251,42,Negative
1,111,94,0,0,32.8,0.265,45,Negative
4,112,78,40,0,39.4,0.236,38,Negative
1,116,78,29,180,36.1,0.496,25,Negative
0,141,84,26,0,32.4,0.433,22,Negative
2,175,88,0,0,22.9,0.326,22,Negative
2,92,52,0,0,30.1,0.141,22,Negative
3,130,78,23,79,28.4,0.323,34,Positive
8,120,86,0,0,28.4,0.259,22,Positive
2,174,88,37,120,44.5,0.646,24,Positive
2,106,56,27,165,29,0.426,22,Negative
2,105,75,0,0,23.3,0.56,53,Negative
4,95,60,32,0,35.4,0.284,28,Negative
0,126,86,27,120,27.4,0.515,21,Negative
8,65,72,23,0,32,0.6,42,Negative
2,99,60,17,160,36.6,0.453,21,Negative
1,102,74,0,0,39.5,0.293,42,Positive
11,120,80,37,150,42.3,0.785,48,Positive
3,102,44,20,94,30.8,0.4,26,Negative
1,109,58,18,116,28.5,0.219,22,Negative
9,140,94,0,0,32.7,0.734,45,Positive
13,153,88,37,140,40.6,1.174,39,Negative
12,100,84,33,105,30,0.488,46,Negative
1,147,94,41,0,49.3,0.358,27,Positive
1,81,74,41,57,46.3,1.096,32,Negative
3,187,70,22,200,36.4,0.408,36,Positive
6,162,62,0,0,24.3,0.178,50,Positive
4,136,70,0,0,31.2,1.182,22,Positive
1,121,78,39,74,39,0.261,28,Negative
3,108,62,24,0,26,0.223,25,Negative
0,181,88,44,510,43.3,0.222,26,Positive
8,154,78,32,0,32.4,0.443,45,Positive
1,128,88,39,110,36.5,1.057,37,Positive
7,137,90,41,0,32,0.391,39,Negative
0,123,72,0,0,36.3,0.258,52,Positive
1,106,76,0,0,37.5,0.197,26,Negative
6,190,92,0,0,35.5,0.278,66,Positive
2,88,58,26,16,28.4,0.766,22,Negative
9,170,74,31,0,44,0.403,43,Positive
9,89,62,0,0,22.5,0.142,33,Negative
10,101,76,48,180,32.9,0.171,63,Negative
2,122,70,27,0,36.8,0.34,27,Negative
5,121,72,23,112,26.2,0.245,30,Negative
1,126,60,0,0,30.1,0.349,47,Positive
1,93,70,31,0,30.4,0.315,23,Negative
unable to load file from base commit

File diff suppressed because it is too large Load Diff

@ -11,27 +11,28 @@
"start": "npm run dev" "start": "npm run dev"
}, },
"dependencies": { "dependencies": {
"@babel/core": "^7.8.3", "@babel/core": "^7.8.4",
"@babel/runtime": "^7.8.3", "@babel/runtime": "^7.8.4",
"@fortawesome/fontawesome-free": "^5.12.0", "@fortawesome/fontawesome-free": "^5.12.1",
"@fortawesome/fontawesome-svg-core": "^1.2.26", "@fortawesome/fontawesome-svg-core": "^1.2.27",
"@fortawesome/free-solid-svg-icons": "^5.12.0", "@fortawesome/free-solid-svg-icons": "^5.12.1",
"@fortawesome/vue-fontawesome": "^0.1.9", "@fortawesome/vue-fontawesome": "^0.1.9",
"@statnett/vue-plotly": "^0.3.2", "@statnett/vue-plotly": "^0.3.2",
"@types/d3-drag": "^1.2.3", "@types/d3-drag": "^1.2.3",
"@types/node": "^13.5.1", "@types/node": "^13.7.4",
"ajv": "^6.11.0", "ajv": "^6.12.0",
"audit": "0.0.6", "audit": "0.0.6",
"axios": "^0.19.2", "axios": "^0.19.2",
"axios-progress-bar": "^1.2.0", "axios-progress-bar": "^1.2.0",
"babel-preset-vue": "^2.0.2", "babel-preset-vue": "^2.0.2",
"blob": "0.0.5", "blob": "0.1.0",
"bootstrap": "^4.4.1", "bootstrap": "^4.4.1",
"bootstrap-toggle": "^2.2.2", "bootstrap-toggle": "^2.2.2",
"bootstrap-vue": "^2.3.0", "bootstrap-vue": "^2.5.0",
"circlepack-chart": "^1.3.0", "circlepack-chart": "^1.3.0",
"clean-webpack-plugin": "^3.0.0", "clean-webpack-plugin": "^3.0.0",
"colorbrewer": "^1.3.0", "colorbrewer": "^1.3.0",
"cryo": "0.0.6",
"d3": "^5.15.0", "d3": "^5.15.0",
"d3-array": "^2.4.0", "d3-array": "^2.4.0",
"d3-brush": "^1.1.5", "d3-brush": "^1.1.5",
@ -50,15 +51,15 @@
"fs": "0.0.2", "fs": "0.0.2",
"fs-es6": "0.0.2", "fs-es6": "0.0.2",
"ify-loader": "^1.1.0", "ify-loader": "^1.1.0",
"interactjs": "^1.8.2", "interactjs": "^1.8.4",
"jquery": "^3.4.1", "jquery": "^3.4.1",
"mdbvue": "^6.3.0", "mdbvue": "^6.5.0",
"merge": "^1.2.1", "merge": "^1.2.1",
"mini-css-extract-plugin": "^0.9.0", "mini-css-extract-plugin": "^0.9.0",
"npm-check-updates": "^4.0.1", "npm-check-updates": "^4.0.1",
"papaparse": "^5.1.1", "papaparse": "^5.1.1",
"parcoord-es": "^2.2.10", "parcoord-es": "^2.2.10",
"plotly.js": "^1.52.1", "plotly.js": "^1.52.2",
"popper.js": "^1.16.1", "popper.js": "^1.16.1",
"react": "^16.12.0", "react": "^16.12.0",
"react-dom": "^16.12.0", "react-dom": "^16.12.0",
@ -75,9 +76,9 @@
"vue-papa-parse": "^1.3.0", "vue-papa-parse": "^1.3.0",
"vue-plotly": "^1.1.0", "vue-plotly": "^1.1.0",
"vue-router": "^3.1.5", "vue-router": "^3.1.5",
"vue-slider-component": "^3.1.0", "vue-slider-component": "^3.1.1",
"vue2-simplert-plugin": "^0.5.3", "vue2-simplert-plugin": "^0.5.3",
"webpack-cli": "^3.3.10", "webpack-cli": "^3.3.11",
"webpack-require": "0.0.16" "webpack-require": "0.0.16"
}, },
"devDependencies": { "devDependencies": {
@ -92,7 +93,7 @@
"@babel/plugin-syntax-import-meta": "^7.8.3", "@babel/plugin-syntax-import-meta": "^7.8.3",
"@babel/plugin-syntax-jsx": "^7.8.3", "@babel/plugin-syntax-jsx": "^7.8.3",
"@babel/plugin-transform-runtime": "^7.8.3", "@babel/plugin-transform-runtime": "^7.8.3",
"@babel/preset-env": "^7.8.3", "@babel/preset-env": "^7.8.4",
"autoprefixer": "^9.7.4", "autoprefixer": "^9.7.4",
"babel-eslint": "^10.0.3", "babel-eslint": "^10.0.3",
"babel-helper-vue-jsx-merge-props": "^2.0.3", "babel-helper-vue-jsx-merge-props": "^2.0.3",
@ -105,13 +106,13 @@
"eslint-config-standard": "^14.1.0", "eslint-config-standard": "^14.1.0",
"eslint-friendly-formatter": "^4.0.1", "eslint-friendly-formatter": "^4.0.1",
"eslint-loader": "^3.0.3", "eslint-loader": "^3.0.3",
"eslint-plugin-import": "^2.20.0", "eslint-plugin-import": "^2.20.1",
"eslint-plugin-node": "^11.0.0", "eslint-plugin-node": "^11.0.0",
"eslint-plugin-promise": "^4.2.1", "eslint-plugin-promise": "^4.2.1",
"eslint-plugin-standard": "^4.0.1", "eslint-plugin-standard": "^4.0.1",
"eslint-plugin-vue": "^6.1.2", "eslint-plugin-vue": "^6.2.1",
"extract-text-webpack-plugin": "^3.0.2", "extract-text-webpack-plugin": "^3.0.2",
"file-loader": "^5.0.2", "file-loader": "^5.1.0",
"friendly-errors-webpack-plugin": "^1.7.0", "friendly-errors-webpack-plugin": "^1.7.0",
"html-webpack-plugin": "^3.2.0", "html-webpack-plugin": "^3.2.0",
"node-notifier": "^6.0.0", "node-notifier": "^6.0.0",
@ -121,24 +122,24 @@
"postcss-import": "^12.0.1", "postcss-import": "^12.0.1",
"postcss-loader": "^3.0.0", "postcss-loader": "^3.0.0",
"postcss-url": "^8.0.0", "postcss-url": "^8.0.0",
"rimraf": "^3.0.1", "rimraf": "^3.0.2",
"sass": "^1.25.0", "sass": "^1.25.0",
"sass-loader": "^8.0.2", "sass-loader": "^8.0.2",
"semver": "^7.1.1", "semver": "^7.1.3",
"shelljs": "^0.8.3", "shelljs": "^0.8.3",
"uglifyjs-webpack-plugin": "^2.2.0", "uglifyjs-webpack-plugin": "^2.2.0",
"url-loader": "^3.0.0", "url-loader": "^3.0.0",
"vue-class-component": "^7.2.2", "vue-class-component": "^7.2.3",
"vue-cli-plugin-vuetify": "^2.0.3", "vue-cli-plugin-vuetify": "^2.0.5",
"vue-loader": "^15.8.3", "vue-loader": "^15.9.0",
"vue-property-decorator": "^8.3.0", "vue-property-decorator": "^8.4.0",
"vue-style-loader": "^4.1.2", "vue-style-loader": "^4.1.2",
"vue-template-compiler": "^2.6.11", "vue-template-compiler": "^2.6.11",
"vue2-simplert": "^1.0.0", "vue2-simplert": "^1.0.0",
"vuetify-loader": "^1.4.3", "vuetify-loader": "^1.4.3",
"webpack": "^4.41.5", "webpack": "^4.41.6",
"webpack-bundle-analyzer": "^3.6.0", "webpack-bundle-analyzer": "^3.6.0",
"webpack-dev-server": "^3.10.1", "webpack-dev-server": "^3.10.3",
"webpack-merge": "^4.2.2" "webpack-merge": "^4.2.2"
}, },
"browserslist": [ "browserslist": [

@ -65,13 +65,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgKNN['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgKNN['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgKNN['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgKNN['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgKNN['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgKNN['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgKNN['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgKNN['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgKNN['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgKNN['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgKNN['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgKNN['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgKNN['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgKNN['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgKNN['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgKNN['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgKNN['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgKNN['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgKNN['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgKNN['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgKNN['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgKNN['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgKNN['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgKNN['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgKNN['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgKNN['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgKNN['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgKNN['log_loss'])[j]))
if (sumKNN <= 0) {
sumKNN = 0
}
McKNN.push((sumKNN/divide)*100) McKNN.push((sumKNN/divide)*100)
} }
var McSVC = [] var McSVC = []
const performanceAlgSVC = JSON.parse(this.ModelsPerformance[14]) const performanceAlgSVC = JSON.parse(this.ModelsPerformance[15])
for (let j = 0; j < Object.values(performanceAlgSVC['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgSVC['mean_test_accuracy']).length; j++) {
let sumSVC let sumSVC
sumSVC = (factorsLocal[0] * Object.values(performanceAlgSVC['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgSVC['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgSVC['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgSVC['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgSVC['geometric_mean_score_macro'])[j]) sumSVC = (factorsLocal[0] * Object.values(performanceAlgSVC['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgSVC['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgSVC['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgSVC['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgSVC['geometric_mean_score_macro'])[j])
@ -79,13 +76,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgSVC['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgSVC['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgSVC['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgSVC['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgSVC['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgSVC['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgSVC['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgSVC['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgSVC['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgSVC['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgSVC['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgSVC['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgSVC['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgSVC['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgSVC['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgSVC['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgSVC['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgSVC['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgSVC['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgSVC['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgSVC['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgSVC['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgSVC['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgSVC['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgSVC['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgSVC['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgSVC['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgSVC['log_loss'])[j]))
if (sumSVC <= 0) {
sumSVC = 0
}
McSVC.push((sumSVC/divide)*100) McSVC.push((sumSVC/divide)*100)
} }
var McGausNB = [] var McGausNB = []
const performanceAlgGausNB = JSON.parse(this.ModelsPerformance[22]) const performanceAlgGausNB = JSON.parse(this.ModelsPerformance[24])
for (let j = 0; j < Object.values(performanceAlgGausNB['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgGausNB['mean_test_accuracy']).length; j++) {
let sumGausNB let sumGausNB
sumGausNB = (factorsLocal[0] * Object.values(performanceAlgGausNB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgGausNB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgGausNB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgGausNB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGausNB['geometric_mean_score_macro'])[j]) sumGausNB = (factorsLocal[0] * Object.values(performanceAlgGausNB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgGausNB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgGausNB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgGausNB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGausNB['geometric_mean_score_macro'])[j])
@ -93,13 +87,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgGausNB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGausNB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGausNB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGausNB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGausNB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGausNB['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgGausNB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGausNB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGausNB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGausNB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGausNB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGausNB['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgGausNB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGausNB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGausNB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGausNB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGausNB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGausNB['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgGausNB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGausNB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGausNB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGausNB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGausNB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGausNB['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgGausNB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGausNB['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgGausNB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGausNB['log_loss'])[j]))
if (sumGausNB <= 0) {
sumGausNB = 0
}
McGausNB.push((sumGausNB/divide)*100) McGausNB.push((sumGausNB/divide)*100)
} }
var McMLP = [] var McMLP = []
const performanceAlgMLP = JSON.parse(this.ModelsPerformance[30]) const performanceAlgMLP = JSON.parse(this.ModelsPerformance[33])
for (let j = 0; j < Object.values(performanceAlgMLP['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgMLP['mean_test_accuracy']).length; j++) {
let sumMLP let sumMLP
sumMLP = (factorsLocal[0] * Object.values(performanceAlgMLP['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgMLP['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgMLP['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgMLP['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgMLP['geometric_mean_score_macro'])[j]) sumMLP = (factorsLocal[0] * Object.values(performanceAlgMLP['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgMLP['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgMLP['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgMLP['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgMLP['geometric_mean_score_macro'])[j])
@ -107,13 +98,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgMLP['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgMLP['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgMLP['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgMLP['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgMLP['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgMLP['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgMLP['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgMLP['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgMLP['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgMLP['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgMLP['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgMLP['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgMLP['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgMLP['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgMLP['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgMLP['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgMLP['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgMLP['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgMLP['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgMLP['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgMLP['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgMLP['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgMLP['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgMLP['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgMLP['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgMLP['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgMLP['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgMLP['log_loss'])[j]))
if (sumMLP <= 0) {
sumMLP = 0
}
McMLP.push((sumMLP/divide)*100) McMLP.push((sumMLP/divide)*100)
} }
var McLR = [] var McLR = []
const performanceAlgLR = JSON.parse(this.ModelsPerformance[38]) const performanceAlgLR = JSON.parse(this.ModelsPerformance[42])
for (let j = 0; j < Object.values(performanceAlgLR['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgLR['mean_test_accuracy']).length; j++) {
let sumLR let sumLR
sumLR = (factorsLocal[0] * Object.values(performanceAlgLR['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgLR['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgLR['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgLR['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLR['geometric_mean_score_macro'])[j]) sumLR = (factorsLocal[0] * Object.values(performanceAlgLR['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgLR['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgLR['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgLR['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLR['geometric_mean_score_macro'])[j])
@ -121,13 +109,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgLR['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLR['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLR['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLR['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLR['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLR['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgLR['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLR['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLR['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLR['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLR['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLR['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgLR['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLR['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLR['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLR['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLR['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLR['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgLR['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLR['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLR['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLR['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLR['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLR['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgLR['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLR['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgLR['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLR['log_loss'])[j]))
if (sumLR <= 0) {
sumLR = 0
}
McLR.push((sumLR/divide)*100) McLR.push((sumLR/divide)*100)
} }
var McLDA = [] var McLDA = []
const performanceAlgLDA = JSON.parse(this.ModelsPerformance[46]) const performanceAlgLDA = JSON.parse(this.ModelsPerformance[51])
for (let j = 0; j < Object.values(performanceAlgLDA['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgLDA['mean_test_accuracy']).length; j++) {
let sumLDA let sumLDA
sumLDA = (factorsLocal[0] * Object.values(performanceAlgLDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgLDA['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgLDA['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgLDA['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLDA['geometric_mean_score_macro'])[j]) sumLDA = (factorsLocal[0] * Object.values(performanceAlgLDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgLDA['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgLDA['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgLDA['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLDA['geometric_mean_score_macro'])[j])
@ -135,13 +120,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgLDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLDA['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgLDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLDA['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgLDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLDA['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgLDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLDA['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgLDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLDA['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgLDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLDA['log_loss'])[j]))
if (sumLDA <= 0) {
sumLDA = 0
}
McLDA.push((sumLDA/divide)*100) McLDA.push((sumLDA/divide)*100)
} }
var McQDA = [] var McQDA = []
const performanceAlgQDA = JSON.parse(this.ModelsPerformance[54]) const performanceAlgQDA = JSON.parse(this.ModelsPerformance[60])
for (let j = 0; j < Object.values(performanceAlgQDA['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgQDA['mean_test_accuracy']).length; j++) {
let sumQDA let sumQDA
sumQDA = (factorsLocal[0] * Object.values(performanceAlgQDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgQDA['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgQDA['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgQDA['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgQDA['geometric_mean_score_macro'])[j]) sumQDA = (factorsLocal[0] * Object.values(performanceAlgQDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgQDA['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgQDA['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgQDA['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgQDA['geometric_mean_score_macro'])[j])
@ -149,13 +131,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgQDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgQDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgQDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgQDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgQDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgQDA['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgQDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgQDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgQDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgQDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgQDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgQDA['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgQDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgQDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgQDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgQDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgQDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgQDA['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgQDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgQDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgQDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgQDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgQDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgQDA['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgQDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgQDA['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgQDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgQDA['log_loss'])[j]))
if (sumQDA <= 0) {
sumQDA = 0
}
McQDA.push((sumQDA/divide)*100) McQDA.push((sumQDA/divide)*100)
} }
var McRF = [] var McRF = []
const performanceAlgRF = JSON.parse(this.ModelsPerformance[62]) const performanceAlgRF = JSON.parse(this.ModelsPerformance[69])
for (let j = 0; j < Object.values(performanceAlgRF['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgRF['mean_test_accuracy']).length; j++) {
let sumRF let sumRF
sumRF = (factorsLocal[0] * Object.values(performanceAlgRF['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgRF['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgRF['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgRF['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgRF['geometric_mean_score_macro'])[j]) sumRF = (factorsLocal[0] * Object.values(performanceAlgRF['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgRF['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgRF['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgRF['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgRF['geometric_mean_score_macro'])[j])
@ -163,13 +142,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgRF['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgRF['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgRF['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgRF['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgRF['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgRF['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgRF['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgRF['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgRF['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgRF['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgRF['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgRF['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgRF['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgRF['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgRF['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgRF['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgRF['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgRF['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgRF['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgRF['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgRF['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgRF['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgRF['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgRF['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgRF['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgRF['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgRF['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgRF['log_loss'])[j]))
if (sumRF <= 0) {
sumRF = 0
}
McRF.push((sumRF/divide)*100) McRF.push((sumRF/divide)*100)
} }
var McExtraT = [] var McExtraT = []
const performanceAlgExtraT = JSON.parse(this.ModelsPerformance[70]) const performanceAlgExtraT = JSON.parse(this.ModelsPerformance[78])
for (let j = 0; j < Object.values(performanceAlgExtraT['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgExtraT['mean_test_accuracy']).length; j++) {
let sumExtraT let sumExtraT
sumExtraT = (factorsLocal[0] * Object.values(performanceAlgExtraT['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgExtraT['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgExtraT['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgExtraT['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgExtraT['geometric_mean_score_macro'])[j]) sumExtraT = (factorsLocal[0] * Object.values(performanceAlgExtraT['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgExtraT['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgExtraT['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgExtraT['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgExtraT['geometric_mean_score_macro'])[j])
@ -177,13 +153,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgExtraT['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgExtraT['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgExtraT['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgExtraT['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgExtraT['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgExtraT['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgExtraT['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgExtraT['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgExtraT['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgExtraT['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgExtraT['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgExtraT['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgExtraT['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgExtraT['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgExtraT['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgExtraT['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgExtraT['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgExtraT['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgExtraT['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgExtraT['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgExtraT['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgExtraT['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgExtraT['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgExtraT['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgExtraT['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgExtraT['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgExtraT['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgExtraT['log_loss'])[j]))
if (sumExtraT <= 0) {
sumExtraT = 0
}
McExtraT.push((sumExtraT/divide)*100) McExtraT.push((sumExtraT/divide)*100)
} }
var McAdaB = [] var McAdaB = []
const performanceAlgAdaB = JSON.parse(this.ModelsPerformance[78]) const performanceAlgAdaB = JSON.parse(this.ModelsPerformance[87])
for (let j = 0; j < Object.values(performanceAlgAdaB['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgAdaB['mean_test_accuracy']).length; j++) {
let sumAdaB let sumAdaB
sumAdaB = (factorsLocal[0] * Object.values(performanceAlgAdaB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgAdaB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgAdaB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgAdaB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgAdaB['geometric_mean_score_macro'])[j]) sumAdaB = (factorsLocal[0] * Object.values(performanceAlgAdaB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgAdaB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgAdaB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgAdaB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgAdaB['geometric_mean_score_macro'])[j])
@ -191,13 +164,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgAdaB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgAdaB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgAdaB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgAdaB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgAdaB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgAdaB['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgAdaB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgAdaB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgAdaB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgAdaB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgAdaB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgAdaB['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgAdaB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgAdaB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgAdaB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgAdaB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgAdaB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgAdaB['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgAdaB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgAdaB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgAdaB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgAdaB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgAdaB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgAdaB['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgAdaB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgAdaB['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgAdaB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgAdaB['log_loss'])[j]))
if (sumAdaB <= 0) {
sumAdaB = 0
}
McAdaB.push((sumAdaB/divide)*100) McAdaB.push((sumAdaB/divide)*100)
} }
var McGradB = [] var McGradB = []
const performanceAlgGradB = JSON.parse(this.ModelsPerformance[86]) const performanceAlgGradB = JSON.parse(this.ModelsPerformance[96])
for (let j = 0; j < Object.values(performanceAlgGradB['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgGradB['mean_test_accuracy']).length; j++) {
let sumGradB let sumGradB
sumGradB = (factorsLocal[0] * Object.values(performanceAlgGradB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgGradB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgGradB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgGradB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGradB['geometric_mean_score_macro'])[j]) sumGradB = (factorsLocal[0] * Object.values(performanceAlgGradB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgGradB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgGradB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgGradB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGradB['geometric_mean_score_macro'])[j])
@ -205,9 +175,6 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgGradB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGradB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGradB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGradB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGradB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGradB['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgGradB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGradB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGradB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGradB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGradB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGradB['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgGradB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGradB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGradB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGradB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGradB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGradB['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgGradB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGradB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGradB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGradB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGradB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGradB['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgGradB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGradB['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgGradB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGradB['log_loss'])[j]))
if (sumGradB <= 0) {
sumGradB = 0
}
McGradB.push((sumGradB/divide)*100) McGradB.push((sumGradB/divide)*100)
} }
@ -216,34 +183,34 @@ export default {
Combined = JSON.parse(this.ModelsPerformance[1]) Combined = JSON.parse(this.ModelsPerformance[1])
colorGiv = colors[0] colorGiv = colors[0]
} else if (this.selAlgorithm == 'SVC') { } else if (this.selAlgorithm == 'SVC') {
Combined = JSON.parse(this.ModelsPerformance[9]) Combined = JSON.parse(this.ModelsPerformance[10])
colorGiv = colors[1] colorGiv = colors[1]
} else if (this.selAlgorithm == 'GausNB') { } else if (this.selAlgorithm == 'GausNB') {
Combined = JSON.parse(this.ModelsPerformance[17]) Combined = JSON.parse(this.ModelsPerformance[19])
colorGiv = colors[2] colorGiv = colors[2]
} else if (this.selAlgorithm == 'MLP') { } else if (this.selAlgorithm == 'MLP') {
Combined = JSON.parse(this.ModelsPerformance[25]) Combined = JSON.parse(this.ModelsPerformance[28])
colorGiv = colors[3] colorGiv = colors[3]
} else if (this.selAlgorithm == 'LR') { } else if (this.selAlgorithm == 'LR') {
Combined = JSON.parse(this.ModelsPerformance[33]) Combined = JSON.parse(this.ModelsPerformance[37])
colorGiv = colors[4] colorGiv = colors[4]
} else if (this.selAlgorithm == 'LDA') { } else if (this.selAlgorithm == 'LDA') {
Combined = JSON.parse(this.ModelsPerformance[41]) Combined = JSON.parse(this.ModelsPerformance[46])
colorGiv = colors[5] colorGiv = colors[5]
} else if (this.selAlgorithm == 'QDA') { } else if (this.selAlgorithm == 'QDA') {
Combined = JSON.parse(this.ModelsPerformance[49]) Combined = JSON.parse(this.ModelsPerformance[55])
colorGiv = colors[6] colorGiv = colors[6]
} else if (this.selAlgorithm == 'RF') { } else if (this.selAlgorithm == 'RF') {
Combined = JSON.parse(this.ModelsPerformance[57]) Combined = JSON.parse(this.ModelsPerformance[64])
colorGiv = colors[7] colorGiv = colors[7]
} else if (this.selAlgorithm == 'ExtraT') { } else if (this.selAlgorithm == 'ExtraT') {
Combined = JSON.parse(this.ModelsPerformance[65]) Combined = JSON.parse(this.ModelsPerformance[73])
colorGiv = colors[8] colorGiv = colors[8]
} else if (this.selAlgorithm == 'AdaB') { } else if (this.selAlgorithm == 'AdaB') {
Combined = JSON.parse(this.ModelsPerformance[73]) Combined = JSON.parse(this.ModelsPerformance[82])
colorGiv = colors[9] colorGiv = colors[9]
} else { } else {
Combined = JSON.parse(this.ModelsPerformance[81]) Combined = JSON.parse(this.ModelsPerformance[91])
colorGiv = colors[10] colorGiv = colors[10]
} }
var valuesPerf = Object.values(Combined['params']) var valuesPerf = Object.values(Combined['params'])

