Angelos Chatzimparmpas
6e61525581
|
5 years ago | |
---|---|---|
Stored_Analyses | 6 years ago | |
__pycache__ | 5 years ago | |
cachedir/joblib/tsneGrid | 5 years ago | |
css | 5 years ago | |
data | 5 years ago | |
js | 5 years ago | |
modules | 5 years ago | |
textures | 6 years ago | |
.gitignore | 6 years ago | |
LICENSE | 6 years ago | |
LICENSE.txt | 5 years ago | |
Makefile.win | 5 years ago | |
README.md | 5 years ago | |
bh_tsne | 5 years ago | |
bhtsne.py | 5 years ago | |
fast_tsne.m | 5 years ago | |
index.html | 5 years ago | |
requirements.txt | 5 years ago | |
run.sh | 5 years ago | |
sptree.cpp | 5 years ago | |
sptree.h | 5 years ago | |
tsne.cpp | 5 years ago | |
tsne.h | 5 years ago | |
tsneGrid.py | 5 years ago | |
tsne_main.cpp | 5 years ago | |
vptree.h | 5 years ago |
README.md
t-viSNE
This Git repository contains the code that accompanies a research publication so-called "t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections". The details of the experiments and the research outcome are described in this paper.
Note: This repository is a version of t-SNE modified to support ongoing research. It may be slightly slower than the original. If you're just trying to run t-SNE, check the original repository that we forked from.
Installation
On Linux or OS X, compile the source using the following command:
g++ sptree.cpp tsne.cpp tsne_main.cpp -o bh_tsne -O2
The executable will be called bh_tsne
.
On Windows using Visual C++, do the following in your command line:
- Find the
vcvars64.bat
file in your Visual C++ installation directory. This file may be namedvcvars64.bat
or something similar. For example:
// Visual Studio 12
"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64\vcvars64.bat"
// Visual Studio 2013 Express:
C:\VisualStudioExp2013\VC\bin\x86_amd64\vcvarsx86_amd64.bat
-
From
cmd.exe
, go to the directory containing that .bat file and run it. -
Go to
bhtsne
directory and run:
nmake -f Makefile.win all
The executable will be called windows\bh_tsne.exe
.
Usage
The code comes with wrappers for Matlab and Python. These wrappers write your data to a file called data.dat
, run the bh_tsne
binary, and read the result file result.dat
that the binary produces. There are also external wrappers available for Torch, R, and Julia. Writing your own wrapper should be straightforward; please refer to one of the existing wrappers for the format of the data and result files.
Demonstration of usage in Python:
# first terminal: hosting the visualization side (client)
python3 -m http.server # for Python3
#or
python -m SimpleHTTPServer 8000 # for Python2
# second terminal: hosting the computational side (server)
FLASK_APP=tsneGrid.py flask run