t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections https://doi.org/10.1109/TVCG.2020.2986996
t-viSNE/cachedir/joblib/tsneGrid/Clustering/func_code.py

15 lines
598 B

# first line: 239
def Clustering(similarity):
similarityNP = np.array(similarity)
n_clusters = 25 # change that to send less diverse projections
kmedoids = KMedoids(n_clusters=n_clusters, random_state=0, metric='precomputed').fit(similarityNP)
global dataProc
clusterIndex = []
for c in range(n_clusters):
cluster_indices = np.argwhere(kmedoids.labels_ == c).reshape(-1,)
D_c = similarityNP[cluster_indices][:, cluster_indices]
center = np.argmin(np.sum(D_c, axis=0))
clusterIndex.append(cluster_indices[center])
return clusterIndex