parent 738a0da510
commit 358d5b92a8
  1. BIN
      __pycache__/tsneGrid.cpython-37.pyc
  2. 20
      tsneGrid.py

@ -81,12 +81,8 @@ def neighborhood_hit(X, y, k):
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X, y)
neighbors = knn.kneighbors(X, return_distance=False)
y = np.array(y)
neigh = y[neighbors]
tile = np.tile(y.reshape((-1, 1)), k)
equals = (neigh == tile)
returnthis = np.mean(np.mean(equals).astype('uint8'), axis=1)
return returnthis
yPred = knn.predict(X)
return np.mean(np.mean((yPred[neighbors] == np.tile(yPred.reshape((-1, 1)), k)).astype('uint8'), axis=1))
def trustworthiness(D_high, D_low, k):
n = D_high.shape[0]
@ -277,8 +273,7 @@ def calculateGrid():
k = listofParamsAll[index][0] # k = perplexity
KeepKs.append(k)
#resultNeigh = neighborhood_hit(np.array(projectionsAll[index]), convertLabels, k)
resultNeigh = trustworthiness(D_highSpace, D_lowSpace, k)
resultNeigh = neighborhood_hit(np.array(projectionsAll[index]), convertLabels, k)
resultTrust = trustworthiness(D_highSpace, D_lowSpace, k)
resultContinuity = continuity(D_highSpace, D_lowSpace, k)
resultStress = normalized_stress(D_highSpace, D_lowSpace)
@ -309,8 +304,7 @@ def calculateGrid():
metricsMatrixEntire = []
for index, data in enumerate(metricTrust):
#valueNeigh = (metricNeigh[index] - min_value_neigh) / (max_value_neigh - min_value_neigh)
valueNeigh = (metricTrust[index] - min_value_trust) / (max_value_trust - min_value_trust)
valueNeigh = (metricNeigh[index] - min_value_neigh) / (max_value_neigh - min_value_neigh)
valueTrust = (metricTrust[index] - min_value_trust) / (max_value_trust - min_value_trust)
valueCont = (metricCont[index] - min_value_cont) / (max_value_cont - min_value_cont)
valueStress = (metricStress[index] - min_value_stress) / (max_value_stress - min_value_stress)
@ -362,8 +356,7 @@ def OptimizeSelection():
metricShepCorr = []
for index, loop in enumerate(clusterIndex):
#resultNeigh = neighborhood_hit(np.array(projectionsAll[index]), convertLabels, k)
resultNeigh = trustworthiness(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :], KeepKs[index])
resultNeigh = neighborhood_hit(np.array(projectionsAll[index]), convertLabels, KeepKs[index])
resultTrust = trustworthiness(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :], KeepKs[index])
resultContinuity = continuity(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :], KeepKs[index])
resultStress = normalized_stress(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :])
@ -395,8 +388,7 @@ def OptimizeSelection():
metricsMatrixEntireSel = []
for index, data in enumerate(metricTrust):
#valueNeigh = (metricNeigh[index] - min_value_neigh) / (max_value_neigh - min_value_neigh)
valueNeigh = (metricTrust[index] - min_value_trust) / (max_value_trust - min_value_trust)
valueNeigh = (metricNeigh[index] - min_value_neigh) / (max_value_neigh - min_value_neigh)
valueTrust = (metricTrust[index] - min_value_trust) / (max_value_trust - min_value_trust)
valueCont = (metricCont[index] - min_value_cont) / (max_value_cont - min_value_cont)
valueStress = (metricStress[index] - min_value_stress) / (max_value_stress - min_value_stress)

Loading…
Cancel
Save