@ -39,6 +39,7 @@ export default {
parameters: [], parameters: [],
algorithm1: [], algorithm1: [],
algorithm2: [], algorithm2: [],
activeTabVal: true,
factors: [1,1,1,0,0 factors: [1,1,1,0,0
,1,0,0,1,0 ,1,0,0,1,0
,0,1,0,0,0 ,0,1,0,0,0
@ -60,16 +61,16 @@ export default {
// retrieve models ID // retrieve models ID
const AlgorKNNIDs = this.PerformanceAllModels[0] const AlgorKNNIDs = this.PerformanceAllModels[0]
const AlgorSVCIDs = this.PerformanceAllModels[8] const AlgorSVCIDs = this.PerformanceAllModels[9]
const AlgorGausNBIDs = this.PerformanceAllModels[16] const AlgorGausNBIDs = this.PerformanceAllModels[18]
const AlgorMLPIDs = this.PerformanceAllModels[24] const AlgorMLPIDs = this.PerformanceAllModels[27]
const AlgorLRIDs = this.PerformanceAllModels[32] const AlgorLRIDs = this.PerformanceAllModels[36]
const AlgorLDAIDs = this.PerformanceAllModels[40] const AlgorLDAIDs = this.PerformanceAllModels[45]
const AlgorQDAIDs = this.PerformanceAllModels[48] const AlgorQDAIDs = this.PerformanceAllModels[54]
const AlgorRFIDs = this.PerformanceAllModels[56] const AlgorRFIDs = this.PerformanceAllModels[63]
const AlgorExtraTIDs = this.PerformanceAllModels[64] const AlgorExtraTIDs = this.PerformanceAllModels[72]
const AlgorAdaBIDs = this.PerformanceAllModels[72] const AlgorAdaBIDs = this.PerformanceAllModels[81]
const AlgorGradBIDs = this.PerformanceAllModels[80] const AlgorGradBIDs = this.PerformanceAllModels[90]
var factorsLocal = this.factors var factorsLocal = this.factors
var divide = 0 var divide = 0
@ -87,13 +88,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgKNN['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgKNN['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgKNN['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgKNN['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgKNN['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgKNN['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgKNN['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgKNN['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgKNN['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgKNN['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgKNN['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgKNN['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgKNN['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgKNN['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgKNN['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgKNN['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgKNN['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgKNN['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgKNN['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgKNN['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgKNN['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgKNN['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgKNN['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgKNN['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgKNN['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgKNN['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgKNN['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgKNN['log_loss'])[j]))
if (sumKNN <= 0) {
sumKNN = 0
}
McKNN.push((sumKNN/divide)*100) McKNN.push((sumKNN/divide)*100)
} }
var McSVC = [] var McSVC = []
const performanceAlgSVC = JSON.parse(this.PerformanceAllModels[14]) const performanceAlgSVC = JSON.parse(this.PerformanceAllModels[15])
for (let j = 0; j < Object.values(performanceAlgSVC['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgSVC['mean_test_accuracy']).length; j++) {
let sumSVC let sumSVC
sumSVC = (factorsLocal[0] * Object.values(performanceAlgSVC['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgSVC['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgSVC['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgSVC['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgSVC['geometric_mean_score_macro'])[j]) sumSVC = (factorsLocal[0] * Object.values(performanceAlgSVC['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgSVC['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgSVC['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgSVC['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgSVC['geometric_mean_score_macro'])[j])
@ -101,13 +99,11 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgSVC['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgSVC['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgSVC['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgSVC['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgSVC['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgSVC['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgSVC['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgSVC['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgSVC['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgSVC['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgSVC['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgSVC['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgSVC['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgSVC['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgSVC['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgSVC['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgSVC['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgSVC['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgSVC['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgSVC['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgSVC['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgSVC['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgSVC['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgSVC['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgSVC['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgSVC['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgSVC['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgSVC['log_loss'])[j]))
if (sumSVC <= 0) {
sumSVC = 0
}
McSVC.push((sumSVC/divide)*100) McSVC.push((sumSVC/divide)*100)
} }
var McGausNB = [] var McGausNB = []
const performanceAlgGausNB = JSON.parse(this.PerformanceAllModels[22]) const performanceAlgGausNB = JSON.parse(this.PerformanceAllModels[24])
for (let j = 0; j < Object.values(performanceAlgGausNB['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgGausNB['mean_test_accuracy']).length; j++) {
let sumGausNB let sumGausNB
sumGausNB = (factorsLocal[0] * Object.values(performanceAlgGausNB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgGausNB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgGausNB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgGausNB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGausNB['geometric_mean_score_macro'])[j]) sumGausNB = (factorsLocal[0] * Object.values(performanceAlgGausNB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgGausNB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgGausNB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgGausNB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGausNB['geometric_mean_score_macro'])[j])
@ -115,13 +111,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgGausNB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGausNB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGausNB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGausNB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGausNB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGausNB['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgGausNB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGausNB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGausNB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGausNB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGausNB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGausNB['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgGausNB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGausNB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGausNB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGausNB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGausNB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGausNB['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgGausNB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGausNB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGausNB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGausNB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGausNB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGausNB['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgGausNB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGausNB['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgGausNB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGausNB['log_loss'])[j]))
if (sumGausNB <= 0) {
sumGausNB = 0
}
McGausNB.push((sumGausNB/divide)*100) McGausNB.push((sumGausNB/divide)*100)
} }
var McMLP = [] var McMLP = []
const performanceAlgMLP = JSON.parse(this.PerformanceAllModels[30]) const performanceAlgMLP = JSON.parse(this.PerformanceAllModels[33])
for (let j = 0; j < Object.values(performanceAlgMLP['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgMLP['mean_test_accuracy']).length; j++) {
let sumMLP let sumMLP
sumMLP = (factorsLocal[0] * Object.values(performanceAlgMLP['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgMLP['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgMLP['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgMLP['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgMLP['geometric_mean_score_macro'])[j]) sumMLP = (factorsLocal[0] * Object.values(performanceAlgMLP['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgMLP['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgMLP['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgMLP['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgMLP['geometric_mean_score_macro'])[j])
@ -129,13 +122,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgMLP['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgMLP['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgMLP['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgMLP['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgMLP['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgMLP['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgMLP['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgMLP['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgMLP['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgMLP['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgMLP['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgMLP['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgMLP['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgMLP['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgMLP['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgMLP['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgMLP['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgMLP['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgMLP['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgMLP['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgMLP['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgMLP['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgMLP['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgMLP['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgMLP['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgMLP['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgMLP['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgMLP['log_loss'])[j]))
if (sumMLP <= 0) {
sumMLP = 0
}
McMLP.push((sumMLP/divide)*100) McMLP.push((sumMLP/divide)*100)
} }
var McLR = [] var McLR = []
const performanceAlgLR = JSON.parse(this.PerformanceAllModels[38]) const performanceAlgLR = JSON.parse(this.PerformanceAllModels[42])
for (let j = 0; j < Object.values(performanceAlgLR['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgLR['mean_test_accuracy']).length; j++) {
let sumLR let sumLR
sumLR = (factorsLocal[0] * Object.values(performanceAlgLR['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgLR['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgLR['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgLR['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLR['geometric_mean_score_macro'])[j]) sumLR = (factorsLocal[0] * Object.values(performanceAlgLR['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgLR['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgLR['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgLR['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLR['geometric_mean_score_macro'])[j])
@ -143,13 +133,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgLR['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLR['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLR['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLR['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLR['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLR['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgLR['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLR['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLR['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLR['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLR['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLR['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgLR['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLR['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLR['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLR['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLR['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLR['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgLR['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLR['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLR['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLR['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLR['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLR['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgLR['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLR['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgLR['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLR['log_loss'])[j]))
if (sumLR <= 0) {
sumLR = 0
}
McLR.push((sumLR/divide)*100) McLR.push((sumLR/divide)*100)
} }
var McLDA = [] var McLDA = []
const performanceAlgLDA = JSON.parse(this.PerformanceAllModels[46]) const performanceAlgLDA = JSON.parse(this.PerformanceAllModels[51])
for (let j = 0; j < Object.values(performanceAlgLDA['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgLDA['mean_test_accuracy']).length; j++) {
let sumLDA let sumLDA
sumLDA = (factorsLocal[0] * Object.values(performanceAlgLDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgLDA['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgLDA['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgLDA['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLDA['geometric_mean_score_macro'])[j]) sumLDA = (factorsLocal[0] * Object.values(performanceAlgLDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgLDA['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgLDA['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgLDA['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgLDA['geometric_mean_score_macro'])[j])
@ -157,13 +144,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgLDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLDA['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgLDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLDA['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgLDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLDA['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgLDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLDA['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgLDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLDA['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgLDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLDA['log_loss'])[j]))
if (sumLDA <= 0) {
sumLDA = 0
}
McLDA.push((sumLDA/divide)*100) McLDA.push((sumLDA/divide)*100)
} }
var McQDA = [] var McQDA = []
const performanceAlgQDA = JSON.parse(this.PerformanceAllModels[54]) const performanceAlgQDA = JSON.parse(this.PerformanceAllModels[60])
for (let j = 0; j < Object.values(performanceAlgQDA['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgQDA['mean_test_accuracy']).length; j++) {
let sumQDA let sumQDA
sumQDA = (factorsLocal[0] * Object.values(performanceAlgQDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgQDA['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgQDA['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgQDA['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgQDA['geometric_mean_score_macro'])[j]) sumQDA = (factorsLocal[0] * Object.values(performanceAlgQDA['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgQDA['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgQDA['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgQDA['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgQDA['geometric_mean_score_macro'])[j])
@ -171,13 +155,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgQDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgQDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgQDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgQDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgQDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgQDA['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgQDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgQDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgQDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgQDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgQDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgQDA['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgQDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgQDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgQDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgQDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgQDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgQDA['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgQDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgQDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgQDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgQDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgQDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgQDA['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgQDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgQDA['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgQDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgQDA['log_loss'])[j]))
if (sumQDA <= 0) {
sumQDA = 0
}
McQDA.push((sumQDA/divide)*100) McQDA.push((sumQDA/divide)*100)
} }
var McRF = [] var McRF = []
const performanceAlgRF = JSON.parse(this.PerformanceAllModels[62]) const performanceAlgRF = JSON.parse(this.PerformanceAllModels[69])
for (let j = 0; j < Object.values(performanceAlgRF['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgRF['mean_test_accuracy']).length; j++) {
let sumRF let sumRF
sumRF = (factorsLocal[0] * Object.values(performanceAlgRF['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgRF['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgRF['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgRF['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgRF['geometric_mean_score_macro'])[j]) sumRF = (factorsLocal[0] * Object.values(performanceAlgRF['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgRF['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgRF['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgRF['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgRF['geometric_mean_score_macro'])[j])
@ -185,13 +166,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgRF['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgRF['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgRF['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgRF['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgRF['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgRF['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgRF['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgRF['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgRF['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgRF['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgRF['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgRF['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgRF['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgRF['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgRF['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgRF['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgRF['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgRF['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgRF['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgRF['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgRF['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgRF['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgRF['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgRF['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgRF['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgRF['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgRF['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgRF['log_loss'])[j]))
if (sumRF <= 0) {
sumRF = 0
}
McRF.push((sumRF/divide)*100) McRF.push((sumRF/divide)*100)
} }
var McExtraT = [] var McExtraT = []
const performanceAlgExtraT = JSON.parse(this.PerformanceAllModels[70]) const performanceAlgExtraT = JSON.parse(this.PerformanceAllModels[78])
for (let j = 0; j < Object.values(performanceAlgExtraT['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgExtraT['mean_test_accuracy']).length; j++) {
let sumExtraT let sumExtraT
sumExtraT = (factorsLocal[0] * Object.values(performanceAlgExtraT['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgExtraT['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgExtraT['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgExtraT['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgExtraT['geometric_mean_score_macro'])[j]) sumExtraT = (factorsLocal[0] * Object.values(performanceAlgExtraT['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgExtraT['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgExtraT['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgExtraT['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgExtraT['geometric_mean_score_macro'])[j])
@ -199,13 +177,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgExtraT['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgExtraT['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgExtraT['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgExtraT['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgExtraT['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgExtraT['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgExtraT['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgExtraT['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgExtraT['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgExtraT['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgExtraT['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgExtraT['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgExtraT['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgExtraT['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgExtraT['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgExtraT['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgExtraT['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgExtraT['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgExtraT['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgExtraT['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgExtraT['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgExtraT['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgExtraT['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgExtraT['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgExtraT['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgExtraT['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgExtraT['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgExtraT['log_loss'])[j]))
if (sumExtraT <= 0) {
sumExtraT = 0
}
McExtraT.push((sumExtraT/divide)*100) McExtraT.push((sumExtraT/divide)*100)
} }
var McAdaB = [] var McAdaB = []
const performanceAlgAdaB = JSON.parse(this.PerformanceAllModels[78]) const performanceAlgAdaB = JSON.parse(this.PerformanceAllModels[87])
for (let j = 0; j < Object.values(performanceAlgAdaB['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgAdaB['mean_test_accuracy']).length; j++) {
let sumAdaB let sumAdaB
sumAdaB = (factorsLocal[0] * Object.values(performanceAlgAdaB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgAdaB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgAdaB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgAdaB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgAdaB['geometric_mean_score_macro'])[j]) sumAdaB = (factorsLocal[0] * Object.values(performanceAlgAdaB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgAdaB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgAdaB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgAdaB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgAdaB['geometric_mean_score_macro'])[j])
@ -219,7 +194,7 @@ export default {
McAdaB.push((sumAdaB/divide)*100) McAdaB.push((sumAdaB/divide)*100)
} }
var McGradB = [] var McGradB = []
const performanceAlgGradB = JSON.parse(this.PerformanceAllModels[86]) const performanceAlgGradB = JSON.parse(this.PerformanceAllModels[96])
for (let j = 0; j < Object.values(performanceAlgGradB['mean_test_accuracy']).length; j++) { for (let j = 0; j < Object.values(performanceAlgGradB['mean_test_accuracy']).length; j++) {
let sumGradB let sumGradB
sumGradB = (factorsLocal[0] * Object.values(performanceAlgGradB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgGradB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgGradB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgGradB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGradB['geometric_mean_score_macro'])[j]) sumGradB = (factorsLocal[0] * Object.values(performanceAlgGradB['mean_test_accuracy'])[j]) + (factorsLocal[1] * (Object.values(performanceAlgGradB['mean_test_neg_mean_absolute_error'])[j]) + 1) + (factorsLocal[2] * (Object.values(performanceAlgGradB['mean_test_neg_root_mean_squared_error'])[j]) + 1) + (factorsLocal[3] * Object.values(performanceAlgGradB['geometric_mean_score_micro'])[j]) + (factorsLocal[4] * Object.values(performanceAlgGradB['geometric_mean_score_macro'])[j])
@ -227,24 +202,21 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgGradB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGradB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGradB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGradB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGradB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGradB['f1_micro'])[j]) + (factorsLocal[10] * Object.values(performanceAlgGradB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGradB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGradB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGradB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGradB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGradB['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgGradB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGradB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGradB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGradB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGradB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGradB['matthews_corrcoef'])[j]) + (factorsLocal[16] * Object.values(performanceAlgGradB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGradB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGradB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGradB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGradB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGradB['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgGradB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGradB['log_loss'])[j])) + (factorsLocal[22] * Object.values(performanceAlgGradB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGradB['log_loss'])[j]))
if (sumGradB <= 0) {
sumGradB = 0
}
McGradB.push((sumGradB/divide)*100) McGradB.push((sumGradB/divide)*100)
} }
// retrieve the results like performance // retrieve the results like performance
const PerformAlgorKNN = JSON.parse(this.PerformanceAllModels[1]) const PerformAlgorKNN = JSON.parse(this.PerformanceAllModels[1])
const PerformAlgorSVC = JSON.parse(this.PerformanceAllModels[9]) const PerformAlgorSVC = JSON.parse(this.PerformanceAllModels[10])
const PerformAlgorGausNB = JSON.parse(this.PerformanceAllModels[17]) const PerformAlgorGausNB = JSON.parse(this.PerformanceAllModels[19])
const PerformAlgorMLP = JSON.parse(this.PerformanceAllModels[25]) const PerformAlgorMLP = JSON.parse(this.PerformanceAllModels[28])
const PerformAlgorLR = JSON.parse(this.PerformanceAllModels[33]) const PerformAlgorLR = JSON.parse(this.PerformanceAllModels[37])
const PerformAlgorLDA = JSON.parse(this.PerformanceAllModels[41]) const PerformAlgorLDA = JSON.parse(this.PerformanceAllModels[46])
const PerformAlgorQDA = JSON.parse(this.PerformanceAllModels[49]) const PerformAlgorQDA = JSON.parse(this.PerformanceAllModels[55])
const PerformAlgorRF = JSON.parse(this.PerformanceAllModels[57]) const PerformAlgorRF = JSON.parse(this.PerformanceAllModels[64])
const PerformAlgorExtraT = JSON.parse(this.PerformanceAllModels[65]) const PerformAlgorExtraT = JSON.parse(this.PerformanceAllModels[73])
const PerformAlgorAdaB = JSON.parse(this.PerformanceAllModels[73]) const PerformAlgorAdaB = JSON.parse(this.PerformanceAllModels[82])
const PerformAlgorGradB = JSON.parse(this.PerformanceAllModels[81]) const PerformAlgorGradB = JSON.parse(this.PerformanceAllModels[91])
// initialize/instansiate algorithms and parameters // initialize/instansiate algorithms and parameters
this.algorithmKNN = [] this.algorithmKNN = []
@ -265,7 +237,7 @@ export default {
this.parameters.push(JSON.stringify(Object.values(PerformAlgorKNN['params'])[j])) this.parameters.push(JSON.stringify(Object.values(PerformAlgorKNN['params'])[j]))
} }
for (let j = 0; j < Object.keys(PerformAlgorSVC['params']).length; j++) { for (let j = 0; j < Object.keys(PerformAlgorSVC['params']).length; j++) {
this.algorithmSVC.push({'# Performance (%) #': McSVC[j],Algorithm:'C-Support Vector Classification',Model:'Model ' + AlgorSVCIDs[j] + '; Parameters '+JSON.stringify(Object.values(PerformAlgorSVC['params'])[j])+'; # Performance (%) # ',ModelID:AlgorSVCIDs[j]}) this.algorithmSVC.push({'# Performance (%) #': McSVC[j],Algorithm:'C-Support Vector Classif',Model:'Model ' + AlgorSVCIDs[j] + '; Parameters '+JSON.stringify(Object.values(PerformAlgorSVC['params'])[j])+'; # Performance (%) # ',ModelID:AlgorSVCIDs[j]})
this.parameters.push(JSON.stringify(Object.values(PerformAlgorSVC['params'])[j])) this.parameters.push(JSON.stringify(Object.values(PerformAlgorSVC['params'])[j]))
} }
for (let j = 0; j < Object.keys(PerformAlgorGausNB['params']).length; j++) { for (let j = 0; j < Object.keys(PerformAlgorGausNB['params']).length; j++) {
@ -310,7 +282,7 @@ export default {
this.parameters.push(JSON.stringify(Object.values(PerformAlgorKNN['params'])[j])) this.parameters.push(JSON.stringify(Object.values(PerformAlgorKNN['params'])[j]))
} }
for (let j = 0; j < Object.keys(PerformAlgorSVC['params']).length; j++) { for (let j = 0; j < Object.keys(PerformAlgorSVC['params']).length; j++) {
this.algorithmSVC.push({'# Performance (%) #': this.listClassPerf[1][j],Algorithm:'C-Support Vector Classification',Model:'Model ' + AlgorSVCIDs[j] + '; Parameters '+JSON.stringify(Object.values(PerformAlgorSVC['params'])[j])+'; # Performance (%) # ',ModelID:AlgorSVCIDs[j]}) this.algorithmSVC.push({'# Performance (%) #': this.listClassPerf[1][j],Algorithm:'C-Support Vector Classif',Model:'Model ' + AlgorSVCIDs[j] + '; Parameters '+JSON.stringify(Object.values(PerformAlgorSVC['params'])[j])+'; # Performance (%) # ',ModelID:AlgorSVCIDs[j]})
this.parameters.push(JSON.stringify(Object.values(PerformAlgorSVC['params'])[j])) this.parameters.push(JSON.stringify(Object.values(PerformAlgorSVC['params'])[j]))
} }
for (let j = 0; j < Object.keys(PerformAlgorGausNB['params']).length; j++) { for (let j = 0; j < Object.keys(PerformAlgorGausNB['params']).length; j++) {
@ -413,7 +385,7 @@ export default {
EventBus.$emit('updateBarChart', []) EventBus.$emit('updateBarChart', [])
} }
el[1].onclick = function() { el[1].onclick = function() {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point C-Support Vector Classification') var allPoints = document.getElementsByClassName('d3-exploding-boxplot point C-Support Vector Classif')
for (let i = 0; i < allPoints.length; i++) { for (let i = 0; i < allPoints.length; i++) {
allPoints[i].style.fill = previousColor[1] allPoints[i].style.fill = previousColor[1]
allPoints[i].style.opacity = '1.0' allPoints[i].style.opacity = '1.0'
@ -609,10 +581,10 @@ export default {
EventBus.$emit('alternateFlagLock') EventBus.$emit('alternateFlagLock')
EventBus.$emit('updateBarChart', []) EventBus.$emit('updateBarChart', [])
} }
// check if brushed through all boxplots and not only one at a time
const myObserver = new ResizeObserver(entries => { const myObserver = new ResizeObserver(entries => {
EventBus.$emit('brusheAllOn') if (this.activeTabVal) {
(EventBus.$emit('brusheAllOn'))
}
}) })
var brushRect = document.querySelector('.extent') var brushRect = document.querySelector('.extent')
myObserver.observe(brushRect); myObserver.observe(brushRect);
@ -630,7 +602,7 @@ export default {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point K-Nearest Neighbors') var allPoints = document.getElementsByClassName('d3-exploding-boxplot point K-Nearest Neighbors')
algorithm = this.algorithmKNN algorithm = this.algorithmKNN
} else if (this.AllAlgorithms[j] === 'SVC') { } else if (this.AllAlgorithms[j] === 'SVC') {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point C-Support Vector Classification') var allPoints = document.getElementsByClassName('d3-exploding-boxplot point C-Support Vector Classif')
algorithm = this.algorithmSVC algorithm = this.algorithmSVC
} else if (this.AllAlgorithms[j] === 'GausNB') { } else if (this.AllAlgorithms[j] === 'GausNB') {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point Gaussian Naive Bayes') var allPoints = document.getElementsByClassName('d3-exploding-boxplot point Gaussian Naive Bayes')
@ -805,7 +777,7 @@ export default {
if (this.selectedAlgorithm === 'KNN') { if (this.selectedAlgorithm === 'KNN') {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point K-Nearest Neighbors') var allPoints = document.getElementsByClassName('d3-exploding-boxplot point K-Nearest Neighbors')
} else if (this.selectedAlgorithm === 'SVC') { } else if (this.selectedAlgorithm === 'SVC') {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point C-Support Vector Classification') var allPoints = document.getElementsByClassName('d3-exploding-boxplot point C-Support Vector Classif')
} else if (this.selectedAlgorithm === 'GausNB') { } else if (this.selectedAlgorithm === 'GausNB') {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point Gaussian Naive Bayes') var allPoints = document.getElementsByClassName('d3-exploding-boxplot point Gaussian Naive Bayes')
} else if (this.selectedAlgorithm === 'MLP') { } else if (this.selectedAlgorithm === 'MLP') {
@ -975,7 +947,7 @@ export default {
activeModels.push(allPoints[i].__data__.Model) activeModels.push(allPoints[i].__data__.Model)
if (allPoints[i].__data__.Algorithm === 'K-Nearest Neighbors') { if (allPoints[i].__data__.Algorithm === 'K-Nearest Neighbors') {
algorithmsSelected.push('KNN') algorithmsSelected.push('KNN')
} else if (allPoints[i].__data__.Algorithm === 'C-Support Vector Classification') { } else if (allPoints[i].__data__.Algorithm === 'C-Support Vector Classif') {
algorithmsSelected.push('SVC') algorithmsSelected.push('SVC')
} else if (allPoints[i].__data__.Algorithm === 'Gaussian Naive Bayes') { } else if (allPoints[i].__data__.Algorithm === 'Gaussian Naive Bayes') {
algorithmsSelected.push('GausNB') algorithmsSelected.push('GausNB')
@ -1019,7 +991,7 @@ export default {
activeModels.push(allPoints[i].__data__.Model) activeModels.push(allPoints[i].__data__.Model)
if (allPoints[i].__data__.Algorithm === 'K-Nearest Neighbors') { if (allPoints[i].__data__.Algorithm === 'K-Nearest Neighbors') {
algorithmsSelected.push('KNN') algorithmsSelected.push('KNN')
} else if (allPoints[i].__data__.Algorithm === 'C-Support Vector Classification') { } else if (allPoints[i].__data__.Algorithm === 'C-Support Vector Classif') {
algorithmsSelected.push('SVC') algorithmsSelected.push('SVC')
} else if (allPoints[i].__data__.Algorithm === 'Gaussian Naive Bayes') { } else if (allPoints[i].__data__.Algorithm === 'Gaussian Naive Bayes') {
algorithmsSelected.push('GausNB') algorithmsSelected.push('GausNB')
@ -1086,6 +1058,8 @@ export default {
}, },
}, },
mounted () { mounted () {
EventBus.$on('Algorithm', data => { this.activeTabVal = data })
EventBus.$on('emittedEventCallingModelBrushed', this.selectedPointsPerAlgorithm) EventBus.$on('emittedEventCallingModelBrushed', this.selectedPointsPerAlgorithm)
EventBus.$on('emittedEventCallingAllAlgorithms', data => { EventBus.$on('emittedEventCallingAllAlgorithms', data => {
this.PerformanceAllModels = data}) this.PerformanceAllModels = data})

