t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections
https://doi.org/10.1109/TVCG.2020.2986996
15 lines
598 B
15 lines
598 B
5 years ago
|
# first line: 239
|
||
|
def Clustering(similarity):
|
||
|
similarityNP = np.array(similarity)
|
||
|
n_clusters = 25 # change that to send less diverse projections
|
||
|
kmedoids = KMedoids(n_clusters=n_clusters, random_state=0, metric='precomputed').fit(similarityNP)
|
||
|
global dataProc
|
||
|
clusterIndex = []
|
||
|
for c in range(n_clusters):
|
||
|
cluster_indices = np.argwhere(kmedoids.labels_ == c).reshape(-1,)
|
||
|
D_c = similarityNP[cluster_indices][:, cluster_indices]
|
||
|
center = np.argmin(np.sum(D_c, axis=0))
|
||
|
clusterIndex.append(cluster_indices[center])
|
||
|
|
||
|
return clusterIndex
|