|
|
|
@ -536,8 +536,6 @@ def executeModel(exeCall, flagEx, nodeTransfName): |
|
|
|
|
|
|
|
|
|
columnsNames = [] |
|
|
|
|
scores = [] |
|
|
|
|
print(exeCall) |
|
|
|
|
print(flagEx) |
|
|
|
|
if (len(exeCall) == 0): |
|
|
|
|
if (flagEx == 3): |
|
|
|
|
XDataStored = XData.copy() |
|
|
|
@ -577,9 +575,6 @@ def executeModel(exeCall, flagEx, nodeTransfName): |
|
|
|
|
estimator = XGBClassifier(n_estimators=int(bestParams.get('n_estimators')), eta=bestParams.get('eta'), max_depth=int(bestParams.get('max_depth')), probability=True, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False) |
|
|
|
|
columnsNewGen = OrignList |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(columnsNewGen) |
|
|
|
|
|
|
|
|
|
if (len(exeCall) != 0): |
|
|
|
|
if (flagEx == 1): |
|
|
|
|
currentColumnsDeleted = [] |
|
|
|
@ -688,10 +683,6 @@ def executeModel(exeCall, flagEx, nodeTransfName): |
|
|
|
|
else: |
|
|
|
|
columnsNames.append(splittedCol[0]+'_'+tran) |
|
|
|
|
featureImportanceData = estimatorFeatureSelection(XDataNoRemoval, estimator) |
|
|
|
|
print(XData) |
|
|
|
|
print(XDataStored) |
|
|
|
|
print(XDataStoredOriginal.columns) |
|
|
|
|
print(XDataNoRemoval) |
|
|
|
|
|
|
|
|
|
tracker = [] |
|
|
|
|
for value in columnsNewGen: |
|
|
|
@ -700,14 +691,6 @@ def executeModel(exeCall, flagEx, nodeTransfName): |
|
|
|
|
tracker.append(value[1]) |
|
|
|
|
else: |
|
|
|
|
tracker.append(value[0]) |
|
|
|
|
print(tracker) |
|
|
|
|
|
|
|
|
|
# for ind, col in enumerate(tracker): |
|
|
|
|
# for value in XDataStoredOriginal.columns.values.tolist(): |
|
|
|
|
# if col in value: |
|
|
|
|
# tracker[ind] = tracker[ind].replace(col, value) |
|
|
|
|
# else: |
|
|
|
|
# break |
|
|
|
|
|
|
|
|
|
estimator.fit(XData, yData) |
|
|
|
|
yPredict = estimator.predict(XData) |
|
|
|
|