@ -46,7 +46,7 @@
performancePerModel.forEach(element => { performancePerModel.forEach(element => {
let el = {} let el = {}
el.type = "variable 1" el.type = "variable 1"
el.value = element * 100 el.value = element
data.push(el) data.push(el)
}) })
@ -54,14 +54,14 @@
performancePerModel.forEach(element => { performancePerModel.forEach(element => {
let el = {} let el = {}
el.type = "variable 2" el.type = "variable 2"
el.value = element * 100 el.value = element
data.push(el) data.push(el)
}) })
} else { } else {
performancePerModelSelection.forEach(element => { performancePerModelSelection.forEach(element => {
let el = {} let el = {}
el.type = "variable 2" el.type = "variable 2"
el.value = element * 100 el.value = element
data.push(el) data.push(el)
}) })
} }
@ -92,7 +92,7 @@
var histogram = d3.histogram() var histogram = d3.histogram()
.value(function(d) { return +d.value; }) // I need to give the vector of value .value(function(d) { return +d.value; }) // I need to give the vector of value
.domain(x.domain()) // then the domain of the graphic .domain(x.domain()) // then the domain of the graphic
.thresholds(x.ticks(40)); // then the numbers of bins .thresholds(x.ticks(10)); // then the numbers of bins
// And apply twice this function to data to get the bins. // And apply twice this function to data to get the bins.
var bins1 = histogram(data.filter( function(d){return d.type === "variable 1"} )); var bins1 = histogram(data.filter( function(d){return d.type === "variable 1"} ));
@ -104,7 +104,7 @@
.domain([0, d3.max(bins1, function(d) { return d.length; })]); // d3.hist has to be called before the Y axis obviously .domain([0, d3.max(bins1, function(d) { return d.length; })]); // d3.hist has to be called before the Y axis obviously
svg.append("g") svg.append("g")
.attr("transform", "translate(-20,0)") .attr("transform", "translate(-20,0)")
.call(d3.axisLeft(y1)); .call(d3.axisLeft(y1).ticks(5).tickSizeOuter(0));
// Y axis: scale and draw: // Y axis: scale and draw:
var y2 = d3.scaleLinear() var y2 = d3.scaleLinear()
@ -112,7 +112,7 @@
.domain([0, d3.max(bins2, function(d) { return d.length; })]); // d3.hist has to be called before the Y axis obviously .domain([0, d3.max(bins2, function(d) { return d.length; })]); // d3.hist has to be called before the Y axis obviously
svg.append("g") svg.append("g")
.attr("transform", "translate(-20,0)") .attr("transform", "translate(-20,0)")
.call(d3.axisLeft(y2)); .call(d3.axisLeft(y2).ticks(5).tickSizeOuter(0));
// Add a tooltip div. Here I define the general feature of the tooltip: stuff that do not depend on the data point. // Add a tooltip div. Here I define the general feature of the tooltip: stuff that do not depend on the data point.
// Its opacity is set to 0: we don't see it by default. // Its opacity is set to 0: we don't see it by default.

@ -25,6 +25,7 @@ export default {
,0,1,1,1 ,0,1,1,1
], ],
SVCModels: 576, SVCModels: 576,
tNameAll: '',
GausNBModels: 736, GausNBModels: 736,
MLPModels: 1236, MLPModels: 1236,
LRModels: 1356, LRModels: 1356,
@ -41,16 +42,16 @@ export default {
methods: { methods: {
BarChartView () { BarChartView () {
const PerClassMetricsKNN = JSON.parse(this.PerformanceResults[2]) const PerClassMetricsKNN = JSON.parse(this.PerformanceResults[2])
const PerClassMetricsSVC = JSON.parse(this.PerformanceResults[10]) const PerClassMetricsSVC = JSON.parse(this.PerformanceResults[11])
const PerClassMetricsGausNB = JSON.parse(this.PerformanceResults[18]) const PerClassMetricsGausNB = JSON.parse(this.PerformanceResults[20])
const PerClassMetricsMLP = JSON.parse(this.PerformanceResults[26]) const PerClassMetricsMLP = JSON.parse(this.PerformanceResults[29])
const PerClassMetricsLR = JSON.parse(this.PerformanceResults[34]) const PerClassMetricsLR = JSON.parse(this.PerformanceResults[38])
const PerClassMetricsLDA = JSON.parse(this.PerformanceResults[42]) const PerClassMetricsLDA = JSON.parse(this.PerformanceResults[47])
const PerClassMetricsQDA = JSON.parse(this.PerformanceResults[50]) const PerClassMetricsQDA = JSON.parse(this.PerformanceResults[56])
const PerClassMetricsRF = JSON.parse(this.PerformanceResults[58]) const PerClassMetricsRF = JSON.parse(this.PerformanceResults[65])
const PerClassMetricsExtraT = JSON.parse(this.PerformanceResults[66]) const PerClassMetricsExtraT = JSON.parse(this.PerformanceResults[74])
const PerClassMetricsAdaB = JSON.parse(this.PerformanceResults[74]) const PerClassMetricsAdaB = JSON.parse(this.PerformanceResults[83])
const PerClassMetricsGradB = JSON.parse(this.PerformanceResults[82]) const PerClassMetricsGradB = JSON.parse(this.PerformanceResults[92])
var KNNModels = [] var KNNModels = []
var SVCModels = [] var SVCModels = []
@ -461,8 +462,36 @@ export default {
} }
for (var i = 0; i < target_names.length; i++) { for (var i = 0; i < target_names.length; i++) {
traces[i] = { if (this.tNameAll == target_names[i]) {
x: ['K-Nearest Neighbors','C-Support Vector Classifier','Gaussian Naive Bayes','Multilayer Perceptron','Logistic Regression','Linear Discrim Analysis','Quadratic Discrim Analysis','Random Forest','Extra Trees','AdaBoost','Gradient Boosting'], traces[i] = {
x: ['K-Nearest Neighbors','C-Support Vector Classif','Gaussian Naive Bayes','Multilayer Perceptron','Logistic Regression','Linear Discrim Analysis','Quadratic Discrim Analysis','Random Forest','Extra Trees','AdaBoost','Gradient Boosting'],
y: sumList[i],
name: '<b>'+target_names[i]+'</b>',
opacity: 0.5,
marker: {
opacity: 0.5,
color: this.colorsValues[i]
},
type: 'bar'
};
tracesSel[i] = {
type: 'bar',
x: ['K-Nearest Neighbors','C-Support Vector Classif','Gaussian Naive Bayes','Multilayer Perceptron','Logistic Regression','Linear Discrim Analysis','Quadratic Discrim Analysis','Random Forest','Extra Trees','AdaBoost','Gradient Boosting'],
y: sumLineList[i],
name: '<b>'+target_names[i]+' (Sel)</b>',
xaxis: 'x2',
mode: 'markers',
marker: {
opacity: 1.0,
color: this.colorsValues[i],
},
width: [0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06]
};
data.push(traces[i])
data.push(tracesSel[i])
} else {
traces[i] = {
x: ['K-Nearest Neighbors','C-Support Vector Classif','Gaussian Naive Bayes','Multilayer Perceptron','Logistic Regression','Linear Discrim Analysis','Quadratic Discrim Analysis','Random Forest','Extra Trees','AdaBoost','Gradient Boosting'],
y: sumList[i], y: sumList[i],
name: target_names[i], name: target_names[i],
opacity: 0.5, opacity: 0.5,
@ -474,7 +503,7 @@ export default {
}; };
tracesSel[i] = { tracesSel[i] = {
type: 'bar', type: 'bar',
x: ['K-Nearest Neighbors','C-Support Vector Classifier','Gaussian Naive Bayes','Multilayer Perceptron','Logistic Regression','Linear Discrim Analysis','Quadratic Discrim Analysis','Random Forest','Extra Trees','AdaBoost','Gradient Boosting'], x: ['K-Nearest Neighbors','C-Support Vector Classif','Gaussian Naive Bayes','Multilayer Perceptron','Logistic Regression','Linear Discrim Analysis','Quadratic Discrim Analysis','Random Forest','Extra Trees','AdaBoost','Gradient Boosting'],
y: sumLineList[i], y: sumLineList[i],
name: target_names[i]+' (Sel)', name: target_names[i]+' (Sel)',
xaxis: 'x2', xaxis: 'x2',
@ -488,15 +517,19 @@ export default {
data.push(traces[i]) data.push(traces[i])
data.push(tracesSel[i]) data.push(tracesSel[i])
} }
}
var barc = document.getElementById('barChart'); var barc = document.getElementById('barChart');
var config = {scrollZoom: true, displaylogo: false, showLink: false, showSendToCloud: false, modeBarButtonsToRemove: ['toImage'], responsive: true}
Plotly.newPlot(barc, data, layout) Plotly.newPlot(barc, data, layout, config)
barc.on('plotly_click', (eventData) => { barc.on('plotly_click', (eventData) => {
var tName var tName
eventData.points.forEach((e) => { eventData.points.forEach((e) => {
tName = e.data.name.replace(/ *\([^)]*\) */g, "") tName = e.data.name.replace(/ *\([^)]*\) */g, "")
}); });
this.tNameAll = tName
EventBus.$emit('clearPCP') EventBus.$emit('clearPCP')
EventBus.$emit('alternateFlagLock') EventBus.$emit('alternateFlagLock')
EventBus.$emit('boxplotSet', [storeKNN[tName],storeSVC[tName],storeGausNB[tName],storeMLP[tName],storeLR[tName],storeLDA[tName],storeQDA[tName],storeRF[tName],storeExtraT[tName],storeAdaB[tName],storeGradB[tName]]) EventBus.$emit('boxplotSet', [storeKNN[tName],storeSVC[tName],storeGausNB[tName],storeMLP[tName],storeLR[tName],storeLDA[tName],storeQDA[tName],storeRF[tName],storeExtraT[tName],storeAdaB[tName],storeGradB[tName]])
@ -511,6 +544,8 @@ export default {
} }
}, },
mounted() { mounted() {
EventBus.$on('EraseSelectionBarChart', data => { this.tNameAll = data })
EventBus.$on('updateBarChartAlgorithm', data => { this.algorithmsinBar = data }) EventBus.$on('updateBarChartAlgorithm', data => { this.algorithmsinBar = data })
EventBus.$on('updateBarChart', data => { this.modelsSelectedinBar = data }) EventBus.$on('updateBarChart', data => { this.modelsSelectedinBar = data })
EventBus.$on('updateBarChart', this.BarChartView) EventBus.$on('updateBarChart', this.BarChartView)

