Angelos Chatzimparmpas
ad6d8c6acb
|
5 years ago | |
---|---|---|
Stored_Analyses | 6 years ago | |
__pycache__ | 5 years ago | |
cachedir/joblib/tsneGrid | 5 years ago | |
css | 5 years ago | |
data | 5 years ago | |
js | 5 years ago | |
modules | 5 years ago | |
textures | 6 years ago | |
.gitignore | 6 years ago | |
LICENSE | 6 years ago | |
LICENSE.txt | 5 years ago | |
Makefile.win | 5 years ago | |
README.md | 5 years ago | |
bh_tsne | 5 years ago | |
bhtsne.py | 5 years ago | |
fast_tsne.m | 5 years ago | |
index.html | 5 years ago | |
requirements.txt | 5 years ago | |
run.sh | 5 years ago | |
sptree.cpp | 5 years ago | |
sptree.h | 5 years ago | |
tsne.cpp | 5 years ago | |
tsne.h | 5 years ago | |
tsneGrid.py | 5 years ago | |
tsne_main.cpp | 5 years ago | |
vptree.h | 5 years ago |
README.md
This software package contains a Barnes-Hut implementation of the t-SNE algorithm. The implementation is described in this paper.
Note: This repository is a version of t-SNE modified to support ongoing research. It may be slightly slower than the original. If you're just trying to run t-SNE, check the original repository that we forked from.
Installation
On Linux or OS X, compile the source using the following command:
g++ sptree.cpp tsne.cpp tsne_main.cpp -o bh_tsne -O2
The executable will be called bh_tsne
.
On Windows using Visual C++, do the following in your command line:
- Find the
vcvars64.bat
file in your Visual C++ installation directory. This file may be namedvcvars64.bat
or something similar. For example:
// Visual Studio 12
"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64\vcvars64.bat"
// Visual Studio 2013 Express:
C:\VisualStudioExp2013\VC\bin\x86_amd64\vcvarsx86_amd64.bat
-
From
cmd.exe
, go to the directory containing that .bat file and run it. -
Go to
bhtsne
directory and run:
nmake -f Makefile.win all
The executable will be called windows\bh_tsne.exe
.
Usage
The code comes with wrappers for Matlab and Python. These wrappers write your data to a file called data.dat
, run the bh_tsne
binary, and read the result file result.dat
that the binary produces. There are also external wrappers available for Torch, R, and Julia. Writing your own wrapper should be straightforward; please refer to one of the existing wrappers for the format of the data and result files.
Demonstration of usage in Matlab:
filename = websave('mnist_train.mat', 'https://github.com/awni/cs224n-pa4/blob/master/Simple_tSNE/mnist_train.mat?raw=true');
load(filename);
numDims = 2; pcaDims = 50; perplexity = 50; theta = .5; alg = 'svd';
map = fast_tsne(digits', numDims, pcaDims, perplexity, theta, alg);
gscatter(map(:,1), map(:,2), labels');
Demonstration of usage in Python:
import numpy as np
import bhtsne
data = np.loadtxt("mnist2500_X.txt", skiprows=1)
embedding_array = bhtsne.run_bh_tsne(data, initial_dims=data.shape[1])
Python Wrapper
Usage:
python bhtsne.py [-h] [-d NO_DIMS] [-p PERPLEXITY] [-t THETA]
[-r RANDSEED] [-n INITIAL_DIMS] [-v] [-i INPUT]
[-o OUTPUT] [--use_pca] [--no_pca] [-m MAX_ITER]
Below are the various options the wrapper program bhtsne.py
expects:
-h, --help
show this help message and exit-d NO_DIMS, --no_dims
NO_DIMS-p PERPLEXITY, --perplexity
PERPLEXITY-t THETA, --theta
THETA-r RANDSEED, --randseed
RANDSEED-n INITIAL_DIMS, --initial_dims
INITIAL_DIMS-v, --verbose
-i INPUT, --input
INPUT: the input file, expects a TSV with the first row as the header.-o OUTPUT, --output
OUTPUT: A TSV file having each row as thed
dimensional embedding.--use_pca
--no_pca
-m MAX_ITER, --max_iter
MAX_ITER