|
|
@ -134,7 +134,7 @@ def reset(): |
|
|
|
columnsNames = [] |
|
|
|
columnsNames = [] |
|
|
|
|
|
|
|
|
|
|
|
global listofTransformations |
|
|
|
global listofTransformations |
|
|
|
listofTransformations = ["r","rE","r2","r10"] |
|
|
|
listofTransformations = ["r","b","zs","mms","l2","l1p","l10","e2","em1","p2","p3","p4"] |
|
|
|
|
|
|
|
|
|
|
|
return 'The reset was done!' |
|
|
|
return 'The reset was done!' |
|
|
|
|
|
|
|
|
|
|
@ -248,7 +248,7 @@ def retrieveFileName(): |
|
|
|
columnsNames = [] |
|
|
|
columnsNames = [] |
|
|
|
|
|
|
|
|
|
|
|
global listofTransformations |
|
|
|
global listofTransformations |
|
|
|
listofTransformations = ["r","rE","r2","r10"] |
|
|
|
listofTransformations = ["r","b","zs","mms","l2","l1p","l10","e2","em1","p2","p3","p4"] |
|
|
|
|
|
|
|
|
|
|
|
DataRawLength = -1 |
|
|
|
DataRawLength = -1 |
|
|
|
DataRawLengthTest = -1 |
|
|
|
DataRawLengthTest = -1 |
|
|
@ -531,17 +531,38 @@ def executeModel(exeCall, flagEx, nodeTransfName): |
|
|
|
else: |
|
|
|
else: |
|
|
|
if (splittedCol[1] == 'r'): |
|
|
|
if (splittedCol[1] == 'r'): |
|
|
|
XData[nodeTransfName] = XData[nodeTransfName].round() |
|
|
|
XData[nodeTransfName] = XData[nodeTransfName].round() |
|
|
|
elif (splittedCol[1] == 'rE'): |
|
|
|
elif (splittedCol[1] == 'b'): |
|
|
|
XData[nodeTransfName] = np.log(XData[nodeTransfName]) |
|
|
|
number_of_bins = np.histogram_bin_edges(XData[nodeTransfName], bins='auto') |
|
|
|
XData[nodeTransfName] = XData[nodeTransfName].round() |
|
|
|
emptyLabels = [] |
|
|
|
elif (splittedCol[1] == 'r2'): |
|
|
|
for index, number in enumerate(number_of_bins): |
|
|
|
XData[nodeTransfName] = np.log2(XData[nodeTransfName]) |
|
|
|
if (index == 0): |
|
|
|
XData[nodeTransfName] = XData[nodeTransfName].round() |
|
|
|
pass |
|
|
|
else: |
|
|
|
else: |
|
|
|
|
|
|
|
emptyLabels.append(index) |
|
|
|
|
|
|
|
XData[nodeTransfName] = pd.cut(XData[nodeTransfName], bins=number_of_bins, labels=emptyLabels, include_lowest=True, right=True) |
|
|
|
|
|
|
|
XData[nodeTransfName] = pd.to_numeric(XData[nodeTransfName], downcast='signed') |
|
|
|
|
|
|
|
elif (splittedCol[1] == 'zs'): |
|
|
|
|
|
|
|
XData[nodeTransfName] = (XData[nodeTransfName]-XData[nodeTransfName].mean())/XData[nodeTransfName].std() |
|
|
|
|
|
|
|
elif (splittedCol[1] == 'mms'): |
|
|
|
|
|
|
|
XData[nodeTransfName] = (XData[nodeTransfName]-XData[nodeTransfName].min())/(XData[nodeTransfName].max()-XData[nodeTransfName].min()) |
|
|
|
|
|
|
|
elif (splittedCol[1] == 'l2'): |
|
|
|
|
|
|
|
XData[nodeTransfName] = np.log2(XData[nodeTransfName]) |
|
|
|
|
|
|
|
elif (splittedCol[1] == 'l1p'): |
|
|
|
|
|
|
|
XData[nodeTransfName] = np.log1p(XData[nodeTransfName]) |
|
|
|
|
|
|
|
elif (splittedCol[1] == 'l10'): |
|
|
|
XData[nodeTransfName] = np.log10(XData[nodeTransfName]) |
|
|
|
XData[nodeTransfName] = np.log10(XData[nodeTransfName]) |
|
|
|
XData[nodeTransfName] = XData[nodeTransfName].round() |
|
|
|
elif (splittedCol[1] == 'e2'): |
|
|
|
|
|
|
|
XData[nodeTransfName] = np.exp2(XData[nodeTransfName]) |
|
|
|
|
|
|
|
elif (splittedCol[1] == 'em1'): |
|
|
|
|
|
|
|
XData[nodeTransfName] = np.expm1(XData[nodeTransfName]) |
|
|
|
|
|
|
|
elif (splittedCol[1] == 'p2'): |
|
|
|
|
|
|
|
XData[nodeTransfName] = np.power(XData[nodeTransfName], 2) |
|
|
|
|
|
|
|
elif (splittedCol[1] == 'p3'): |
|
|
|
|
|
|
|
XData[nodeTransfName] = np.power(XData[nodeTransfName], 3) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
XData[nodeTransfName] = np.power(XData[nodeTransfName], 4) |
|
|
|
XDataStored = XData.copy() |
|
|
|
XDataStored = XData.copy() |
|
|
|
print(XData) |
|
|
|
|
|
|
|
columnsNamesLoc = XData.columns.values.tolist() |