@ -1,15 +1,17 @@
<template> <template>
<div> <div>
<div align="center"> <div align="center">
Projection Selection: <select id="selectBarChartData" @change="selectVisualRepresentationData()"> Projection Method: <select id="selectBarChartData" @change="selectVisualRepresentationData()">
<option value="mds" selected>MDS Projection</option> <option value="mds" selected>MDS</option>
<option value="tsne">t-SNE Projection</option> <option value="tsne">t-SNE</option>
<option value="umap">UMAP Projection</option> <option value="umap">UMAP</option>
</select> </select>
&nbsp;&nbsp;
Filter: <select id="selectFilterID" @change="selectAppliedFilter()"> Filter: <select id="selectFilterID" @change="selectAppliedFilter()">
<option value="mean" selected>Mean</option> <option value="mean" selected>Mean</option>
<option value="median">Median</option> <option value="median">Median</option>
</select> </select>
&nbsp;&nbsp;
Action: <button Action: <button
id="mergeID" id="mergeID"
v-on:click="merge"> v-on:click="merge">
@ -28,6 +30,7 @@
<font-awesome-icon icon="eraser" /> <font-awesome-icon icon="eraser" />
{{ removeData }} {{ removeData }}
</button> </button>
&nbsp;&nbsp;
History Manager: <button History Manager: <button
id="saveID" id="saveID"
v-on:click="save"> v-on:click="save">
@ -62,7 +65,6 @@ export default {
composeData: 'Compose', composeData: 'Compose',
saveData: 'Save Step', saveData: 'Save Step',
restoreData: 'Restore Step', restoreData: 'Restore Step',
instanceImpSize: '',
userSelectedFilter: 'mean', userSelectedFilter: 'mean',
responsiveWidthHeight: [], responsiveWidthHeight: [],
colorsValues: ['#808000','#008080','#bebada','#fccde5','#d9d9d9','#bc80bd','#ccebc5'], colorsValues: ['#808000','#008080','#bebada','#fccde5','#d9d9d9','#bc80bd','#ccebc5'],
@ -97,6 +99,15 @@ export default {
restore () { restore () {
EventBus.$emit('SendProvenance', 'restore') EventBus.$emit('SendProvenance', 'restore')
}, },
clean(obj) {
var propNames = Object.getOwnPropertyNames(obj);
for (var i = 0; i < propNames.length; i++) {
var propName = propNames[i];
if (obj[propName] === null || obj[propName] === undefined) {
delete obj[propName];
}
}
},
scatterPlotDataView () { scatterPlotDataView () {
Plotly.purge('OverviewDataPlotly') Plotly.purge('OverviewDataPlotly')
@ -110,8 +121,30 @@ export default {
const DataSetY = JSON.parse(this.dataPoints[3]) const DataSetY = JSON.parse(this.dataPoints[3])
const originalDataLabels = JSON.parse(this.dataPoints[4]) const originalDataLabels = JSON.parse(this.dataPoints[4])
var DataSetParse = JSON.parse(DataSet) var DataSetParse = JSON.parse(DataSet)
var stringParameters = []
for (let i = 0; i < DataSetParse.length; i++) {
this.clean(DataSetParse[i])
stringParameters.push(JSON.stringify(DataSetParse[i]).replace(/,/gi, '<br>'))
}
const XandYCoordinatesTSNE = JSON.parse(this.dataPoints[5]) const XandYCoordinatesTSNE = JSON.parse(this.dataPoints[5])
const XandYCoordinatesUMAP = JSON.parse(this.dataPoints[6]) const XandYCoordinatesUMAP = JSON.parse(this.dataPoints[6])
const impSizeArray = JSON.parse(this.dataPoints[7])
const KNNSize = JSON.parse(impSizeArray[8])
const SVCSize = JSON.parse(impSizeArray[17])
const GausNBSize = JSON.parse(impSizeArray[26])
const MLPSize = JSON.parse(impSizeArray[35])
const LRSize = JSON.parse(impSizeArray[44])
const LDASize = JSON.parse(impSizeArray[53])
const QDASize = JSON.parse(impSizeArray[62])
const RFSize = JSON.parse(impSizeArray[71])
const ExtraTSize = JSON.parse(impSizeArray[80])
const AdaBSize = JSON.parse(impSizeArray[89])
const GradBSize = JSON.parse(impSizeArray[98])
var sizeScatterplot = []
for (let i = 0; i < KNNSize.length; i++) {
sizeScatterplot.push(((KNNSize[i] + SVCSize[i] + GausNBSize[i] + MLPSize[i] + LRSize[i] + LDASize[i] + QDASize[i] + RFSize[i] + ExtraTSize[i] + AdaBSize[i] + GradBSize[i]) / 11) * 12)
}
let intData = [] let intData = []
if (this.highlightedPoints.length > 0){ if (this.highlightedPoints.length > 0){
@ -126,13 +159,6 @@ export default {
var Xaxs = [] var Xaxs = []
var Yaxs = [] var Yaxs = []
var Opacity var Opacity
var impSizeArray
if (this.instanceImpSize.length != 0) {
impSizeArray = JSON.parse(this.instanceImpSize)
}
console.log(impSizeArray)
if (this.representationDef == 'mds') { if (this.representationDef == 'mds') {
for (let i = 0; i < XandYCoordinatesMDS[0].length; i++) { for (let i = 0; i < XandYCoordinatesMDS[0].length; i++) {
@ -154,7 +180,7 @@ export default {
const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]); const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]);
var Text = aux_ID.map((item, index) => { var Text = aux_ID.map((item, index) => {
let popup = 'Data Point ID: ' + item + '; Details: ' + JSON.stringify(DataSetParse[item]) let popup = 'Data Point ID: ' + item + '<br> Details: ' + stringParameters[item]
return popup; return popup;
}); });
@ -176,7 +202,7 @@ export default {
y: aux_Y, y: aux_Y,
mode: 'markers', mode: 'markers',
name: target_names[i], name: target_names[i],
marker: { color: this.colorsValues[i], line: { color: 'rgb(0, 0, 0)', width: 2 }, opacity: Opacity, size: impSizeArray }, marker: { color: this.colorsValues[i], line: { color: 'rgb(0, 0, 0)', width: 2 }, opacity: Opacity, size: sizeScatterplot },
hovertemplate: hovertemplate:
"<b>%{text}</b><br><br>" + "<b>%{text}</b><br><br>" +
"<extra></extra>", "<extra></extra>",
@ -185,7 +211,7 @@ export default {
} }
layout = { layout = {
title: 'Data Space Projection (MDS)', title: 'MDS Projection',
xaxis: { xaxis: {
visible: false visible: false
}, },
@ -197,6 +223,13 @@ export default {
autosize: true, autosize: true,
width: width, width: width,
height: height, height: height,
margin: {
l: 50,
r: 0,
b: 30,
t: 40,
pad: 0
},
} }
} else if (this.representationDef == 'tsne') { } else if (this.representationDef == 'tsne') {
result = XandYCoordinatesTSNE.reduce(function(r, a) { result = XandYCoordinatesTSNE.reduce(function(r, a) {
@ -227,7 +260,7 @@ export default {
const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]); const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]);
var Text = aux_ID.map((item, index) => { var Text = aux_ID.map((item, index) => {
let popup = 'Data Point ID: ' + item + '; Details: ' + JSON.stringify(DataSetParse[item]) let popup = 'Data Point ID: ' + item + '<br> Details: ' + stringParameters[item]
return popup; return popup;
}); });
@ -248,7 +281,7 @@ export default {
y: aux_Y, y: aux_Y,
mode: 'markers', mode: 'markers',
name: target_names[i], name: target_names[i],
marker: { color: this.colorsValues[i], line: { color: 'rgb(0, 0, 0)', width: 2 }, opacity: Opacity, size: impSizeArray }, marker: { color: this.colorsValues[i], line: { color: 'rgb(0, 0, 0)', width: 2 }, opacity: Opacity, size: sizeScatterplot },
hovertemplate: hovertemplate:
"<b>%{text}</b><br><br>" + "<b>%{text}</b><br><br>" +
"<extra></extra>", "<extra></extra>",
@ -257,7 +290,7 @@ export default {
} }
layout = { layout = {
title: 'Data Space Projection (t-SNE)', title: 't-SNE Projection',
xaxis: { xaxis: {
visible: false visible: false
}, },
@ -269,6 +302,13 @@ export default {
autosize: true, autosize: true,
width: width, width: width,
height: height, height: height,
margin: {
l: 50,
r: 0,
b: 30,
t: 40,
pad: 0
},
} }
} else { } else {
for (let i = 0; i < XandYCoordinatesUMAP[0].length; i++) { for (let i = 0; i < XandYCoordinatesUMAP[0].length; i++) {
@ -289,7 +329,7 @@ export default {
const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]); const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]);
var Text = aux_ID.map((item, index) => { var Text = aux_ID.map((item, index) => {
let popup = 'Data Point ID: ' + item + '; Details: ' + JSON.stringify(DataSetParse[item]) let popup = 'Data Point ID: ' + item + '<br> Details: ' + stringParameters[item]
return popup; return popup;
}); });
@ -310,7 +350,7 @@ export default {
y: aux_Y, y: aux_Y,
mode: 'markers', mode: 'markers',
name: target_names[i], name: target_names[i],
marker: { color: this.colorsValues[i], line: { color: 'rgb(0, 0, 0)', width: 2 }, opacity: Opacity, size: impSizeArray }, marker: { color: this.colorsValues[i], line: { color: 'rgb(0, 0, 0)', width: 2 }, opacity: Opacity, size: sizeScatterplot },
hovertemplate: hovertemplate:
"<b>%{text}</b><br><br>" + "<b>%{text}</b><br><br>" +
"<extra></extra>", "<extra></extra>",
@ -319,7 +359,7 @@ export default {
} }
layout = { layout = {
title: 'Data Space Projection (UMAP)', title: 'UMAP Projection',
xaxis: { xaxis: {
visible: false visible: false
}, },
@ -331,6 +371,13 @@ export default {
autosize: true, autosize: true,
width: width, width: width,
height: height, height: height,
margin: {
l: 50,
r: 0,
b: 30,
t: 40,
pad: 0
},
} }
} }
@ -368,8 +415,6 @@ export default {
} }
}, },
mounted() { mounted() {
EventBus.$on('emittedEventCallingDataSpaceImportance', data => { this.instanceImpSize = data })
// initialize the first data space projection based on the data set // initialize the first data space projection based on the data set
EventBus.$on('emittedEventCallingDataSpacePlotView', data => { EventBus.$on('emittedEventCallingDataSpacePlotView', data => {
this.dataPoints = data}) this.dataPoints = data})

@ -1,18 +1,58 @@
<template> <template>
<div id="ExportResults">Results go here</div> <div id="ExportResults">
Data Instances: {{ DataPickled }}
<br>
=======================================================
<br>
Data Features Per Model: {{ FeaturesPickled }}
<br>
=======================================================
<br>
Models IDs and Parameters: {{ ModelsPickled }}
</div>
</template> </template>
<script> <script>
import { EventBus } from '../main.js' import { EventBus } from '../main.js'
import * as Cryo from 'cryo'
export default { export default {
name: 'Export', name: 'Export',
data () { data () {
return { return {
DataPickled: '',
FeaturesPickled: '',
ModelsPickled: '',
stackData: [],
stackFeatures: [],
stackModels: [],
} }
}, },
methods: { methods: {
Pickle () {
this.DataPickled = Cryo.stringify(this.stackData)
this.FeaturesPickled = Cryo.stringify(this.stackFeatures)
this.ModelsPickled = Cryo.stringify(this.stackModels)
}
},
mounted () {
EventBus.$on('sendDatatoPickle', data => {
this.stackData = data})
EventBus.$on('sendDatatoPickle', this.Pickle)
EventBus.$on('sendSelectedFeaturestoPickle', data => {
this.stackFeatures = data})
EventBus.$on('sendSelectedFeaturestoPickle', this.Pickle)
EventBus.$on('ExtractResults', data => {
this.stackModels = data})
EventBus.$on('ExtractResults', this.Pickle)
} }
} }
</script> </script>
<style scoped>
#ExportResults {
word-break: break-all !important;
}
</style>

@ -123,7 +123,7 @@ export default {
else if (this.Toggles[0] == 0 && this.Toggles[1] == 0 && this.Toggles[2] == 1) { else if (this.Toggles[0] == 0 && this.Toggles[1] == 0 && this.Toggles[2] == 1) {
values[j] = FeaturesAccuracy[j][i]*100 values[j] = FeaturesAccuracy[j][i]*100
} else { } else {
alert('Please, keep at least one toggle active! The states of the toggles are being reset.') // Fix this! alert('Please, keep at least one toggle active! The states of the toggles are being reset.')
this.Toggles[0] = 1 this.Toggles[0] = 1
this.Toggles[1] = 1 this.Toggles[1] = 1
this.Toggles[2] = 1 this.Toggles[2] = 1
@ -382,6 +382,7 @@ export default {
} }
finalresults.push(results) finalresults.push(results)
} }
EventBus.$emit('sendSelectedFeaturestoPickle', finalresults)
EventBus.$emit('SendSelectedFeaturesEvent', finalresults) EventBus.$emit('SendSelectedFeaturesEvent', finalresults)
}); });
var svgLeg = d3.select("#LegendHeat").append("svg") var svgLeg = d3.select("#LegendHeat").append("svg")

@ -143,7 +143,7 @@
<div id="myModal" class="w3-modal" style="position: fixed;"> <div id="myModal" class="w3-modal" style="position: fixed;">
<div class="w3-modal-content w3-card-4 w3-animate-zoom"> <div class="w3-modal-content w3-card-4 w3-animate-zoom">
<header class="w3-container w3-blue"> <header class="w3-container w3-blue">
<h3 style="display:inline-block; font-size: 16px; margin-top: 15px; margin-bottom:15px">Serialized Ensemble Learning Models Using Pickling</h3> <h3 style="display:inline-block; font-size: 16px; margin-top: 15px; margin-bottom:15px">Serialized Data and Stacking Ensemble Learning Models using Cryo</h3>
</header> </header>
<Export/> <Export/>
<div class="w3-container w3-light-grey w3-padding"> <div class="w3-container w3-light-grey w3-padding">
@ -323,6 +323,7 @@ export default Vue.extend({
if (this.firstTimeFlag == 1) { if (this.firstTimeFlag == 1) {
this.selectedModels_Stack.push(0) this.selectedModels_Stack.push(0)
this.selectedModels_Stack.push(JSON.stringify(this.modelsUpdate)) this.selectedModels_Stack.push(JSON.stringify(this.modelsUpdate))
EventBus.$emit('ParametersProvenance', this.OverviewResults)
EventBus.$emit('InitializeProvenance', this.selectedModels_Stack) EventBus.$emit('InitializeProvenance', this.selectedModels_Stack)
} }
this.firstTimeFlag = 0 this.firstTimeFlag = 0
@ -555,8 +556,6 @@ export default Vue.extend({
axios.get(path, axiosConfig) axios.get(path, axiosConfig)
.then(response => { .then(response => {
this.FinalResults = response.data.FinalResults this.FinalResults = response.data.FinalResults
this.DataSpaceImportance()
EventBus.$emit('emittedEventCallingLinePlot', this.FinalResults) EventBus.$emit('emittedEventCallingLinePlot', this.FinalResults)
}) })
.catch(error => { .catch(error => {
@ -611,27 +610,6 @@ export default Vue.extend({
console.log(error) console.log(error)
}) })
}, },
DataSpaceImportance () {
const path = `http://localhost:5000/data/SendInstancesImportance`
const axiosConfig = {
headers: {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Headers': 'Origin, Content-Type, X-Auth-Token',
'Access-Control-Allow-Methods': 'GET, PUT, POST, DELETE, OPTIONS'
}
}
axios.get(path, axiosConfig)
.then(response => {
this.instancesImportance = response.data.instancesImportance
EventBus.$emit('emittedEventCallingDataSpaceImportance', this.instancesImportance)
this.DataSpaceCall()
})
.catch(error => {
console.log(error)
})
},
DataSpaceCallAfterDataManipulation () { DataSpaceCallAfterDataManipulation () {
const path = `http://localhost:5000/data/requestDataSpaceResultsAfterDataManipulation` const path = `http://localhost:5000/data/requestDataSpaceResultsAfterDataManipulation`
@ -645,7 +623,8 @@ export default Vue.extend({
} }
axios.get(path, axiosConfig) axios.get(path, axiosConfig)
.then(response => { .then(response => {
this.DataSpaceImportance() console.log('Calling Data Space!')
this.DataSpaceCall()
}) })
.catch(error => { .catch(error => {
console.log(error) console.log(error)
@ -932,6 +911,23 @@ export default Vue.extend({
console.log(error) console.log(error)
}) })
}, },
Alg () {
$('#profile-tab').on('click', function (e) {
EventBus.$emit('Algorithm', false)
})
$('#contact-tab').on('click', function (e) {
EventBus.$emit('Algorithm', false)
})
$('#home-tab').on('click', function (e) {
var delayInMilliseconds = 1000; //1 second
setTimeout(function() {
EventBus.$emit('Algorithm', true)
}, delayInMilliseconds);
})
},
}, },
created () { created () {
// does the browser support the Navigation Timing API? // does the browser support the Navigation Timing API?
@ -946,6 +942,7 @@ export default Vue.extend({
window.addEventListener('resize', this.change) window.addEventListener('resize', this.change)
}, },
mounted() { mounted() {
this.Alg()
var modal = document.getElementById('myModal') var modal = document.getElementById('myModal')
window.onclick = function(event) { window.onclick = function(event) {
//alert(event.target) //alert(event.target)

@ -1,5 +1,5 @@
<template> <template>
<div id="PCPDataView" class="parcoords" style="width: 1200px; height:280px"></div> <div id="PCPDataView" class="parcoords"></div>
</template> </template>
<script> <script>
@ -17,7 +17,7 @@ export default {
data () { data () {
return { return {
PCPDataReceived: '', PCPDataReceived: '',
colorsValues: ['#a6cee3','#1f78b4','#b2df8a','#33a02c','#fb9a99','#e31a1c','#fdbf6f','#ff7f00','#cab2d6','#6a3d9a','#ffff99'] colorsValues: ['#808000','#008080','#bebada','#fccde5','#d9d9d9','#bc80bd','#ccebc5']
} }
}, },
methods: { methods: {
@ -29,10 +29,19 @@ export default {
const DataSetNew = JSON.parse(this.PCPDataReceived[2]) const DataSetNew = JSON.parse(this.PCPDataReceived[2])
var DataSetParse = JSON.parse(DataSetNew) var DataSetParse = JSON.parse(DataSetNew)
const target_names = JSON.parse(this.PCPDataReceived[3]) const target_names = JSON.parse(this.PCPDataReceived[3])
var colors = this.colorsValues const target_names_original = JSON.parse(this.PCPDataReceived[4])
var extraction = []
for (let i = 0; i < DataSetParse.length; i++) {
extraction.push(Object.assign(DataSetParse[i], {Outcome: target_names_original[i]}))
}
this.pc = ParCoords()("#PCPDataView") var colors = this.colorsValues
EventBus.$emit('sendDatatoPickle', extraction)
var pc = ParCoords()("#PCPDataView")
.data(DataSetParse) .data(DataSetParse)
.width(1200)
.height(280)
.color(function(d, i) { return colors[target_names[i]] }) .color(function(d, i) { return colors[target_names[i]] })
.bundlingStrength(0) // set bundling strength .bundlingStrength(0) // set bundling strength
.smoothness(0) .smoothness(0)

@ -73,7 +73,7 @@ export default {
labelFactor: 1.25, //How much farther than the radius of the outer circle should the labels be placed labelFactor: 1.25, //How much farther than the radius of the outer circle should the labels be placed
wrapWidth: 60, //The number of pixels after which a label needs to be given a new line wrapWidth: 60, //The number of pixels after which a label needs to be given a new line
opacityArea: 0.35, //The opacity of the area of the blob opacityArea: 0.35, //The opacity of the area of the blob
dotRadius: 4, //The size of the colored circles of each blog dotRadius: 2, //The size of the colored circles of each blog
opacityCircles: 0.1, //The opacity of the circles of each blob opacityCircles: 0.1, //The opacity of the circles of each blob
strokeWidth: 2, //The width of the stroke around each blob strokeWidth: 2, //The width of the stroke around each blob
roundStrokes: false, //If true the area and stroke will follow a round path (cardinal-closed) roundStrokes: false, //If true the area and stroke will follow a round path (cardinal-closed)
@ -387,7 +387,6 @@ export default {
// Clear Heatmap first // Clear Heatmap first
var svg = d3.select("#overview"); var svg = d3.select("#overview");
svg.selectAll("*").remove(); svg.selectAll("*").remove();
var widthinter = this.WH[0]*2 // interactive visualization var widthinter = this.WH[0]*2 // interactive visualization
var heightinter = this.WH[1]*1.23 // interactive visualization var heightinter = this.WH[1]*1.23 // interactive visualization
@ -496,7 +495,7 @@ export default {
} else if (this.storeActiveModels[0] > this.AdaBModels) { } else if (this.storeActiveModels[0] > this.AdaBModels) {
this.allActiveAdaB = countAdaBRelated.slice() this.allActiveAdaB = countAdaBRelated.slice()
} else if (this.storeActiveModels[0] > this.ExtraTModels) { } else if (this.storeActiveModels[0] > this.ExtraTModels) {
this.allActiveExtraT = countExtraT.slice() this.allActiveExtraT = countExtraTRelated.slice()
} else if (this.storeActiveModels[0] > this.RFModels) { } else if (this.storeActiveModels[0] > this.RFModels) {
this.allActiveRF = countRFRelated.slice() this.allActiveRF = countRFRelated.slice()
} else if (this.storeActiveModels[0] > this.QDAModels) { } else if (this.storeActiveModels[0] > this.QDAModels) {

