fixed neigh hit

parent 5d8d48fbf9
commit 78a4c39ad9
  1. BIN
      __pycache__/tsneGrid.cpython-37.pyc
  2. 29
      tsneGrid.py

@ -28,8 +28,6 @@ CORS(app)
@app.route('/resetAll', methods = ['POST'])
def Reset():
print('mpike')
global dataProc
dataProc = []
@ -74,15 +72,24 @@ def Reset():
return 'Reset'
# NOTE: Only works with labeled data
def neighborhood_hit(X, y, k):
def neighborhood_hit(X, y, k, selected=None):
# Add 1 to k because the nearest neighbor is always the point itself
k += 1
y = np.array(y)
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X, y)
neighbors = knn.kneighbors(X, return_distance=False)
yPred = knn.predict(X)
return np.mean(np.mean((yPred[neighbors] == np.tile(yPred.reshape((-1, 1)), k)).astype('uint8'), axis=1))
if selected:
X = X[selected, :]
neighbors = knn.kneighbors(X, return_distance=False)
score = np.mean((y[neighbors] == np.tile(y[selected].reshape((-1, 1)), k)).astype('uint8'))
return score
def trustworthiness(D_high, D_low, k):
n = D_high.shape[0]
@ -136,6 +143,7 @@ def shepard_diagram_correlation(D_high, D_low):
D_high = spatial.distance.squareform(D_high)
if len(D_low.shape) > 1:
D_low = spatial.distance.squareform(D_low)
return stats.spearmanr(D_high, D_low)[0]
def preprocess(data):
@ -272,7 +280,7 @@ def calculateGrid():
k = listofParamsAll[index][0] # k = perplexity
KeepKs.append(k)
resultNeigh = neighborhood_hit(np.array(projectionsAll[index]), convertLabels, k)
resultTrust = trustworthiness(D_highSpace, D_lowSpace, k)
resultContinuity = continuity(D_highSpace, D_lowSpace, k)
@ -356,12 +364,11 @@ def OptimizeSelection():
metricShepCorr = []
for index, loop in enumerate(clusterIndex):
resultNeigh = neighborhood_hit(np.array(projectionsAll[index]), convertLabels, KeepKs[index])
resultNeigh = neighborhood_hit(np.array(projectionsAll[index]), convertLabels, KeepKs[index], dataSelected)
resultTrust = trustworthiness(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :], KeepKs[index])
resultContinuity = continuity(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :], KeepKs[index])
resultStress = normalized_stress(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :])
resultShep = normalized_stress(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :])
#resultShep = shepard_diagram_correlation(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :])
resultShep = shepard_diagram_correlation(D_highSpace[dataSelected][:, dataSelected], D_lowSpaceList[index][dataSelected][:, dataSelected])
metricNeigh.append(resultNeigh)
metricTrust.append(resultTrust)

Loading…
Cancel
Save