|
|
|
columnsNamesLoc = XData.columns.values.tolist() |
|
|
|
|
|
|
|
|
|
|
|
for col in columnsNamesLoc: |
|
|
|
for col in columnsNamesLoc: |
|
|
@ -744,7 +765,6 @@ def Transformation(quadrant1, quadrant2, quadrant3, quadrant4, quadrant5): |
|
|
|
|
|
|
|
|
|
|
|
splittedCol = columnsNames[(count)*len(listofTransformations)+0].split('_') |
|
|
|
splittedCol = columnsNames[(count)*len(listofTransformations)+0].split('_') |
|
|
|
if(len(splittedCol) == 1): |
|
|
|
if(len(splittedCol) == 1): |
|
|
|
|
|
|
|
|
|
|
|
d={} |
|
|
|
d={} |
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
for number in range(1,6): |
|
|
|
for number in range(1,6): |
|
|
@ -773,8 +793,15 @@ def Transformation(quadrant1, quadrant2, quadrant3, quadrant4, quadrant5): |
|
|
|
else: |
|
|
|
else: |
|
|
|
d={} |
|
|
|
d={} |
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
XDataNumericCopy[i] = np.log(XDataNumericCopy[i]) |
|
|
|
number_of_bins = np.histogram_bin_edges(XDataNumericCopy[i], bins='auto') |
|
|
|
XDataNumericCopy[i] = XDataNumericCopy[i].round() |
|
|
|
emptyLabels = [] |
|
|
|
|
|
|
|
for index, number in enumerate(number_of_bins): |
|
|
|
|
|
|
|
if (index == 0): |
|
|
|
|
|
|
|
pass |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
emptyLabels.append(index) |
|
|
|
|
|
|
|
XDataNumericCopy[i] = pd.cut(XDataNumericCopy[i], bins=number_of_bins, labels=emptyLabels, include_lowest=True, right=True) |
|
|
|
|
|
|
|
XDataNumericCopy[i] = pd.to_numeric(XDataNumericCopy[i], downcast='signed') |
|
|
|
for number in range(1,6): |
|
|
|
for number in range(1,6): |
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
illusion = locals()[quadrantVariable] |
|
|
@ -792,8 +819,7 @@ def Transformation(quadrant1, quadrant2, quadrant3, quadrant4, quadrant5): |
|
|
|
else: |
|
|
|
else: |
|
|
|
d={} |
|
|
|
d={} |
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
XDataNumericCopy[i] = np.log2(XDataNumericCopy[i]) |
|
|
|
XDataNumericCopy[i] = (XDataNumericCopy[i]-XDataNumericCopy[i].mean())/XDataNumericCopy[i].std() |
|
|
|
XDataNumericCopy[i] = XDataNumericCopy[i].round() |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
for number in range(1,6): |
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
illusion = locals()[quadrantVariable] |
|
|
@ -811,13 +837,156 @@ def Transformation(quadrant1, quadrant2, quadrant3, quadrant4, quadrant5): |
|
|
|
else: |
|
|
|
else: |
|
|
|
d={} |
|
|
|
d={} |
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
XDataNumericCopy[i] = np.log10(XDataNumericCopy[i]) |
|
|
|
XDataNumericCopy[i] = (XDataNumericCopy[i]-XDataNumericCopy[i].min())/(XDataNumericCopy[i].max()-XDataNumericCopy[i].min()) |
|
|
|
XDataNumericCopy[i] = XDataNumericCopy[i].round() |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
for number in range(1,6): |
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
dicTransf["transf4"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
dicTransf["transf4"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
splittedCol = columnsNames[(count)*len(listofTransformations)+4].split('_') |
|
|
|
|
|
|
|
if(len(splittedCol) == 1): |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf5"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
XDataNumericCopy[i] = np.log2(XDataNumericCopy[i]) |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf5"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
splittedCol = columnsNames[(count)*len(listofTransformations)+5].split('_') |
|
|
|
|
|
|
|
if(len(splittedCol) == 1): |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf6"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