@ -12,53 +12,86 @@ export default {
return { return {
barchartmetrics: '', barchartmetrics: '',
WH: [], WH: [],
SelBarChartMetrics: [] SelBarChartMetrics: [],
factors: [1,1,1,0,0
,1,0,0,1,0
,0,1,0,0,0
,0,0,1,0,0
,0,1,1,1
],
} }
}, },
methods: { methods: {
LineBar () { LineBar () {
Plotly.purge('PerMetricBar') Plotly.purge('PerMetricBar')
var x = []
var metricsPerModel = JSON.parse(this.barchartmetrics[9]) var metricsPerModel = JSON.parse(this.barchartmetrics[9])
var metricsPerModelSel = [] var metricsPerModelSel = []
if (this.SelBarChartMetrics.length == 0) { if (this.SelBarChartMetrics.length == 0) {
metricsPerModelSel = metricsPerModel metricsPerModelSel = metricsPerModel
} else { } else {
metricsPerModelSel = this.SelBarChartMetrics metricsPerModelSel = this.SelBarChartMetrics
} }
console.log(metricsPerModel)
console.log(metricsPerModelSel) var factorsLocal = this.factors
var perModelAllClear = []
var perModelSelectedClear = []
var resultsColors = []
var chooseFrom = ['Accuracy','MAE','RMSE','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','MCC','ROC AUC','Log Loss']
for (let i = 0; i < metricsPerModel.length; i++) {
if (factorsLocal[i] != 0) {
resultsColors.push(metricsPerModel[i])
}
var temp = metricsPerModel[i]
var resultsClear = JSON.parse(temp)
var tempSel = metricsPerModelSel[i]
var resultsClearSelected = JSON.parse(tempSel)
for (let j = 0; j < Object.values(resultsClear).length; j++) {
if (factorsLocal[i] != 0) {
perModelAllClear.push(Object.values(resultsClear)[j])
perModelSelectedClear.push(Object.values(resultsClearSelected)[j])
x.push(chooseFrom[i])
}
}
}
var width = this.WH[0]*6.5 // interactive visualization var width = this.WH[0]*6.5 // interactive visualization
var height = this.WH[1]*0.5 // interactive visualization var height = this.WH[1]*0.5 // interactive visualization
var trace1 = { var trace1 = {
x: ['Accuracy','MAE','RMSE','G-Mean','Precision','Recall','F-Beta Sc','MCC','ROC AUC','Log Loss'], x: x,
y: metricsPerModel, y: perModelAllClear,
name: 'Projection average', name: 'Performance Metrics',
type: 'bar', type: 'box',
boxmean: true,
marker: { marker: {
color: 'rgb(0,0,0)' color: 'rgb(0,0,0)'
} }
}; };
var trace2 = { var trace2 = {
x: ['Accuracy','MAE','RMSE','G-Mean','Precision','Recall','F-Beta Sc','MCC','ROC AUC','Log Loss'], x: x,
y: metricsPerModelSel, y: perModelSelectedClear,
name: 'Selected points', name: 'Selected points',
type: 'bar', type: 'box',
boxmean: true,
marker: { marker: {
color: 'rgb(211,211,211)' color: 'rgb(211,211,211)'
} }
}; };
var data = [trace1, trace2]; var data = [trace1, trace2];
var layout = { var layout = {
barmode: 'group',autosize: false, boxmode: 'group',
autosize: true,
width: width, width: width,
height: height, height: height,
hovermode: 'x',
margin: { margin: {
l: 50, l: 50,
r: 30, r: 0,
b: 35, b: 30,
t: 5, t: 40,
pad: 4 pad: 0
}, },
xaxis: { xaxis: {
title: 'Performance Metrics', title: 'Performance Metrics',
@ -67,13 +100,61 @@ export default {
color: 'black' color: 'black'
}}, }},
yaxis: { yaxis: {
title: 'Performance', title: '# Performance (%) #',
titlefont: { titlefont: {
size: 12, size: 12,
color: 'black' color: 'black'
}}}; }}};
var boxPlot = document.getElementById('PerMetricBar');
var config = {scrollZoom: true, displaylogo: false, showLink: false, showSendToCloud: false, modeBarButtonsToRemove: ['toImage'], responsive: true}
Plotly.newPlot(boxPlot, data, layout, config);
Plotly.newPlot('PerMetricBar', data, layout, {displayModeBar:false}, {staticPlot: true}); boxPlot.on('plotly_click', (eventData) => {
var xAxisHovered
xAxisHovered = eventData.points[0].x
var index
if (xAxisHovered == 'Accuracy') {
Plotly.restyle(boxPlot, 'x', [['<b>Accuracy</b>','MAE','RMSE','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','MCC','ROC AUC','Log Loss']]);
index = 0
}
else if (xAxisHovered == 'MAE') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','<b>MAE</b>','RMSE','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','MCC','ROC AUC','Log Loss']]);
index = 1
}
else if (xAxisHovered == 'RMSE') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','MAE','<b>RMSE</b>','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','MCC','ROC AUC','Log Loss']]);
index = 2
}
else if (xAxisHovered == 'G-Mean') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','MAE','RMSE','<b>G-Mean</b>','<b>G-Mean</b>','<b>G-Mean</b>','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','MCC','ROC AUC','Log Loss']]);
index = 3
}
else if (xAxisHovered == 'Precision') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','MAE','RMSE','G-Mean','G-Mean','G-Mean','<b>Precision</b>','<b>Precision</b>','<b>Precision</b>','Recall','Recall','Recall','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','MCC','ROC AUC','Log Loss']]);
index = 4
}
else if (xAxisHovered == 'Recall') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','MAE','RMSE','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','<b>Recall</b>','<b>Recall</b>','<b>Recall</b>','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','MCC','ROC AUC','Log Loss']]);
index = 5
}
else if (xAxisHovered == 'F-Beta Sc') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','MAE','RMSE','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','<b>F-Beta Sc</b>','<b>F-Beta Sc</b>','<b>F-Beta Sc</b>','<b>F-Beta Sc</b>','<b>F-Beta Sc</b>','<b>F-Beta Sc</b>','<b>F-Beta Sc</b>','<b>F-Beta Sc</b>','<b>F-Beta Sc</b>','MCC','ROC AUC','Log Loss']]);
index = 6
}
else if (xAxisHovered == 'MCC') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','MAE','RMSE','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','<b>MCC</b>','ROC AUC','Log Loss']]);
index = 7
}
else if (xAxisHovered == 'ROC AUC') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','MAE','RMSE','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','MCC','<b>ROC AUC</b>','Log Loss']]);
index = 8
}
else {
Plotly.restyle(boxPlot, 'x', [['Accuracy','MAE','RMSE','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','F-Beta Sc','MCC','ROC AUC','<b>Log Loss</b>']]);
index = 9
}
EventBus.$emit('updateMetricsScatter', resultsColors[index])
});
}, },
reset () { reset () {
Plotly.purge('PerMetricBar') Plotly.purge('PerMetricBar')
@ -82,14 +163,22 @@ export default {
mounted () { mounted () {
EventBus.$on('InitializeMetricsBarChart', data => {this.barchartmetrics = data;}) EventBus.$on('InitializeMetricsBarChart', data => {this.barchartmetrics = data;})
EventBus.$on('InitializeMetricsBarChart', this.LineBar) EventBus.$on('InitializeMetricsBarChart', this.LineBar)
EventBus.$on('Responsive', data => { EventBus.$on('Responsive', data => {
this.WH = data}) this.WH = data})
EventBus.$on('ResponsiveandChange', data => { EventBus.$on('ResponsiveandChange', data => {
this.WH = data}) this.WH = data})
EventBus.$on('UpdateBarChartperMetric', data => { EventBus.$on('UpdateBarChartperMetric', data => {
this.SelBarChartMetrics = data}) this.SelBarChartMetrics = data})
EventBus.$on('UpdateBarChartperMetric', this.LineBar) EventBus.$on('UpdateBarChartperMetric', this.LineBar)
EventBus.$on('CallFactorsView', data => {
this.factors = data})
EventBus.$on('CallFactorsView', this.LineBar)
EventBus.$on('updateBoxPlots', this.LineBar)
// reset view // reset view
EventBus.$on('resetViews', this.reset) EventBus.$on('resetViews', this.reset)
} }

@ -2,10 +2,10 @@
<div> <div>
<b-row class="md-3"> <b-row class="md-3">
<b-col cols="12"> <b-col cols="12">
<div>Projection Selection: <select id="selectBarChartPred" @change="selectVisualRepresentationPred()"> <div>Projection Method: <select id="selectBarChartPred" @change="selectVisualRepresentationPred()">
<option value="mds" selected>MDS Projection</option> <option value="mds" selected>MDS</option>
<option value="tsne">t-SNE Projection</option> <option value="tsne">t-SNE</option>
<option value="umap">UMAP Projection</option> <option value="umap">UMAP</option>
</select> </select>
<div id="OverviewPredPlotly" class="OverviewPredPlotly"></div> <div id="OverviewPredPlotly" class="OverviewPredPlotly"></div>
</div> </div>
@ -39,6 +39,15 @@ export default {
reset () { reset () {
Plotly.purge('OverviewPredPlotly') Plotly.purge('OverviewPredPlotly')
}, },
clean(obj) {
var propNames = Object.getOwnPropertyNames(obj);
for (var i = 0; i < propNames.length; i++) {
var propName = propNames[i];
if (obj[propName] === null || obj[propName] === undefined) {
delete obj[propName];
}
}
},
ScatterPlotPredView () { ScatterPlotPredView () {
Plotly.purge('OverviewPredPlotly') Plotly.purge('OverviewPredPlotly')
@ -52,6 +61,11 @@ export default {
const DataSetY = JSON.parse(this.PredictionsData[15]) const DataSetY = JSON.parse(this.PredictionsData[15])
const originalDataLabels = JSON.parse(this.PredictionsData[16]) const originalDataLabels = JSON.parse(this.PredictionsData[16])
var DataSetParse = JSON.parse(DataSet) var DataSetParse = JSON.parse(DataSet)
var stringParameters = []
for (let i = 0; i < DataSetParse.length; i++) {
this.clean(DataSetParse[i])
stringParameters.push(JSON.stringify(DataSetParse[i]).replace(/,/gi, '<br>'))
}
const XandYCoordinatesTSNE = JSON.parse(this.PredictionsData[18]) const XandYCoordinatesTSNE = JSON.parse(this.PredictionsData[18])
const XandYCoordinatesUMAP= JSON.parse(this.PredictionsData[19]) const XandYCoordinatesUMAP= JSON.parse(this.PredictionsData[19])
@ -80,7 +94,7 @@ export default {
const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]); const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]);
var Text = aux_ID.map((item, index) => { var Text = aux_ID.map((item, index) => {
let popup = 'Data Point ID: ' + item + '; Details: ' + JSON.stringify(DataSetParse[item]) let popup = 'Data Point ID: ' + item + '<br> Details: ' + stringParameters[item]
return popup; return popup;
}); });
@ -98,7 +112,7 @@ export default {
} }
layout = { layout = {
title: 'Predictions Space Projection (MDS)', title: 'MDS Projection',
xaxis: { xaxis: {
visible: false visible: false
}, },
@ -110,6 +124,13 @@ export default {
autosize: true, autosize: true,
width: width, width: width,
height: height, height: height,
margin: {
l: 50,
r: 0,
b: 30,
t: 40,
pad: 0
},
} }
} else if (this.representationDef == 'tsne') { } else if (this.representationDef == 'tsne') {
result = XandYCoordinatesTSNE.reduce(function(r, a) { result = XandYCoordinatesTSNE.reduce(function(r, a) {
@ -140,7 +161,7 @@ export default {
const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]); const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]);
var Text = aux_ID.map((item, index) => { var Text = aux_ID.map((item, index) => {
let popup = 'Data Point ID: ' + item + '; Details: ' + JSON.stringify(DataSetParse[item]) let popup = 'Data Point ID: ' + item + '<br> Details: ' + stringParameters[item]
return popup; return popup;
}); });
@ -158,7 +179,7 @@ export default {
} }
layout = { layout = {
title: 'Prediction Space Projection (t-SNE)', title: 't-SNE Projection',
xaxis: { xaxis: {
visible: false visible: false
}, },
@ -170,6 +191,13 @@ export default {
autosize: true, autosize: true,
width: width, width: width,
height: height, height: height,
margin: {
l: 50,
r: 0,
b: 30,
t: 40,
pad: 0
},
} }
} else { } else {
for (let i = 0; i < XandYCoordinatesUMAP[0].length; i++) { for (let i = 0; i < XandYCoordinatesUMAP[0].length; i++) {
@ -190,7 +218,7 @@ export default {
const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]); const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]);
var Text = aux_ID.map((item, index) => { var Text = aux_ID.map((item, index) => {
let popup = 'Data Point ID: ' + item + '; Details: ' + JSON.stringify(DataSetParse[item]) let popup = 'Data Point ID: ' + item + '<br> Details: ' + stringParameters[item]
return popup; return popup;
}); });
@ -208,7 +236,7 @@ export default {
} }
layout = { layout = {
title: 'Predictions Space Projection (UMAP)', title: 'UMAP Projection',
xaxis: { xaxis: {
visible: false visible: false
}, },
@ -220,6 +248,13 @@ export default {
autosize: true, autosize: true,
width: width, width: width,
height: height, height: height,
margin: {
l: 50,
r: 0,
b: 30,
t: 40,
pad: 0
},
} }
} }

@ -37,6 +37,7 @@ export default {
ExtraTModels: 2606, ExtraTModels: 2606,
AdaBModels: 2766, AdaBModels: 2766,
GradBModels: 2926, GradBModels: 2926,
AllDetails: '',
platform: '' platform: ''
} }
}, },
@ -48,6 +49,15 @@ export default {
this.platform.clear(); this.platform.clear();
} }
}, },
clean(obj) {
var propNames = Object.getOwnPropertyNames(obj);
for (var i = 0; i < propNames.length; i++) {
var propName = propNames[i];
if (obj[propName] === null || obj[propName] === undefined) {
delete obj[propName];
}
}
},
provenance () { provenance () {
var canvas = document.getElementById("main-canvas"); var canvas = document.getElementById("main-canvas");
var width = this.WH[0]*9 // interactive visualization var width = this.WH[0]*9 // interactive visualization
@ -66,6 +76,18 @@ export default {
var flagGradB = 0 var flagGradB = 0
var StackInfo = JSON.parse(this.stackInformation[1]) var StackInfo = JSON.parse(this.stackInformation[1])
var parameters = JSON.parse(this.AllDetails[2])
var parameters = JSON.parse(parameters)
var stringParameters = []
var temp = 0
for (let i = 0; i < StackInfo.length; i++) {
this.clean(parameters[i])
temp = JSON.stringify(Object.assign({ID: StackInfo[i]}, parameters[i]))
stringParameters.push(temp)
}
// Create a WebGL 2D platform on the canvas: // Create a WebGL 2D platform on the canvas:
this.platform = Stardust.platform("webgl-2d", canvas, width, height); this.platform = Stardust.platform("webgl-2d", canvas, width, height);
@ -211,11 +233,14 @@ export default {
isotypes.data(this.data); isotypes.data(this.data);
EventBus.$emit('ExtractResults', stringParameters)
isotypes.render(); isotypes.render();
this.counter = this.counter + 1 this.counter = this.counter + 1
} }
}, },
mounted () { mounted () {
EventBus.$on('ParametersProvenance', data => {this.AllDetails = data})
EventBus.$on('InitializeProvenance', data => {this.stackInformation = data}) EventBus.$on('InitializeProvenance', data => {this.stackInformation = data})
EventBus.$on('InitializeProvenance', this.provenance) EventBus.$on('InitializeProvenance', this.provenance)
EventBus.$on('Responsive', data => { EventBus.$on('Responsive', data => {

@ -21,6 +21,7 @@ export default {
methods: { methods: {
resetClass () { resetClass () {
EventBus.$emit('clearPCP') EventBus.$emit('clearPCP')
EventBus.$emit('EraseSelectionBarChart', '')
EventBus.$emit('alternateFlagLock') EventBus.$emit('alternateFlagLock')
EventBus.$emit('boxplotCall', true) EventBus.$emit('boxplotCall', true)
} }

