parent 2472fe2db3
commit 7e417d9697
  1. BIN
      __pycache__/run.cpython-38.pyc
  2. 3
      frontend/src/components/Heatmap.vue
  3. 7
      frontend/src/components/Main.vue
  4. 6
      run.py

Binary file not shown.

@ -88,6 +88,7 @@ export default {
} else { } else {
var Features = this.generKey var Features = this.generKey
} }
console.log(Features)
let arr = Object.values(featureUni.Score); let arr = Object.values(featureUni.Score);
let minUni = Math.min(...arr); let minUni = Math.min(...arr);
let maxUni = Math.max(...arr); let maxUni = Math.max(...arr);
@ -333,7 +334,7 @@ export default {
}) })
.attr("class", "row"); .attr("class", "row");
svg.append("text").attr("x", 10).attr("y", -65).text("Technique").style("font-size", "14px").attr("alignment-baseline","top") svg.append("text").attr("x", 10).attr("y", -65).text("Technique").style("font-size", "14px").attr("alignment-baseline","top")
svg.append("text").attr("transform", "rotate(-90)").attr("x", (-1)*(cellSize*(len/2))).attr("y", -75).style("text-anchor", "middle").style("font-size", "14px").text("Feature"); // -130 before for HeartC svg.append("text").attr("transform", "rotate(-90)").attr("x", (-1)*(cellSize*(len/2))).attr("y", -90).style("text-anchor", "middle").style("font-size", "14px").text("Feature"); // -130 before for HeartC
var heatMap = row.selectAll(".cell") var heatMap = row.selectAll(".cell")
.data(function(d) { .data(function(d) {
return d; return d;

@ -104,6 +104,7 @@ export default Vue.extend({
}, },
data () { data () {
return { return {
transformNodesFlag: false,
storeDataTransf: [], storeDataTransf: [],
compareNumber: 0, compareNumber: 0,
IDToCompare: [], IDToCompare: [],
@ -485,6 +486,11 @@ export default Vue.extend({
console.log('Server successfully send the predictive results!') console.log('Server successfully send the predictive results!')
this.ValidResults = response.data.ValidResults this.ValidResults = response.data.ValidResults
EventBus.$emit('finalResults', this.ValidResults) EventBus.$emit('finalResults', this.ValidResults)
if (this.transformNodesFlag) {
console.log('mpikeMesa')
EventBus.$emit('Default')
this.transformNodesFlag = false
}
}) })
.catch(error => { .catch(error => {
console.log(error) console.log(error)
@ -620,6 +626,7 @@ export default Vue.extend({
.then(response => { .then(response => {
console.log('Features transformation active!') console.log('Features transformation active!')
this.threshold() this.threshold()
this.transformNodesFlag = true
}) })
.catch(error => { .catch(error => {
console.log(error) console.log(error)

@ -476,7 +476,6 @@ def executeModel(exeCall, flagEx, nodeTransfName):
else: else:
XData = XDataStored.copy() XData = XDataStored.copy()
columnsNewGen = keepOriginalFeatures.columns.values.tolist() columnsNewGen = keepOriginalFeatures.columns.values.tolist()
# Bayesian Optimization for 150 iterations # Bayesian Optimization for 150 iterations
if (keyFirstTime): if (keyFirstTime):
create_global_function() create_global_function()
@ -504,6 +503,10 @@ def executeModel(exeCall, flagEx, nodeTransfName):
elif (flagEx == 4): elif (flagEx == 4):
splittedCol = nodeTransfName.split('_') splittedCol = nodeTransfName.split('_')
XData.rename(columns={ XData.columns[exeCall[0]]: nodeTransfName }, inplace = True) XData.rename(columns={ XData.columns[exeCall[0]]: nodeTransfName }, inplace = True)
currentColumn = columnsNewGen[exeCall[0]]
subString = currentColumn[currentColumn.find("(")+1:currentColumn.find(")")]
replacement = currentColumn.replace(subString, nodeTransfName)
columnsNewGen[exeCall[0]] = replacement
if (len(splittedCol) == 1): if (len(splittedCol) == 1):
XData[nodeTransfName] = XDataStoredOriginal[nodeTransfName] XData[nodeTransfName] = XDataStoredOriginal[nodeTransfName]
else: else:
@ -1216,7 +1219,6 @@ def Seperation():
global packCorr global packCorr
packCorr = [] packCorr = []
packCorr.append(json.dumps(columnsNewGen)) packCorr.append(json.dumps(columnsNewGen))
packCorr.append(json.dumps(target_names)) packCorr.append(json.dumps(target_names))
packCorr.append(json.dumps(probabilityPredictions)) packCorr.append(json.dumps(probabilityPredictions))

Loading…
Cancel
Save