XDataNumericCopy[i] = np.log1p(XDataNumericCopy[i]) |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf6"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
splittedCol = columnsNames[(count)*len(listofTransformations)+6].split('_') |
|
|
|
|
|
|
|
if(len(splittedCol) == 1): |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf7"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
XDataNumericCopy[i] = np.log10(XDataNumericCopy[i]) |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf7"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
splittedCol = columnsNames[(count)*len(listofTransformations)+7].split('_') |
|
|
|
|
|
|
|
if(len(splittedCol) == 1): |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf8"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
XDataNumericCopy[i] = np.exp2(XDataNumericCopy[i]) |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf8"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
splittedCol = columnsNames[(count)*len(listofTransformations)+8].split('_') |
|
|
|
|
|
|
|
if(len(splittedCol) == 1): |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf9"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
XDataNumericCopy[i] = np.expm1(XDataNumericCopy[i]) |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf9"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
splittedCol = columnsNames[(count)*len(listofTransformations)+9].split('_') |
|
|
|
|
|
|
|
if(len(splittedCol) == 1): |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf10"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
XDataNumericCopy[i] = np.power(XDataNumericCopy[i], 2) |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf10"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
splittedCol = columnsNames[(count)*len(listofTransformations)+10].split('_') |
|
|
|
|
|
|
|
if(len(splittedCol) == 1): |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf11"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
XDataNumericCopy[i] = np.power(XDataNumericCopy[i], 3) |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf11"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
splittedCol = columnsNames[(count)*len(listofTransformations)+11].split('_') |
|
|
|
|
|
|
|
if(len(splittedCol) == 1): |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf12"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
d={} |
|
|
|
|
|
|
|
XDataNumericCopy = XDataNumeric.copy() |
|
|
|
|
|
|
|
XDataNumericCopy[i] = np.power(XDataNumericCopy[i], 4) |
|
|
|
|
|
|
|
for number in range(1,6): |
|
|
|
|
|
|
|
quadrantVariable = str('quadrant%s' % number) |
|
|
|
|
|
|
|
illusion = locals()[quadrantVariable] |
|
|
|
|
|
|
|
d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] |
|
|
|
|
|
|
|
dicTransf["transf12"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count) |
|
|
|
packCorrTransformed.append(dicTransf) |
|
|
|
packCorrTransformed.append(dicTransf) |
|
|
|
|
|
|
|
|
|
|
|
return 'Everything Okay' |
|
|
|
return 'Everything Okay' |
|
|
@ -833,7 +1002,6 @@ def NewComputationTransf(DataRows1, DataRows2, DataRows3, DataRows4, DataRows5, |
|
|
|
corrMatrix4 = corrMatrix4.abs() |
|
|
|
corrMatrix4 = corrMatrix4.abs() |
|
|
|
corrMatrix5 = DataRows5.corr() |
|
|
|
corrMatrix5 = DataRows5.corr() |
|
|
|
corrMatrix5 = corrMatrix5.abs() |
|
|
|
corrMatrix5 = corrMatrix5.abs() |
|
|
|
|
|
|
|
|
|
|
|
corrMatrix1 = corrMatrix1.loc[[feature]] |
|
|
|
corrMatrix1 = corrMatrix1.loc[[feature]] |
|
|
|
corrMatrix2 = corrMatrix2.loc[[feature]] |
|
|
|
corrMatrix2 = corrMatrix2.loc[[feature]] |
|
|
|
corrMatrix3 = corrMatrix3.loc[[feature]] |
|
|
|
corrMatrix3 = corrMatrix3.loc[[feature]] |
|
|
|