@ -1,17 +1,25 @@
<template> <template>
<div> <div>
<div align="center"> <div align="center">
Projection Selection: <select id="selectBarChart" @change="selectVisualRepresentation()"> Projection Method: <select id="selectBarChart" @change="selectVisualRepresentation()">
<option value="mds" selected>MDS Projection</option> <option value="mds" selected>MDS</option>
<option value="tsne">t-SNE Projection</option> <option value="tsne">t-SNE</option>
<option value="umap">UMAP Projection</option> <option value="umap">UMAP</option>
</select> </select>
&nbsp;&nbsp;
Action: <button Action: <button
id="RemoveStack" id="RemoveStack"
v-on:click="RemoveStack"> v-on:click="RemoveStack">
<font-awesome-icon icon="minus" /> <font-awesome-icon icon="minus" />
{{ valueStackRemove }} {{ valueStackRemove }}
</button> </button>
&nbsp;&nbsp;
Filter: <button
id="ResetSelection"
v-on:click="resetSelection">
<font-awesome-icon icon="sync-alt" />
{{ valueResetSel }}
</button>
</div> </div>
<div id="OverviewPlotly" class="OverviewPlotly"></div> <div id="OverviewPlotly" class="OverviewPlotly"></div>
</div> </div>
@ -38,14 +46,21 @@ export default {
max: 0, max: 0,
min: 0, min: 0,
WH: [], WH: [],
newColorsUpdate: [],
parametersAll: [], parametersAll: [],
length: 0, length: 0,
valueStackRemove: 'Remove from Stack', valueStackRemove: 'Remove Unselected from Stack',
DataPointsSelUpdate: [], DataPointsSelUpdate: [],
ModelsIDGray: [] ModelsIDGray: [],
valueResetSel: 'Reset Metric Selection'
} }
}, },
methods: { methods: {
resetSelection () {
this.newColorsUpdate = []
this.ScatterPlotView()
EventBus.$emit('updateBoxPlots')
},
reset () { reset () {
Plotly.purge('OverviewPlotly') Plotly.purge('OverviewPlotly')
}, },
@ -57,10 +72,27 @@ export default {
RemoveStack () { RemoveStack () {
EventBus.$emit('RemoveFromStack') EventBus.$emit('RemoveFromStack')
}, },
clean(obj) {
var propNames = Object.getOwnPropertyNames(obj);
for (var i = 0; i < propNames.length; i++) {
var propName = propNames[i];
if (obj[propName] === null || obj[propName] === undefined) {
delete obj[propName];
}
}
},
ScatterPlotView () { ScatterPlotView () {
Plotly.purge('OverviewPlotly') Plotly.purge('OverviewPlotly')
var colorsforScatterPlot = JSON.parse(this.ScatterPlotResults[0]) var colorsforScatterPlot = JSON.parse(this.ScatterPlotResults[0])
if (this.newColorsUpdate.length != 0) {
let resultsClear = JSON.parse(this.newColorsUpdate)
for (let j = 0; j < Object.values(resultsClear).length; j++) {
colorsforScatterPlot.push(Object.values(resultsClear)[j])
}
}
var MDSData = JSON.parse(this.ScatterPlotResults[1]) var MDSData = JSON.parse(this.ScatterPlotResults[1])
var parameters = JSON.parse(this.ScatterPlotResults[2]) var parameters = JSON.parse(this.ScatterPlotResults[2])
var TSNEData = JSON.parse(this.ScatterPlotResults[12]) var TSNEData = JSON.parse(this.ScatterPlotResults[12])
@ -69,7 +101,12 @@ export default {
EventBus.$emit('sendPointsNumber', modelId.length) EventBus.$emit('sendPointsNumber', modelId.length)
parameters = JSON.parse(parameters) var parameters = JSON.parse(parameters)
var stringParameters = []
for (let i = 0; i < parameters.length; i++) {
this.clean(parameters[i])
stringParameters.push(JSON.stringify(parameters[i]).replace(/,/gi, '<br>'))
}
if (this.colorsforOver.length != 0) { if (this.colorsforOver.length != 0) {
if (this.colorsforOver[1].length != 0) { if (this.colorsforOver[1].length != 0) {
@ -83,14 +120,14 @@ export default {
var classifiersInfoProcessing = [] var classifiersInfoProcessing = []
for (let i = 0; i < modelId.length; i++) { for (let i = 0; i < modelId.length; i++) {
classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '; Details: ' + JSON.stringify(parameters[i]) classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '<br> Details: ' + stringParameters[i]
} }
var listofNumbersModelsIDs = [] var listofNumbersModelsIDs = []
var StackModelsIDs = [] var StackModelsIDs = []
if (this.ModelsIDGray.length != 0) { if (this.ModelsIDGray.length != 0) {
for (let j = 0; j < this.ModelsIDGray.length; j++){ for (let j = 0; j < this.ModelsIDGray.length; j++){
listofNumbersModelsIDs.push(parseInt(this.ModelsIDGray[j].replace(/\D/g, ""))) listofNumbersModelsIDs.push(parseInt(this.ModelsIDGray[j]))
} }
var parametersNew = [] var parametersNew = []
@ -110,12 +147,12 @@ export default {
EventBus.$emit('sendPointsNumber', StackModelsIDs.length) EventBus.$emit('sendPointsNumber', StackModelsIDs.length)
var classifiersInfoProcessing = [] var classifiersInfoProcessing = []
for (let i = 0; i < StackModelsIDs.length; i++) { for (let i = 0; i < StackModelsIDs.length; i++) {
classifiersInfoProcessing[i] = 'Model ID: ' + StackModelsIDs[i] + '; Details: ' + JSON.stringify(parametersNew[i]) classifiersInfoProcessing[i] = 'Model ID: ' + StackModelsIDs[i] + '; Details: ' + stringParameters[i]
} }
MDSData[0] = MDSDataNewX MDSData[0] = MDSDataNewX
MDSData[1] = MDSDataNewY MDSData[1] = MDSDataNewY
colorsforScatterPlot = colorsforScatterPlotNew colorsforScatterPlot = colorsforScatterPlotNew
EventBus.$emit('NewHeatmapAccordingtoNewStack', StackModelsIDs) //EventBus.$emit('NewHeatmapAccordingtoNewStack', StackModelsIDs)
} }
var DataGeneral var DataGeneral
@ -124,6 +161,9 @@ export default {
var maxY var maxY
var minY var minY
var width = this.WH[0]*6.5 // interactive visualization
var height = this.WH[1]*1.22 // interactive visualization
var layout var layout
if (this.representationDef == 'mds') { if (this.representationDef == 'mds') {
maxX = Math.max(MDSData[0]) maxX = Math.max(MDSData[0])
@ -146,16 +186,14 @@ export default {
size: 12, size: 12,
colorscale: 'Viridis', colorscale: 'Viridis',
colorbar: { colorbar: {
title: 'Metrics Average', title: '# Performance (%) #',
titleside: 'Top' titleside: 'Top'
}, },
} }
}] }]
var width = this.WH[0]*6.5 // interactive visualization
var height = this.WH[1]*1.22 // interactive visualization
layout = { layout = {
title: 'Models Performance (MDS)', title: 'MDS Projection',
xaxis: { xaxis: {
visible: false, visible: false,
range: [minX, maxX] range: [minX, maxX]
@ -171,6 +209,13 @@ export default {
hovermode: "closest", hovermode: "closest",
hoverlabel: { bgcolor: "#FFF" }, hoverlabel: { bgcolor: "#FFF" },
legend: {orientation: 'h', y: -0.3}, legend: {orientation: 'h', y: -0.3},
margin: {
l: 50,
r: 0,
b: 30,
t: 40,
pad: 0
},
} }
} else if (this.representationDef == 'tsne') { } else if (this.representationDef == 'tsne') {
var result = TSNEData.reduce(function(r, a) { var result = TSNEData.reduce(function(r, a) {
@ -209,7 +254,7 @@ export default {
} }
}] }]
layout = { layout = {
title: 'Models Performance (t-SNE)', title: 't-SNE Projection',
xaxis: { xaxis: {
visible: false, visible: false,
range: [minX, maxX] range: [minX, maxX]
@ -225,6 +270,13 @@ export default {
hovermode: "closest", hovermode: "closest",
hoverlabel: { bgcolor: "#FFF" }, hoverlabel: { bgcolor: "#FFF" },
legend: {orientation: 'h', y: -0.3}, legend: {orientation: 'h', y: -0.3},
margin: {
l: 50,
r: 0,
b: 30,
t: 40,
pad: 0
},
} }
} else { } else {
@ -254,10 +306,8 @@ export default {
} }
}] }]
var width = this.WH[0]*6.5 // interactive visualization
var height = this.WH[1]*1 // interactive visualization
layout = { layout = {
title: 'Models Performance (UMAP)', title: 'UMAP Projection',
xaxis: { xaxis: {
visible: false, visible: false,
range: [minX, maxX] range: [minX, maxX]
@ -273,6 +323,13 @@ export default {
hovermode: "closest", hovermode: "closest",
hoverlabel: { bgcolor: "#FFF" }, hoverlabel: { bgcolor: "#FFF" },
legend: {orientation: 'h', y: -0.3}, legend: {orientation: 'h', y: -0.3},
margin: {
l: 50,
r: 0,
b: 30,
t: 40,
pad: 0
},
} }
} }
@ -286,7 +343,9 @@ export default {
}, },
selectedPointsOverview () { selectedPointsOverview () {
const OverviewPlotly = document.getElementById('OverviewPlotly') const OverviewPlotly = document.getElementById('OverviewPlotly')
var allModels = JSON.parse(this.ScatterPlotResults[13])
OverviewPlotly.on('plotly_selected', function (evt) { OverviewPlotly.on('plotly_selected', function (evt) {
var pushModelsRemaining = []
if (typeof evt !== 'undefined') { if (typeof evt !== 'undefined') {
const ClassifierIDsList = [] const ClassifierIDsList = []
const ClassifierIDsListCleared = [] const ClassifierIDsListCleared = []
@ -302,9 +361,14 @@ export default {
ClassifierIDsListCleared.push(numberNumb) ClassifierIDsListCleared.push(numberNumb)
} }
} }
if (ClassifierIDsList != '') { for (let i = 0; i < allModels.length; i++) {
EventBus.$emit('SendSelectedPointsToServerEvent', ClassifierIDsList) if (!ClassifierIDsListCleared.includes(allModels[i])) {
EventBus.$emit('SendSelectedPointsToBrushHeatmap', ClassifierIDsListCleared) pushModelsRemaining.push(allModels[i])
}
}
if (allModels != '') {
EventBus.$emit('SendSelectedPointsToServerEvent', pushModelsRemaining)
EventBus.$emit('SendSelectedPointsToBrushHeatmap', pushModelsRemaining)
} else { } else {
EventBus.$emit('SendSelectedPointsToServerEvent', '') EventBus.$emit('SendSelectedPointsToServerEvent', '')
} }
@ -357,8 +421,12 @@ export default {
} }
}, },
mounted() { mounted() {
EventBus.$on('updateMetricsScatter', data => { this.newColorsUpdate = data })
EventBus.$on('updateMetricsScatter', this.ScatterPlotView)
EventBus.$on('GrayOutPoints', data => { this.ModelsIDGray = data }) EventBus.$on('GrayOutPoints', data => { this.ModelsIDGray = data })
EventBus.$on('GrayOutPoints', this.ScatterPlotView) EventBus.$on('GrayOutPoints', this.ScatterPlotView)
EventBus.$on('emittedEventCallingBrushedBoxPlot', data => { EventBus.$on('emittedEventCallingBrushedBoxPlot', data => {
this.brushedBox = data}) this.brushedBox = data})
EventBus.$on('emittedEventCallingScatterPlot', data => { EventBus.$on('emittedEventCallingScatterPlot', data => {

@ -0,0 +1,24 @@
#!/usr/bin/env python
import sys
import pandas as pd
import pymongo
import json
import os
def import_content(filepath):
mng_client = pymongo.MongoClient('localhost', 27017)
mng_db = mng_client['mydb']
collection_name = 'DiabetesC'
db_cm = mng_db[collection_name]
cdir = os.path.dirname(__file__)
file_res = os.path.join(cdir, filepath)
data = pd.read_csv(file_res)
data_json = json.loads(data.to_json(orient='records'))
db_cm.remove()
db_cm.insert(data_json)
if __name__ == "__main__":
filepath = '/Users/anchaa/Documents/Research/StackVis_code/StackVis/diabetes.csv'
import_content(filepath)

@ -0,0 +1,152 @@
"sepal_length","sepal_width","petal_length","petal_width","Species*"
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
unable to load file from base commit

