parent 35e4d806db
commit 8397650dd4
  1. BIN
      __pycache__/run.cpython-38.pyc
  2. 8
      frontend/src/components/DataSpace.vue
  3. 2
      frontend/src/components/FeatureSpaceDetail.vue
  4. 2
      frontend/src/components/FeatureSpaceOverview.vue
  5. 6
      frontend/src/components/Main.vue
  6. 10
      run.py

Binary file not shown.

@ -3,7 +3,7 @@
<div id="BeeSwarm"></div>
<div id="Sliders"></div>
<div id="TextLabels"></div>
<div id="NoAction" style="width: 2525px !important; height: 225px !important;"></div>
<div id="NoAction" style="width: 2525px !important; height: 250px !important;"></div>
</div>
</template>
@ -32,7 +32,7 @@ export default {
var tooltip = d3.select("#tooltip")
var width = 2525
var height = 225
var height = 250
var rectWidth = 20
var rectHeight = 10
@ -226,7 +226,7 @@ export default {
svg.selectAll("*").remove();
var width = 2525
var height = 225
var height = 250
var xScaleOp = d3.scale.linear()
.domain([0, width-50])
@ -388,7 +388,7 @@ export default {
svg.selectAll("*").remove();
var width = 2525
var height = 225
var height = 250
var svgLines = d3.select('#TextLabels').append('svg');
svgLines.attr('width', width);

@ -833,7 +833,7 @@ export default {
var MIVar = JSON.parse(this.dataFS[28+this.quadrantNumber])
MIVar = MIVar.concat(this.MIRemaining)
//var colorCateg = d3.scaleOrdinal(d3.schemeDark2)
var colorCateg = d3.scaleOrdinal().domain([0, 1, 2, 4]).range(['#808000','#7570b3','#1b9e77','#d95f02'])
var colorCateg = d3.scaleOrdinal().domain([0, 1, 2, 4]).range(['#808000','#7570b3','#d95f02','#1b9e77'])
var corrTargetFormatted = []
for (let i = 0; i < Object.keys(corrTarget).length; i++) {

@ -1186,7 +1186,7 @@ export default {
var legendRectSize = 14;
var legendSpacing = 3;
var labelsData = JSON.parse(this.overallData[1])
var color = d3v5.scaleOrdinal().domain(labelsData).range(['#808000','#7570b3','#1b9e77','#d95f02'])
var color = d3v5.scaleOrdinal().domain(labelsData).range(['#808000','#7570b3','#d95f02','#1b9e77'])
var svgLegend = d3v5.select('#legendTarget').append('svg')
.attr('width', 130)

@ -8,7 +8,7 @@
<mdb-card>
<mdb-card-header color="primary-color" tag="h5" class="text-center"><DataSetSlider/></mdb-card-header>
<mdb-card-body>
<mdb-card-text class="text-left" style="font-size: 18.5px; min-height: 220px">
<mdb-card-text class="text-left" style="font-size: 18.5px; min-height: 248px">
<DataSpace/>
</mdb-card-text>
</mdb-card-body>
@ -149,7 +149,7 @@ export default Vue.extend({
DataResults: '',
keyNow: 1,
instancesImportance: '',
RetrieveValueFile: 'IrisC', // this is for the default data set
RetrieveValueFile: 'HeartC', // this is for the default data set
SelectedFeaturesPerClassifier: '',
FinalResults: 0,
selectedAlgorithm: '',
@ -862,7 +862,7 @@ body {
top: 0px;
bottom: 0px;
margin-top: -4px !important;
//overflow: hidden !important; # remove scrolling
overflow: hidden !important; // remove scrolling
}
.modal-backdrop {

@ -502,11 +502,11 @@ def dataSetSelection():
def create_global_function():
global estimator
def estimator(n_estimators, eta, max_depth):
def estimator(n_estimators, eta, max_depth, subsample, colsample_bytree):
# initialize model
n_estimators = int(n_estimators)
max_depth = int(max_depth)
model = XGBClassifier(n_estimators=n_estimators, eta=eta, max_depth=max_depth, n_jobs=-1, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False)
model = XGBClassifier(n_estimators=n_estimators, eta=eta, max_depth=max_depth, subsample=subsample, colsample_bytree=colsample_bytree, n_jobs=-1, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False)
# set in cross-validation
result = cross_validate(model, XData, yData, cv=crossValidation, scoring='accuracy')
# result is mean of test_score
@ -568,11 +568,11 @@ def executeModel(exeCall, flagEx, nodeTransfName):
# Bayesian Optimization CHANGE INIT_POINTS!
if (keyFirstTime):
create_global_function()
params = {"n_estimators": (5, 200), "eta": (0.05, 0.3), "max_depth": (6,12)}
params = {"n_estimators": (5, 200), "eta": (0.05, 0.3), "max_depth": (6,12), "subsample": (0.8,1), "colsample_bytree": (0.8,1)}
bayesopt = BayesianOptimization(estimator, params, random_state=RANDOM_SEED)
bayesopt.maximize(init_points=10, n_iter=5, acq='ucb') # 35 and 15
bayesopt.maximize(init_points=35, n_iter=15, acq='ucb') # 35 and 15
bestParams = bayesopt.max['params']
estimator = XGBClassifier(n_estimators=int(bestParams.get('n_estimators')), eta=bestParams.get('eta'), max_depth=int(bestParams.get('max_depth')), probability=True, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False)
estimator = XGBClassifier(n_estimators=int(bestParams.get('n_estimators')), eta=bestParams.get('eta'), max_depth=int(bestParams.get('max_depth')), subsample=bestParams.get('subsample'), colsample_bytree=bestParams.get('colsample_bytree'), probability=True, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False)
columnsNewGen = OrignList
if (len(exeCall) != 0):

Loading…
Cancel
Save