|
|
@ -476,7 +476,6 @@ def executeModel(exeCall, flagEx, nodeTransfName): |
|
|
|
else: |
|
|
|
else: |
|
|
|
XData = XDataStored.copy() |
|
|
|
XData = XDataStored.copy() |
|
|
|
columnsNewGen = keepOriginalFeatures.columns.values.tolist() |
|
|
|
columnsNewGen = keepOriginalFeatures.columns.values.tolist() |
|
|
|
|
|
|
|
|
|
|
|
# Bayesian Optimization for 150 iterations |
|
|
|
# Bayesian Optimization for 150 iterations |
|
|
|
if (keyFirstTime): |
|
|
|
if (keyFirstTime): |
|
|
|
create_global_function() |
|
|
|
create_global_function() |
|
|
@ -504,6 +503,10 @@ def executeModel(exeCall, flagEx, nodeTransfName): |
|
|
|
elif (flagEx == 4): |
|
|
|
elif (flagEx == 4): |
|
|
|
splittedCol = nodeTransfName.split('_') |
|
|
|
splittedCol = nodeTransfName.split('_') |
|
|
|
XData.rename(columns={ XData.columns[exeCall[0]]: nodeTransfName }, inplace = True) |
|
|
|
XData.rename(columns={ XData.columns[exeCall[0]]: nodeTransfName }, inplace = True) |
|
|
|
|
|
|
|
currentColumn = columnsNewGen[exeCall[0]] |
|
|
|
|
|
|
|
subString = currentColumn[currentColumn.find("(")+1:currentColumn.find(")")] |
|
|
|
|
|
|
|
replacement = currentColumn.replace(subString, nodeTransfName) |
|
|
|
|
|
|
|
columnsNewGen[exeCall[0]] = replacement |
|
|
|
if (len(splittedCol) == 1): |
|
|
|
if (len(splittedCol) == 1): |
|
|
|
XData[nodeTransfName] = XDataStoredOriginal[nodeTransfName] |
|
|
|
XData[nodeTransfName] = XDataStoredOriginal[nodeTransfName] |
|
|
|
else: |
|
|
|
else: |
|
|
@ -1216,7 +1219,6 @@ def Seperation(): |
|
|
|
|
|
|
|
|
|
|
|
global packCorr |
|
|
|
global packCorr |
|
|
|
packCorr = [] |
|
|
|
packCorr = [] |
|
|
|
|
|
|
|
|
|
|
|
packCorr.append(json.dumps(columnsNewGen)) |
|
|
|
packCorr.append(json.dumps(columnsNewGen)) |
|
|
|
packCorr.append(json.dumps(target_names)) |
|
|
|
packCorr.append(json.dumps(target_names)) |
|
|
|
packCorr.append(json.dumps(probabilityPredictions)) |
|
|
|
packCorr.append(json.dumps(probabilityPredictions)) |
|
|
|