472
run.py

@ -22,6 +22,8 @@ from sklearn.neural_network import MLPClassifier # 1 neural network
from sklearn.linear_model import LogisticRegression # 1 linear model from sklearn.linear_model import LogisticRegression # 1 linear model
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis # 2 discriminant analysis from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis # 2 discriminant analysis
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier # 4 ensemble models from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier # 4 ensemble models
from joblib import Parallel, delayed
import multiprocessing
from sklearn.pipeline import make_pipeline from sklearn.pipeline import make_pipeline
from sklearn import model_selection from sklearn import model_selection
@ -407,6 +409,7 @@ def callPreResults():
global XData global XData
global yData global yData
global target_names global target_names
global allParametersPerformancePerModel
DataSpaceResMDS = FunMDS(XData) DataSpaceResMDS = FunMDS(XData)
DataSpaceResTSNE = FunTsne(XData) DataSpaceResTSNE = FunTsne(XData)
@ -425,6 +428,7 @@ def callPreResults():
preResults.append(json.dumps(AllTargets)) # Position: 4 preResults.append(json.dumps(AllTargets)) # Position: 4
preResults.append(json.dumps(DataSpaceResTSNE)) # Position: 5 preResults.append(json.dumps(DataSpaceResTSNE)) # Position: 5
preResults.append(json.dumps(DataSpaceUMAP)) # Position: 6 preResults.append(json.dumps(DataSpaceUMAP)) # Position: 6
preResults.append(json.dumps(allParametersPerformancePerModel)) # Position: 7
# Sending each model's results to frontend # Sending each model's results to frontend
@app.route('/data/requestDataSpaceResults', methods=["GET", "POST"]) @app.route('/data/requestDataSpaceResults', methods=["GET", "POST"])
@ -551,7 +555,7 @@ memory = Memory(location, verbose=0)
# calculating for all algorithms and models the performance and other results # calculating for all algorithms and models the performance and other results
@memory.cache @memory.cache
def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd): def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
print('test') print('start')
# instantiate spark session # instantiate spark session
spark = ( spark = (
SparkSession SparkSession
@ -632,6 +636,12 @@ def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
loop = 10 loop = 10
# influence calculation for all the instances
inputs = range(len(XData))
num_cores = multiprocessing.cpu_count()
impDataInst = Parallel(n_jobs=num_cores)(delayed(processInput)(i,XData,yData,crossValidation,clf) for i in inputs)
for eachModelParameters in parametersLocalNew: for eachModelParameters in parametersLocalNew:
clf.set_params(**eachModelParameters) clf.set_params(**eachModelParameters)
@ -727,9 +737,11 @@ def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
results.append(PerFeatureAccuracyPandas) # Position: 3 and so on results.append(PerFeatureAccuracyPandas) # Position: 3 and so on
results.append(perm_imp_eli5PD) # Position: 4 and so on results.append(perm_imp_eli5PD) # Position: 4 and so on
results.append(featureScores) # Position: 5 and so on results.append(featureScores) # Position: 5 and so on
metrics = metrics.clip(lower=0)
metrics = metrics.to_json() metrics = metrics.to_json()
results.append(metrics) # Position: 6 and so on results.append(metrics) # Position: 6 and so on
results.append(perModelProbPandas) # Position: 7 and so on results.append(perModelProbPandas) # Position: 7 and so on
results.append(json.dumps(impDataInst)) # Position: 8 and so on
return results return results
@ -749,7 +761,7 @@ def Remove(duplicate):
if np.isnan(num): if np.isnan(num):
pass pass
else: else:
final_list.append(int(num)) final_list.append(float(num))
else: else:
final_list.append(num) final_list.append(num)
return final_list return final_list
@ -876,16 +888,16 @@ def UpdateOverview():
def PreprocessingMetrics(): def PreprocessingMetrics():
dicKNN = json.loads(allParametersPerformancePerModel[6]) dicKNN = json.loads(allParametersPerformancePerModel[6])
dicSVC = json.loads(allParametersPerformancePerModel[14]) dicSVC = json.loads(allParametersPerformancePerModel[15])
dicGausNB = json.loads(allParametersPerformancePerModel[22]) dicGausNB = json.loads(allParametersPerformancePerModel[24])
dicMLP = json.loads(allParametersPerformancePerModel[30]) dicMLP = json.loads(allParametersPerformancePerModel[33])
dicLR = json.loads(allParametersPerformancePerModel[38]) dicLR = json.loads(allParametersPerformancePerModel[42])
dicLDA = json.loads(allParametersPerformancePerModel[46]) dicLDA = json.loads(allParametersPerformancePerModel[51])
dicQDA = json.loads(allParametersPerformancePerModel[54]) dicQDA = json.loads(allParametersPerformancePerModel[60])
dicRF = json.loads(allParametersPerformancePerModel[62]) dicRF = json.loads(allParametersPerformancePerModel[69])
dicExtraT = json.loads(allParametersPerformancePerModel[70]) dicExtraT = json.loads(allParametersPerformancePerModel[78])
dicAdaB = json.loads(allParametersPerformancePerModel[78]) dicAdaB = json.loads(allParametersPerformancePerModel[87])
dicGradB = json.loads(allParametersPerformancePerModel[86]) dicGradB = json.loads(allParametersPerformancePerModel[96])
dfKNN = pd.DataFrame.from_dict(dicKNN) dfKNN = pd.DataFrame.from_dict(dicKNN)
dfSVC = pd.DataFrame.from_dict(dicSVC) dfSVC = pd.DataFrame.from_dict(dicSVC)
@ -927,16 +939,16 @@ def PreprocessingMetrics():
def PreprocessingPred(): def PreprocessingPred():
dicKNN = json.loads(allParametersPerformancePerModel[7]) dicKNN = json.loads(allParametersPerformancePerModel[7])
dicSVC = json.loads(allParametersPerformancePerModel[15]) dicSVC = json.loads(allParametersPerformancePerModel[16])
dicGausNB = json.loads(allParametersPerformancePerModel[23]) dicGausNB = json.loads(allParametersPerformancePerModel[25])
dicMLP = json.loads(allParametersPerformancePerModel[31]) dicMLP = json.loads(allParametersPerformancePerModel[34])
dicLR = json.loads(allParametersPerformancePerModel[39]) dicLR = json.loads(allParametersPerformancePerModel[43])
dicLDA = json.loads(allParametersPerformancePerModel[47]) dicLDA = json.loads(allParametersPerformancePerModel[52])
dicQDA = json.loads(allParametersPerformancePerModel[55]) dicQDA = json.loads(allParametersPerformancePerModel[61])
dicRF = json.loads(allParametersPerformancePerModel[63]) dicRF = json.loads(allParametersPerformancePerModel[70])
dicExtraT = json.loads(allParametersPerformancePerModel[71]) dicExtraT = json.loads(allParametersPerformancePerModel[79])
dicAdaB = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88])
dicGradB = json.loads(allParametersPerformancePerModel[87]) dicGradB = json.loads(allParametersPerformancePerModel[97])
dfKNN = pd.DataFrame.from_dict(dicKNN) dfKNN = pd.DataFrame.from_dict(dicKNN)
dfSVC = pd.DataFrame.from_dict(dicSVC) dfSVC = pd.DataFrame.from_dict(dicSVC)
@ -986,20 +998,19 @@ def PreprocessingPredUpdate(Models):
Models = json.loads(Models) Models = json.loads(Models)
ModelsList= [] ModelsList= []
for loop in Models['ClassifiersList']: for loop in Models['ClassifiersList']:
temp = [int(s) for s in re.findall(r'\b\d+\b', loop)] ModelsList.append(loop)
ModelsList.append(temp[0])
dicKNN = json.loads(allParametersPerformancePerModel[7]) dicKNN = json.loads(allParametersPerformancePerModel[7])
dicSVC = json.loads(allParametersPerformancePerModel[15]) dicSVC = json.loads(allParametersPerformancePerModel[16])
dicGausNB = json.loads(allParametersPerformancePerModel[23]) dicGausNB = json.loads(allParametersPerformancePerModel[25])
dicMLP = json.loads(allParametersPerformancePerModel[31]) dicMLP = json.loads(allParametersPerformancePerModel[34])
dicLR = json.loads(allParametersPerformancePerModel[39]) dicLR = json.loads(allParametersPerformancePerModel[43])
dicLDA = json.loads(allParametersPerformancePerModel[47]) dicLDA = json.loads(allParametersPerformancePerModel[52])
dicQDA = json.loads(allParametersPerformancePerModel[55]) dicQDA = json.loads(allParametersPerformancePerModel[61])
dicRF = json.loads(allParametersPerformancePerModel[63]) dicRF = json.loads(allParametersPerformancePerModel[70])
dicExtraT = json.loads(allParametersPerformancePerModel[71]) dicExtraT = json.loads(allParametersPerformancePerModel[79])
dicAdaB = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88])
dicGradB = json.loads(allParametersPerformancePerModel[87]) dicGradB = json.loads(allParametersPerformancePerModel[97])
dfKNN = pd.DataFrame.from_dict(dicKNN) dfKNN = pd.DataFrame.from_dict(dicKNN)
dfSVC = pd.DataFrame.from_dict(dicSVC) dfSVC = pd.DataFrame.from_dict(dicSVC)
@ -1047,8 +1058,7 @@ def PreprocessingPredUpdate(Models):
df_concatProbs = df_concatProbs.drop(df_concatProbs.index[index]) df_concatProbs = df_concatProbs.drop(df_concatProbs.index[index])
deletedElements = deletedElements + 1 deletedElements = deletedElements + 1
df_concatProbsCleared = df_concatProbs df_concatProbsCleared = df_concatProbs
listIDsRemaining = df_concatProbsCleared.index.values.tolist() listIDsRemoved = df_concatProbsCleared.index.values.tolist()
predictionsAll = PreprocessingPred() predictionsAll = PreprocessingPred()
PredictionSpaceAll = FunMDS(predictionsAll) PredictionSpaceAll = FunMDS(predictionsAll)
@ -1059,31 +1069,27 @@ def PreprocessingPredUpdate(Models):
PredictionSpaceSel = FunMDS(predictionsSel) PredictionSpaceSel = FunMDS(predictionsSel)
#ModelSpaceMDSNewComb = [list(a) for a in zip(PredictionSpaceAll[0], ModelSpaceMDS[1])]
#ModelSpaceMDSNewSel = FunMDS(df_concatMetrics)
#ModelSpaceMDSNewSelComb = [list(a) for a in zip(ModelSpaceMDSNewSel[0], ModelSpaceMDSNewSel[1])]
mtx2PredFinal = [] mtx2PredFinal = []
mtx1Pred, mtx2Pred, disparity2 = procrustes(PredictionSpaceAll, PredictionSpaceSel) mtx1Pred, mtx2Pred, disparity2 = procrustes(PredictionSpaceAll, PredictionSpaceSel)
a1, b1 = zip(*mtx2Pred) a1 = [i[1] for i in mtx2Pred]
b1 = [i[0] for i in mtx2Pred]
mtx2PredFinal.append(a1) mtx2PredFinal.append(a1)
mtx2PredFinal.append(b1) mtx2PredFinal.append(b1)
return [mtx2PredFinal,listIDsRemaining] return [mtx2PredFinal,listIDsRemoved]
def PreprocessingParam(): def PreprocessingParam():
dicKNN = json.loads(allParametersPerformancePerModel[1]) dicKNN = json.loads(allParametersPerformancePerModel[1])
dicSVC = json.loads(allParametersPerformancePerModel[9]) dicSVC = json.loads(allParametersPerformancePerModel[10])
dicGausNB = json.loads(allParametersPerformancePerModel[17]) dicGausNB = json.loads(allParametersPerformancePerModel[19])
dicMLP = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[28])
dicLR = json.loads(allParametersPerformancePerModel[33]) dicLR = json.loads(allParametersPerformancePerModel[37])
dicLDA = json.loads(allParametersPerformancePerModel[41]) dicLDA = json.loads(allParametersPerformancePerModel[46])
dicQDA = json.loads(allParametersPerformancePerModel[49]) dicQDA = json.loads(allParametersPerformancePerModel[55])
dicRF = json.loads(allParametersPerformancePerModel[57]) dicRF = json.loads(allParametersPerformancePerModel[64])
dicExtraT = json.loads(allParametersPerformancePerModel[65]) dicExtraT = json.loads(allParametersPerformancePerModel[73])
dicAdaB = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82])
dicGradB = json.loads(allParametersPerformancePerModel[81]) dicGradB = json.loads(allParametersPerformancePerModel[91])
dicKNN = dicKNN['params'] dicKNN = dicKNN['params']
dicSVC = dicSVC['params'] dicSVC = dicSVC['params']
@ -1150,16 +1156,16 @@ def PreprocessingParam():
def PreprocessingParamSep(): def PreprocessingParamSep():
dicKNN = json.loads(allParametersPerformancePerModel[1]) dicKNN = json.loads(allParametersPerformancePerModel[1])
dicSVC = json.loads(allParametersPerformancePerModel[9]) dicSVC = json.loads(allParametersPerformancePerModel[10])
dicGausNB = json.loads(allParametersPerformancePerModel[17]) dicGausNB = json.loads(allParametersPerformancePerModel[19])
dicMLP = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[28])
dicLR = json.loads(allParametersPerformancePerModel[33]) dicLR = json.loads(allParametersPerformancePerModel[37])
dicLDA = json.loads(allParametersPerformancePerModel[41]) dicLDA = json.loads(allParametersPerformancePerModel[46])
dicQDA = json.loads(allParametersPerformancePerModel[49]) dicQDA = json.loads(allParametersPerformancePerModel[55])
dicRF = json.loads(allParametersPerformancePerModel[57]) dicRF = json.loads(allParametersPerformancePerModel[64])
dicExtraT = json.loads(allParametersPerformancePerModel[65]) dicExtraT = json.loads(allParametersPerformancePerModel[73])
dicAdaB = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82])
dicGradB = json.loads(allParametersPerformancePerModel[81]) dicGradB = json.loads(allParametersPerformancePerModel[91])
dicKNN = dicKNN['params'] dicKNN = dicKNN['params']
dicSVC = dicSVC['params'] dicSVC = dicSVC['params']
@ -1225,16 +1231,16 @@ def PreprocessingParamSep():
def preProcessPerClassM(): def preProcessPerClassM():
dicKNN = json.loads(allParametersPerformancePerModel[2]) dicKNN = json.loads(allParametersPerformancePerModel[2])
dicSVC = json.loads(allParametersPerformancePerModel[10]) dicSVC = json.loads(allParametersPerformancePerModel[11])
dicGausNB = json.loads(allParametersPerformancePerModel[18]) dicGausNB = json.loads(allParametersPerformancePerModel[20])
dicMLP = json.loads(allParametersPerformancePerModel[26]) dicMLP = json.loads(allParametersPerformancePerModel[29])
dicLR = json.loads(allParametersPerformancePerModel[34]) dicLR = json.loads(allParametersPerformancePerModel[38])
dicLDA = json.loads(allParametersPerformancePerModel[42]) dicLDA = json.loads(allParametersPerformancePerModel[47])
dicQDA = json.loads(allParametersPerformancePerModel[50]) dicQDA = json.loads(allParametersPerformancePerModel[56])
dicRF = json.loads(allParametersPerformancePerModel[58]) dicRF = json.loads(allParametersPerformancePerModel[65])
dicExtraT = json.loads(allParametersPerformancePerModel[66]) dicExtraT = json.loads(allParametersPerformancePerModel[74])
dicAdaB = json.loads(allParametersPerformancePerModel[74]) dicAdaB = json.loads(allParametersPerformancePerModel[83])
dicGradB = json.loads(allParametersPerformancePerModel[82]) dicGradB = json.loads(allParametersPerformancePerModel[92])
dfKNN = pd.DataFrame.from_dict(dicKNN) dfKNN = pd.DataFrame.from_dict(dicKNN)
dfSVC = pd.DataFrame.from_dict(dicSVC) dfSVC = pd.DataFrame.from_dict(dicSVC)
@ -1277,16 +1283,16 @@ def preProcessPerClassM():
def preProcessFeatAcc(): def preProcessFeatAcc():
dicKNN = json.loads(allParametersPerformancePerModel[3]) dicKNN = json.loads(allParametersPerformancePerModel[3])
dicSVC = json.loads(allParametersPerformancePerModel[11]) dicSVC = json.loads(allParametersPerformancePerModel[12])
dicGausNB = json.loads(allParametersPerformancePerModel[19]) dicGausNB = json.loads(allParametersPerformancePerModel[21])
dicMLP = json.loads(allParametersPerformancePerModel[27]) dicMLP = json.loads(allParametersPerformancePerModel[30])
dicLR = json.loads(allParametersPerformancePerModel[35]) dicLR = json.loads(allParametersPerformancePerModel[39])
dicLDA = json.loads(allParametersPerformancePerModel[43]) dicLDA = json.loads(allParametersPerformancePerModel[48])
dicQDA = json.loads(allParametersPerformancePerModel[51]) dicQDA = json.loads(allParametersPerformancePerModel[57])
dicRF = json.loads(allParametersPerformancePerModel[59]) dicRF = json.loads(allParametersPerformancePerModel[66])
dicExtraT = json.loads(allParametersPerformancePerModel[67]) dicExtraT = json.loads(allParametersPerformancePerModel[75])
dicAdaB = json.loads(allParametersPerformancePerModel[75]) dicAdaB = json.loads(allParametersPerformancePerModel[84])
dicGradB = json.loads(allParametersPerformancePerModel[83]) dicGradB = json.loads(allParametersPerformancePerModel[93])
dfKNN = pd.DataFrame.from_dict(dicKNN) dfKNN = pd.DataFrame.from_dict(dicKNN)
dfSVC = pd.DataFrame.from_dict(dicSVC) dfSVC = pd.DataFrame.from_dict(dicSVC)
@ -1329,16 +1335,16 @@ def preProcessFeatAcc():
def preProcessPerm(): def preProcessPerm():
dicKNN = json.loads(allParametersPerformancePerModel[4]) dicKNN = json.loads(allParametersPerformancePerModel[4])
dicSVC = json.loads(allParametersPerformancePerModel[12]) dicSVC = json.loads(allParametersPerformancePerModel[13])
dicGausNB = json.loads(allParametersPerformancePerModel[20]) dicGausNB = json.loads(allParametersPerformancePerModel[22])
dicMLP = json.loads(allParametersPerformancePerModel[28]) dicMLP = json.loads(allParametersPerformancePerModel[31])
dicLR = json.loads(allParametersPerformancePerModel[36]) dicLR = json.loads(allParametersPerformancePerModel[40])
dicLDA = json.loads(allParametersPerformancePerModel[44]) dicLDA = json.loads(allParametersPerformancePerModel[49])
dicQDA = json.loads(allParametersPerformancePerModel[52]) dicQDA = json.loads(allParametersPerformancePerModel[58])
dicRF = json.loads(allParametersPerformancePerModel[60]) dicRF = json.loads(allParametersPerformancePerModel[67])
dicExtraT = json.loads(allParametersPerformancePerModel[68]) dicExtraT = json.loads(allParametersPerformancePerModel[76])
dicAdaB = json.loads(allParametersPerformancePerModel[76]) dicAdaB = json.loads(allParametersPerformancePerModel[85])
dicGradB = json.loads(allParametersPerformancePerModel[84]) dicGradB = json.loads(allParametersPerformancePerModel[94])
dfKNN = pd.DataFrame.from_dict(dicKNN) dfKNN = pd.DataFrame.from_dict(dicKNN)
dfSVC = pd.DataFrame.from_dict(dicSVC) dfSVC = pd.DataFrame.from_dict(dicSVC)
@ -1388,6 +1394,9 @@ def preProcessFeatSc():
def preProcsumPerMetric(factors): def preProcsumPerMetric(factors):
sumPerClassifier = [] sumPerClassifier = []
loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = PreprocessingMetrics()
loopThroughMetrics.loc[:, 'mean_test_neg_mean_absolute_error'] = loopThroughMetrics.loc[:, 'mean_test_neg_mean_absolute_error'] + 1
loopThroughMetrics.loc[:, 'mean_test_neg_root_mean_squared_error'] = loopThroughMetrics.loc[:, 'mean_test_neg_root_mean_squared_error'] + 1
loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss']
for row in loopThroughMetrics.iterrows(): for row in loopThroughMetrics.iterrows():
rowSum = 0 rowSum = 0
name, values = row name, values = row
@ -1396,44 +1405,45 @@ def preProcsumPerMetric(factors):
if sum(factors) is 0: if sum(factors) is 0:
sumPerClassifier = 0 sumPerClassifier = 0
else: else:
sumPerClassifier.append(rowSum/sum(factors)) sumPerClassifier.append(rowSum/sum(factors) * 100)
return sumPerClassifier return sumPerClassifier
def preProcMetricsAllAndSel(): def preProcMetricsAllAndSel():
loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = PreprocessingMetrics()
global factors global factors
metricsPerModelColl = [] metricsPerModelColl = []
metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy'].sum()/loopThroughMetrics['mean_test_accuracy'].count()) metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_neg_mean_absolute_error'].sum()/loopThroughMetrics['mean_test_neg_mean_absolute_error'].count()) metricsPerModelColl.append(loopThroughMetrics['mean_test_neg_mean_absolute_error'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_neg_root_mean_squared_error'].sum()/loopThroughMetrics['mean_test_neg_root_mean_squared_error'].count()) metricsPerModelColl.append(loopThroughMetrics['mean_test_neg_root_mean_squared_error'])
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_micro'].sum()/loopThroughMetrics['geometric_mean_score_micro'].count()) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_micro'])
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro'].sum()/loopThroughMetrics['geometric_mean_score_macro'].count()) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro'])
metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted'].sum()/loopThroughMetrics['geometric_mean_score_weighted'].count()) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_micro'].sum()/loopThroughMetrics['mean_test_precision_micro'].count()) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_micro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro'].sum()/loopThroughMetrics['mean_test_precision_macro'].count()) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted'].sum()/loopThroughMetrics['mean_test_precision_weighted'].count()) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_micro'].sum()/loopThroughMetrics['mean_test_recall_micro'].count()) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_micro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro'].sum()/loopThroughMetrics['mean_test_recall_macro'].count()) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted'].sum()/loopThroughMetrics['mean_test_recall_weighted'].count()) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted'])
metricsPerModelColl.append(loopThroughMetrics['f5_micro'].sum()/loopThroughMetrics['f5_micro'].count()) metricsPerModelColl.append(loopThroughMetrics['f5_micro'])
metricsPerModelColl.append(loopThroughMetrics['f5_macro'].sum()/loopThroughMetrics['f5_macro'].count()) metricsPerModelColl.append(loopThroughMetrics['f5_macro'])
metricsPerModelColl.append(loopThroughMetrics['f5_weighted'].sum()/loopThroughMetrics['f5_weighted'].count()) metricsPerModelColl.append(loopThroughMetrics['f5_weighted'])
metricsPerModelColl.append(loopThroughMetrics['f1_micro'].sum()/loopThroughMetrics['f1_micro'].count()) metricsPerModelColl.append(loopThroughMetrics['f1_micro'])
metricsPerModelColl.append(loopThroughMetrics['f1_macro'].sum()/loopThroughMetrics['f1_macro'].count()) metricsPerModelColl.append(loopThroughMetrics['f1_macro'])
metricsPerModelColl.append(loopThroughMetrics['f1_weighted'].sum()/loopThroughMetrics['f1_weighted'].count()) metricsPerModelColl.append(loopThroughMetrics['f1_weighted'])
metricsPerModelColl.append(loopThroughMetrics['f2_micro'].sum()/loopThroughMetrics['f2_micro'].count()) metricsPerModelColl.append(loopThroughMetrics['f2_micro'])
metricsPerModelColl.append(loopThroughMetrics['f2_macro'].sum()/loopThroughMetrics['f2_macro'].count()) metricsPerModelColl.append(loopThroughMetrics['f2_macro'])
metricsPerModelColl.append(loopThroughMetrics['f2_weighted'].sum()/loopThroughMetrics['f2_weighted'].count()) metricsPerModelColl.append(loopThroughMetrics['f2_weighted'])
metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef'].sum()/loopThroughMetrics['matthews_corrcoef'].count()) metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef'])
metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted'].sum()/loopThroughMetrics['mean_test_roc_auc_ovo_weighted'].count()) metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted'])
metricsPerModelColl.append(loopThroughMetrics['log_loss'].sum()/loopThroughMetrics['log_loss'].count()) metricsPerModelColl.append(loopThroughMetrics['log_loss'])
for index, metric in enumerate(metricsPerModelColl): for index, metric in enumerate(metricsPerModelColl):
if (index == 1 or index == 2): if (index == 1 or index == 2):
metricsPerModelColl[index] = (metric + 1)*factors[index] metricsPerModelColl[index] = ((metric + 1)*factors[index]) * 100
elif (index == 23): elif (index == 23):
metricsPerModelColl[index] = (1 - metric)*factors[index] metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100
else: else:
metricsPerModelColl[index] = metric*factors[index] metricsPerModelColl[index] = (metric*factors[index]) * 100
metricsPerModelColl[index] = metricsPerModelColl[index].to_json()
return metricsPerModelColl return metricsPerModelColl
def preProceModels(): def preProceModels():
@ -1580,22 +1590,60 @@ def ComputeMetricsForSel(Models):
MetricsAlltoSel = PreprocessingMetrics() MetricsAlltoSel = PreprocessingMetrics()
listofModels = [] listofModels = []
for loop in Models['ClassifiersList']: for loop in Models['ClassifiersList']:
temp = [int(s) for s in re.findall(r'\b\d+\b', loop)] listofModels.append(loop)
listofModels.append(temp[0])
MetricsAlltoSel = MetricsAlltoSel.loc[listofModels,:] MetricsAlltoSel = MetricsAlltoSel.loc[listofModels,:]
global metricsPerModelCollSel global metricsPerModelCollSel
global factors
metricsPerModelCollSel = [] metricsPerModelCollSel = []
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_accuracy'].sum()/MetricsAlltoSel['mean_test_accuracy'].count()) metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_accuracy'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_f1_macro'].sum()/MetricsAlltoSel['mean_test_f1_macro'].count()) metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_neg_mean_absolute_error'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_precision'].sum()/MetricsAlltoSel['mean_test_precision'].count()) metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_neg_root_mean_squared_error'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_recall'].sum()/MetricsAlltoSel['mean_test_recall'].count()) metricsPerModelCollSel.append(MetricsAlltoSel['geometric_mean_score_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_jaccard'].sum()/MetricsAlltoSel['mean_test_jaccard'].count()) metricsPerModelCollSel.append(MetricsAlltoSel['geometric_mean_score_macro'])
for index, metric in enumerate(metricsPerModelCollSel): metricsPerModelCollSel.append(MetricsAlltoSel['geometric_mean_score_weighted'])
metricsPerModelCollSel[index] = metric*factors[index] metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_precision_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_precision_macro'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_precision_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_recall_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_recall_macro'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_recall_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['f5_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f5_macro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f5_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['f1_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f1_macro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f1_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['f2_micro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f2_macro'])
metricsPerModelCollSel.append(MetricsAlltoSel['f2_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['matthews_corrcoef'])
metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_roc_auc_ovo_weighted'])
metricsPerModelCollSel.append(MetricsAlltoSel['log_loss'])
for index, metric in enumerate(metricsPerModelCollSel):
if (index == 1 or index == 2):
metricsPerModelCollSel[index] = (metric + 1)*factors[index]
elif (index == 23):
metricsPerModelCollSel[index] = (1 - metric)*factors[index]
else:
metricsPerModelCollSel[index] = metric*factors[index]
metricsPerModelCollSel[index] = metricsPerModelCollSel[index].to_json()
return 'okay' return 'okay'
# function to get unique values
def unique(list1):
# intilize a null list
unique_list = []
# traverse for all elements
for x in list1:
# check if exists in unique_list or not
if x not in unique_list:
unique_list.append(x)
return unique_list
# Sending the overview classifiers' results to be visualized as a scatterplot # Sending the overview classifiers' results to be visualized as a scatterplot
@app.route('/data/BarChartSelectedModels', methods=["GET", "POST"]) @app.route('/data/BarChartSelectedModels', methods=["GET", "POST"])
def SendToUpdateBarChart(): def SendToUpdateBarChart():
@ -1615,6 +1663,7 @@ def RetrieveSelDataPoints():
for loop in DataPointsSelClear['DataPointsSel']: for loop in DataPointsSelClear['DataPointsSel']:
temp = [int(s) for s in re.findall(r'\b\d+\b', loop)] temp = [int(s) for s in re.findall(r'\b\d+\b', loop)]
listofDataPoints.append(temp[0]) listofDataPoints.append(temp[0])
global algorithmsList
paramsListSepPD = [] paramsListSepPD = []
paramsListSepPD = PreprocessingParamSep() paramsListSepPD = PreprocessingParamSep()
@ -1644,7 +1693,6 @@ def RetrieveSelDataPoints():
withoutDuplicates = Remove(value) withoutDuplicates = Remove(value)
RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsCleared[key] = withoutDuplicates
RetrieveParamsClearedListSVC.append(RetrieveParamsCleared) RetrieveParamsClearedListSVC.append(RetrieveParamsCleared)
RetrieveParamsCleared = {} RetrieveParamsCleared = {}
RetrieveParamsClearedListGausNB = [] RetrieveParamsClearedListGausNB = []
for key, value in paramsListSeptoDicGausNB.items(): for key, value in paramsListSeptoDicGausNB.items():
@ -1740,7 +1788,6 @@ def RetrieveSelDataPoints():
if (len(paramsListSeptoDicGradB['n_estimators']) is 0): if (len(paramsListSeptoDicGradB['n_estimators']) is 0):
RetrieveParamsClearedListGradB = [] RetrieveParamsClearedListGradB = []
for eachAlgor in algorithms: for eachAlgor in algorithms:
if (eachAlgor) == 'KNN': if (eachAlgor) == 'KNN':
clf = KNeighborsClassifier() clf = KNeighborsClassifier()
@ -1787,8 +1834,7 @@ def RetrieveSelDataPoints():
params = RetrieveParamsClearedListGradB params = RetrieveParamsClearedListGradB
AlgorithmsIDsEnd = GradBModelsCount AlgorithmsIDsEnd = GradBModelsCount
metricsSelList = GridSearchSel(clf, params, factors, AlgorithmsIDsEnd, listofDataPoints) metricsSelList = GridSearchSel(clf, params, factors, AlgorithmsIDsEnd, listofDataPoints)
if (len(metricsSelList[0]) != 0 and len(metricsSelList[1]) != 0 and len(metricsSelList[2]) != 0 and len(metricsSelList[3]) != 0 and len(metricsSelList[4]) != 0 and len(metricsSelList[5]) != 0 and len(metricsSelList[6]) != 0 and len(metricsSelList[7]) != 0 and len(metricsSelList[8]) != 0 and len(metricsSelList[9]) != 0 and len(metricsSelList[10]) != 0):
if (len(metricsSelList[0]) != 0 and len(metricsSelList[1]) != 0 and len(metricsSelList[2]) != 0 and len(metricsSelList[3]) != 0 and len(metricsSelList[4]) != 0 and len(metricsSelList[5]) != 0 and len(metricsSelList[6]) != 0 and len(metricsSelList[7]) != 0 and len(metricsSelList[8]) != 0 and len(metricsSelList[9]) != 0 and len(metricsSelList[10])):
dicKNN = json.loads(metricsSelList[0]) dicKNN = json.loads(metricsSelList[0])
dfKNN = pd.DataFrame.from_dict(dicKNN) dfKNN = pd.DataFrame.from_dict(dicKNN)
parametersSelDataPD = parametersSelData[0].apply(pd.Series) parametersSelDataPD = parametersSelData[0].apply(pd.Series)
@ -2023,10 +2069,12 @@ def RetrieveSelDataPoints():
dfAdaBCleared = dfGradB.drop(dfGradB.index[set_diff_df]) dfAdaBCleared = dfGradB.drop(dfGradB.index[set_diff_df])
df_concatMetrics = dfAdaBCleared df_concatMetrics = dfAdaBCleared
df_concatMetrics.loc[:, 'mean_test_neg_mean_absolute_error'] = df_concatMetrics.loc[:, 'mean_test_neg_mean_absolute_error'] + 1
df_concatMetrics.loc[:, 'mean_test_neg_root_mean_squared_error'] = df_concatMetrics.loc[:, 'mean_test_neg_root_mean_squared_error'] + 1
df_concatMetrics.loc[:, 'log_loss'] = 1 - df_concatMetrics.loc[:, 'log_loss']
global sumPerClassifierSelUpdate global sumPerClassifierSelUpdate
sumPerClassifierSelUpdate = [] sumPerClassifierSelUpdate = []
sumPerClassifierSelUpdate = preProcsumPerMetricAccordingtoData(factors, df_concatMetrics) sumPerClassifierSelUpdate = preProcsumPerMetricAccordingtoData(factors, df_concatMetrics)
ModelSpaceMDSNewComb = [list(a) for a in zip(ModelSpaceMDS[0], ModelSpaceMDS[1])] ModelSpaceMDSNewComb = [list(a) for a in zip(ModelSpaceMDS[0], ModelSpaceMDS[1])]
ModelSpaceMDSNewSel = FunMDS(df_concatMetrics) ModelSpaceMDSNewSel = FunMDS(df_concatMetrics)
@ -2195,15 +2243,13 @@ def preProcsumPerMetricAccordingtoData(factors, loopThroughMetrics):
sumPerClassifier = [] sumPerClassifier = []
for row in loopThroughMetrics.iterrows(): for row in loopThroughMetrics.iterrows():
rowSum = 0 rowSum = 0
lengthFactors = len(scoring)
name, values = row name, values = row
for loop, elements in enumerate(values): for loop, elements in enumerate(values):
lengthFactors = lengthFactors - 1 + factors[loop]
rowSum = elements*factors[loop] + rowSum rowSum = elements*factors[loop] + rowSum
if lengthFactors is 0: if sum(factors) is 0:
sumPerClassifier = 0 sumPerClassifier = 0
else: else:
sumPerClassifier.append(rowSum/lengthFactors) sumPerClassifier.append(rowSum/sum(factors) * 100)
return sumPerClassifier return sumPerClassifier
# Sending the overview classifiers' results to be visualized as a scatterplot # Sending the overview classifiers' results to be visualized as a scatterplot
@ -2242,6 +2288,7 @@ def EnsembleModel(Models, keyRetrieved):
global XData global XData
global yData global yData
global sclf
lr = LogisticRegression() lr = LogisticRegression()
@ -2258,75 +2305,75 @@ def EnsembleModel(Models, keyRetrieved):
arg = dfParamKNNFilt[eachelem] arg = dfParamKNNFilt[eachelem]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), KNeighborsClassifier().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), KNeighborsClassifier().set_params(**arg)))
temp = json.loads(allParametersPerformancePerModel[9]) temp = json.loads(allParametersPerformancePerModel[10])
dfParamSVC = pd.DataFrame.from_dict(temp) dfParamSVC = pd.DataFrame.from_dict(temp)
dfParamSVCFilt = dfParamSVC.iloc[:,0] dfParamSVCFilt = dfParamSVC.iloc[:,0]
for eachelem in SVCModels: for eachelem in SVCModels:
arg = dfParamSVCFilt[eachelem-SVCModelsCount] arg = dfParamSVCFilt[eachelem-SVCModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), SVC(probability=True).set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), SVC(probability=True,random_state=RANDOM_SEED).set_params(**arg)))
temp = json.loads(allParametersPerformancePerModel[17]) temp = json.loads(allParametersPerformancePerModel[19])
dfParamGauNB = pd.DataFrame.from_dict(temp) dfParamGauNB = pd.DataFrame.from_dict(temp)
dfParamGauNBFilt = dfParamGauNB.iloc[:,0] dfParamGauNBFilt = dfParamGauNB.iloc[:,0]
for eachelem in GausNBModels: for eachelem in GausNBModels:
arg = dfParamGauNBFilt[eachelem-GausNBModelsCount] arg = dfParamGauNBFilt[eachelem-GausNBModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), GaussianNB().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), GaussianNB().set_params(**arg)))
temp = json.loads(allParametersPerformancePerModel[25]) temp = json.loads(allParametersPerformancePerModel[28])
dfParamMLP = pd.DataFrame.from_dict(temp) dfParamMLP = pd.DataFrame.from_dict(temp)
dfParamMLPFilt = dfParamMLP.iloc[:,0] dfParamMLPFilt = dfParamMLP.iloc[:,0]
for eachelem in MLPModels: for eachelem in MLPModels:
arg = dfParamMLPFilt[eachelem-MLPModelsCount] arg = dfParamMLPFilt[eachelem-MLPModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), MLPClassifier().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), MLPClassifier(random_state=RANDOM_SEED).set_params(**arg)))
temp = json.loads(allParametersPerformancePerModel[33]) temp = json.loads(allParametersPerformancePerModel[37])
dfParamLR = pd.DataFrame.from_dict(temp) dfParamLR = pd.DataFrame.from_dict(temp)
dfParamLRFilt = dfParamLR.iloc[:,0] dfParamLRFilt = dfParamLR.iloc[:,0]
for eachelem in LRModels: for eachelem in LRModels:
arg = dfParamLRFilt[eachelem-LRModelsCount] arg = dfParamLRFilt[eachelem-LRModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), LogisticRegression().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), LogisticRegression(random_state=RANDOM_SEED).set_params(**arg)))
temp = json.loads(allParametersPerformancePerModel[41]) temp = json.loads(allParametersPerformancePerModel[46])
dfParamLDA = pd.DataFrame.from_dict(temp) dfParamLDA = pd.DataFrame.from_dict(temp)
dfParamLDAFilt = dfParamLDA.iloc[:,0] dfParamLDAFilt = dfParamLDA.iloc[:,0]
for eachelem in LDAModels: for eachelem in LDAModels:
arg = dfParamLDAFilt[eachelem-LDAModelsCount] arg = dfParamLDAFilt[eachelem-LDAModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), LinearDiscriminantAnalysis().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), LinearDiscriminantAnalysis(random_state=RANDOM_SEED).set_params(**arg)))
temp = json.loads(allParametersPerformancePerModel[49]) temp = json.loads(allParametersPerformancePerModel[55])
dfParamQDA = pd.DataFrame.from_dict(temp) dfParamQDA = pd.DataFrame.from_dict(temp)
dfParamQDAFilt = dfParamQDA.iloc[:,0] dfParamQDAFilt = dfParamQDA.iloc[:,0]
for eachelem in QDAModels: for eachelem in QDAModels:
arg = dfParamQDAFilt[eachelem-QDAModelsCount] arg = dfParamQDAFilt[eachelem-QDAModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), QuadraticDiscriminantAnalysis().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), QuadraticDiscriminantAnalysis().set_params(**arg)))
temp = json.loads(allParametersPerformancePerModel[57]) temp = json.loads(allParametersPerformancePerModel[64])
dfParamRF = pd.DataFrame.from_dict(temp) dfParamRF = pd.DataFrame.from_dict(temp)
dfParamRFFilt = dfParamRF.iloc[:,0] dfParamRFFilt = dfParamRF.iloc[:,0]
for eachelem in RFModels: for eachelem in RFModels:
arg = dfParamRFFilt[eachelem-RFModelsCount] arg = dfParamRFFilt[eachelem-RFModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), RandomForestClassifier().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), RandomForestClassifier(random_state=RANDOM_SEED).set_params(**arg)))
temp = json.loads(allParametersPerformancePerModel[65]) temp = json.loads(allParametersPerformancePerModel[73])
dfParamExtraT = pd.DataFrame.from_dict(temp) dfParamExtraT = pd.DataFrame.from_dict(temp)
dfParamExtraTFilt = dfParamExtraT.iloc[:,0] dfParamExtraTFilt = dfParamExtraT.iloc[:,0]
for eachelem in ExtraTModels: for eachelem in ExtraTModels:
arg = dfParamExtraTFilt[eachelem-ExtraTModelsCount] arg = dfParamExtraTFilt[eachelem-ExtraTModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), ExtraTreesClassifier().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), ExtraTreesClassifier(random_state=RANDOM_SEED).set_params(**arg)))
temp = json.loads(allParametersPerformancePerModel[73]) temp = json.loads(allParametersPerformancePerModel[82])
dfParamAdaB = pd.DataFrame.from_dict(temp) dfParamAdaB = pd.DataFrame.from_dict(temp)
dfParamAdaBFilt = dfParamAdaB.iloc[:,0] dfParamAdaBFilt = dfParamAdaB.iloc[:,0]
for eachelem in AdaBModels: for eachelem in AdaBModels:
arg = dfParamAdaBFilt[eachelem-AdaBModelsCount] arg = dfParamAdaBFilt[eachelem-AdaBModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), AdaBoostClassifier().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), AdaBoostClassifier(random_state=RANDOM_SEED).set_params(**arg)))
temp = json.loads(allParametersPerformancePerModel[81]) temp = json.loads(allParametersPerformancePerModel[91])
dfParamGradB = pd.DataFrame.from_dict(temp) dfParamGradB = pd.DataFrame.from_dict(temp)
dfParamGradBFilt = dfParamGradB.iloc[:,0] dfParamGradBFilt = dfParamGradB.iloc[:,0]
for eachelem in GradBModels: for eachelem in GradBModels:
arg = dfParamGradBFilt[eachelem-GradBModelsCount] arg = dfParamGradBFilt[eachelem-GradBModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), GradientBoostingClassifier().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), GradientBoostingClassifier(random_state=RANDOM_SEED).set_params(**arg)))
global sclfStack global sclfStack
sclfStack = 0 sclfStack = 0
@ -2345,8 +2392,7 @@ def EnsembleModel(Models, keyRetrieved):
for index, modHere in enumerate(ModelsAll): for index, modHere in enumerate(ModelsAll):
flag = 0 flag = 0
for loop in Models['ClassifiersList']: for loop in Models['ClassifiersList']:
temp = [int(s) for s in re.findall(r'\b\d+\b', loop)] if (int(loop) == int(modHere)):
if (int(temp[0]) == int(modHere)):
flag = 1 flag = 1
if (flag is 1): if (flag is 1):
all_classifiersSelection.append(all_classifiers[index]) all_classifiersSelection.append(all_classifiers[index])
@ -2376,12 +2422,12 @@ def EnsembleModel(Models, keyRetrieved):
store = 0 store = 0
else: else:
store = store + 1 store = store + 1
temp = json.loads(allParametersPerformancePerModel[9]) temp = json.loads(allParametersPerformancePerModel[10])
dfParamSVC = pd.DataFrame.from_dict(temp) dfParamSVC = pd.DataFrame.from_dict(temp)
dfParamSVCFilt = dfParamSVC.iloc[:,0] dfParamSVCFilt = dfParamSVC.iloc[:,0]
for index, eachelem in enumerate(SVCModels): for index, eachelem in enumerate(SVCModels):
arg = dfParamRFFilt[eachelem-SVCModelsCount] arg = dfParamRFFilt[eachelem-SVCModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), SVC(probability=True).set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), SVC(probability=True,random_state=RANDOM_SEED).set_params(**arg)))
store = index store = index
flag = 1 flag = 1
@ -2389,7 +2435,7 @@ def EnsembleModel(Models, keyRetrieved):
store = 0 store = 0
else: else:
store = store + 1 store = store + 1
temp = json.loads(allParametersPerformancePerModel[17]) temp = json.loads(allParametersPerformancePerModel[19])
dfParamGauNB = pd.DataFrame.from_dict(temp) dfParamGauNB = pd.DataFrame.from_dict(temp)
dfParamGauNBFilt = dfParamGauNB.iloc[:,0] dfParamGauNBFilt = dfParamGauNB.iloc[:,0]
for index, eachelem in enumerate(GausNBModels): for index, eachelem in enumerate(GausNBModels):
@ -2402,12 +2448,12 @@ def EnsembleModel(Models, keyRetrieved):
store = 0 store = 0
else: else:
store = store + 1 store = store + 1
temp = json.loads(allParametersPerformancePerModel[25]) temp = json.loads(allParametersPerformancePerModel[28])
dfParamMLP = pd.DataFrame.from_dict(temp) dfParamMLP = pd.DataFrame.from_dict(temp)
dfParamMLPFilt = dfParamMLP.iloc[:,0] dfParamMLPFilt = dfParamMLP.iloc[:,0]
for index, eachelem in enumerate(MLPModels): for index, eachelem in enumerate(MLPModels):
arg = dfParamMLPFilt[eachelem-MLPModelsCount] arg = dfParamMLPFilt[eachelem-MLPModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), MLPClassifier().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), MLPClassifier(random_state=RANDOM_SEED).set_params(**arg)))
store = index store = index
flag = 1 flag = 1
@ -2415,12 +2461,12 @@ def EnsembleModel(Models, keyRetrieved):
store = 0 store = 0
else: else:
store = store + 1 store = store + 1
temp = json.loads(allParametersPerformancePerModel[33]) temp = json.loads(allParametersPerformancePerModel[37])
dfParamLR = pd.DataFrame.from_dict(temp) dfParamLR = pd.DataFrame.from_dict(temp)
dfParamLRFilt = dfParamLR.iloc[:,0] dfParamLRFilt = dfParamLR.iloc[:,0]
for index, eachelem in enumerate(LRModels): for index, eachelem in enumerate(LRModels):
arg = dfParamLRFilt[eachelem-LRModelsCount] arg = dfParamLRFilt[eachelem-LRModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), LogisticRegression().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), LogisticRegression(random_state=RANDOM_SEED).set_params(**arg)))
store = index store = index
flag = 1 flag = 1
@ -2428,12 +2474,12 @@ def EnsembleModel(Models, keyRetrieved):
store = 0 store = 0
else: else:
store = store + 1 store = store + 1
temp = json.loads(allParametersPerformancePerModel[41]) temp = json.loads(allParametersPerformancePerModel[46])
dfParamLDA = pd.DataFrame.from_dict(temp) dfParamLDA = pd.DataFrame.from_dict(temp)
dfParamLDAFilt = dfParamLDA.iloc[:,0] dfParamLDAFilt = dfParamLDA.iloc[:,0]
for index, eachelem in enumerate(LDAModels): for index, eachelem in enumerate(LDAModels):
arg = dfParamLDAFilt[eachelem-LDAModelsCount] arg = dfParamLDAFilt[eachelem-LDAModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), LinearDiscriminantAnalysis().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), LinearDiscriminantAnalysis(random_state=RANDOM_SEED).set_params(**arg)))
store = index store = index
flag = 1 flag = 1
@ -2441,7 +2487,7 @@ def EnsembleModel(Models, keyRetrieved):
store = 0 store = 0
else: else:
store = store + 1 store = store + 1
temp = json.loads(allParametersPerformancePerModel[49]) temp = json.loads(allParametersPerformancePerModel[55])
dfParamQDA = pd.DataFrame.from_dict(temp) dfParamQDA = pd.DataFrame.from_dict(temp)
dfParamQDAFilt = dfParamQDA.iloc[:,0] dfParamQDAFilt = dfParamQDA.iloc[:,0]
for index, eachelem in enumerate(QDAModels): for index, eachelem in enumerate(QDAModels):
@ -2454,12 +2500,12 @@ def EnsembleModel(Models, keyRetrieved):
store = 0 store = 0
else: else:
store = store + 1 store = store + 1
temp = json.loads(allParametersPerformancePerModel[57]) temp = json.loads(allParametersPerformancePerModel[64])
dfParamRF = pd.DataFrame.from_dict(temp) dfParamRF = pd.DataFrame.from_dict(temp)
dfParamRFFilt = dfParamRF.iloc[:,0] dfParamRFFilt = dfParamRF.iloc[:,0]
for index, eachelem in enumerate(RFModels): for index, eachelem in enumerate(RFModels):
arg = dfParamRFFilt[eachelem-RFModelsCount] arg = dfParamRFFilt[eachelem-RFModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), RandomForestClassifier().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), RandomForestClassifier(random_state=RANDOM_SEED).set_params(**arg)))
store = index store = index
flag = 1 flag = 1
@ -2467,12 +2513,12 @@ def EnsembleModel(Models, keyRetrieved):
store = 0 store = 0
else: else:
store = store + 1 store = store + 1
temp = json.loads(allParametersPerformancePerModel[65]) temp = json.loads(allParametersPerformancePerModel[73])
dfParamExtraT = pd.DataFrame.from_dict(temp) dfParamExtraT = pd.DataFrame.from_dict(temp)
dfParamExtraTFilt = dfParamExtraT.iloc[:,0] dfParamExtraTFilt = dfParamExtraT.iloc[:,0]
for index, eachelem in enumerate(ExtraTModels): for index, eachelem in enumerate(ExtraTModels):
arg = dfParamExtraTFilt[eachelem-ExtraTModelsCount] arg = dfParamExtraTFilt[eachelem-ExtraTModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), ExtraTreesClassifier().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), ExtraTreesClassifier(random_state=RANDOM_SEED).set_params(**arg)))
store = index store = index
flag = 1 flag = 1
@ -2480,12 +2526,12 @@ def EnsembleModel(Models, keyRetrieved):
store = 0 store = 0
else: else:
store = store + 1 store = store + 1
temp = json.loads(allParametersPerformancePerModel[73]) temp = json.loads(allParametersPerformancePerModel[82])
dfParamAdaB = pd.DataFrame.from_dict(temp) dfParamAdaB = pd.DataFrame.from_dict(temp)
dfParamAdaBFilt = dfParamAdaB.iloc[:,0] dfParamAdaBFilt = dfParamAdaB.iloc[:,0]
for index, eachelem in enumerate(AdaBModels): for index, eachelem in enumerate(AdaBModels):
arg = dfParamAdaBFilt[eachelem-AdaBModelsCount] arg = dfParamAdaBFilt[eachelem-AdaBModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), AdaBoostClassifier().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][index+store]), AdaBoostClassifier(random_state=RANDOM_SEED).set_params(**arg)))
store = index store = index
flag = 1 flag = 1
@ -2493,7 +2539,7 @@ def EnsembleModel(Models, keyRetrieved):
store = 0 store = 0
else: else:
store = store + 1 store = store + 1
temp = json.loads(allParametersPerformancePerModel[81]) temp = json.loads(allParametersPerformancePerModel[91])
dfParamGradB = pd.DataFrame.from_dict(temp) dfParamGradB = pd.DataFrame.from_dict(temp)
dfParamGradBFilt = dfParamGradB.iloc[:,0] dfParamGradBFilt = dfParamGradB.iloc[:,0]
for index, eachelem in enumerate(GradBModels): for index, eachelem in enumerate(GradBModels):
@ -2513,10 +2559,9 @@ def EnsembleModel(Models, keyRetrieved):
for index, modHere in enumerate(ModelsAll): for index, modHere in enumerate(ModelsAll):
flag = 0 flag = 0
for loop in Models['ClassifiersList']: for loop in Models['ClassifiersList']:
temp = [int(s) for s in re.findall(r'\b\d+\b', loop)] if (int(loop) == int(modHere)):
if (int(temp[0]) == int(modHere)):
flag = 1 flag = 1
if (flag is 0): if (flag is 1):
all_classifiersSelection.append(all_classifiers[index]) all_classifiersSelection.append(all_classifiers[index])
sclfStack = StackingCVClassifier(classifiers=all_classifiersSelection, sclfStack = StackingCVClassifier(classifiers=all_classifiersSelection,
@ -2525,6 +2570,7 @@ def EnsembleModel(Models, keyRetrieved):
random_state=RANDOM_SEED, random_state=RANDOM_SEED,
n_jobs = -1) n_jobs = -1)
#else: #else:
# for index, eachelem in enumerate(algorithmsWithoutDuplicates): # for index, eachelem in enumerate(algorithmsWithoutDuplicates):
# if (eachelem == 'KNN'): # if (eachelem == 'KNN'):
@ -2541,41 +2587,31 @@ def EnsembleModel(Models, keyRetrieved):
# random_state=RANDOM_SEED, # random_state=RANDOM_SEED,
# n_jobs = -1) # n_jobs = -1)
# parallelize all that num_cores = multiprocessing.cpu_count()
temp = model_selection.cross_val_score(sclf, XData, yData, cv=crossValidation, scoring='accuracy', n_jobs=-1) inputsSc = ['accuracy','precision_weighted','recall_weighted','accuracy','precision_weighted','recall_weighted']
scores.append(temp.mean()) flat_results = Parallel(n_jobs=num_cores)(delayed(solve)(sclf,sclfStack,XData,yData,crossValidation,item,index) for index, item in enumerate(inputsSc))
scores.append(temp.std()) scores = [item for sublist in flat_results for item in sublist]
# influence calculation for all the instances
#global DataHeatmap
#DataHeatmap = []
#for indexValue, row in XData.iterrows():
# XDataRemove = XData.copy()
# XDataRemove.drop(indexValue, inplace=True)
# yDataRemove = yData.copy()
# del yDataRemove[indexValue]
# tempRemove = model_selection.cross_val_score(sclf, XDataRemove, yDataRemove, cv=crossValidation, scoring='accuracy', n_jobs=-1)
# DataHeatmap.append(tempRemove.mean())
temp = model_selection.cross_val_score(sclf, XData, yData, cv=crossValidation, scoring='precision_weighted', n_jobs=-1)
scores.append(temp.mean())
scores.append(temp.std())
temp = model_selection.cross_val_score(sclf, XData, yData, cv=crossValidation, scoring='recall_weighted', n_jobs=-1)
scores.append(temp.mean())
scores.append(temp.std())
temp = model_selection.cross_val_score(sclfStack, XData, yData, cv=crossValidation, scoring='accuracy', n_jobs=-1)
scores.append(temp.mean())
scores.append(temp.std())
temp = model_selection.cross_val_score(sclfStack, XData, yData, cv=crossValidation, scoring='precision_weighted', n_jobs=-1)
scores.append(temp.mean())
scores.append(temp.std())
temp = model_selection.cross_val_score(sclfStack, XData, yData, cv=crossValidation, scoring='recall_weighted', n_jobs=-1)
scores.append(temp.mean())
scores.append(temp.std())
return 'Okay' return 'Okay'
def solve(sclf,sclfStack,XData,yData,crossValidation,scoringIn,loop):
scoresLoc = []
if (loop < 3):
temp = model_selection.cross_val_score(sclf, XData, yData, cv=crossValidation, scoring=scoringIn, n_jobs=-1)
else:
temp = model_selection.cross_val_score(sclfStack, XData, yData, cv=crossValidation, scoring=scoringIn, n_jobs=-1)
scoresLoc.append(temp.mean())
scoresLoc.append(temp.std())
return scoresLoc
def processInput(indexValue,XData,yData,crossValidation,sclf):
XDataRemove = XData.copy()
XDataRemove.drop(indexValue, inplace=True)
yDataRemove = yData.copy()
del yDataRemove[indexValue]
tempRemove = model_selection.cross_val_score(sclf, XDataRemove, yDataRemove, cv=crossValidation, scoring='accuracy', n_jobs=-1)
return tempRemove.mean()
# Sending the final results to be visualized as a line plot # Sending the final results to be visualized as a line plot
@app.route('/data/SendFinalResultsBacktoVisualize', methods=["GET", "POST"]) @app.route('/data/SendFinalResultsBacktoVisualize', methods=["GET", "POST"])
def SendToPlotFinalResults(): def SendToPlotFinalResults():
@ -2585,13 +2621,13 @@ def SendToPlotFinalResults():
return jsonify(response) return jsonify(response)
# Sending the final results to be visualized as a line plot # Sending the final results to be visualized as a line plot
@app.route('/data/SendInstancesImportance', methods=["GET", "POST"]) #@app.route('/data/SendInstancesImportance', methods=["GET", "POST"])
def SendImportInstances(): #def SendImportInstances():
global DataHeatmap # global DataHeatmap
response = { # response = {
'instancesImportance': DataHeatmap # 'instancesImportance': DataHeatmap
} # }
return jsonify(response) # return jsonify(response)
# Retrieve data from client # Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @cross_origin(origin='localhost',headers=['Content-Type','Authorization'])

Loading…
Cancel
Save