VisEvol: Visual Analytics to Support Hyperparameter Search through Evolutionary Optimization
https://doi.org/10.1111/cgf.14300
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
3.3 KiB
90 lines
3.3 KiB
# first line: 584
|
|
@memory.cache
|
|
def randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
|
|
print(clf)
|
|
search = RandomizedSearchCV(
|
|
estimator=clf, param_distributions=params, n_iter=100,
|
|
cv=crossValidation, refit='accuracy', scoring=scoring,
|
|
verbose=0, n_jobs=-1)
|
|
|
|
# fit and extract the probabilities
|
|
search.fit(XData, yData)
|
|
|
|
# process the results
|
|
cv_results = []
|
|
cv_results.append(search.cv_results_)
|
|
df_cv_results = pd.DataFrame.from_dict(cv_results)
|
|
|
|
# number of models stored
|
|
number_of_models = len(df_cv_results.iloc[0][0])
|
|
|
|
# initialize results per row
|
|
df_cv_results_per_row = []
|
|
|
|
# loop through number of models
|
|
modelsIDs = []
|
|
for i in range(number_of_models):
|
|
number = AlgorithmsIDsEnd+i
|
|
modelsIDs.append(eachAlgor+str(number))
|
|
# initialize results per item
|
|
df_cv_results_per_item = []
|
|
for column in df_cv_results.iloc[0]:
|
|
df_cv_results_per_item.append(column[i])
|
|
df_cv_results_per_row.append(df_cv_results_per_item)
|
|
|
|
# store the results into a pandas dataframe
|
|
df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns)
|
|
|
|
# copy and filter in order to get only the metrics
|
|
metrics = df_cv_results_classifiers.copy()
|
|
metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_macro','mean_test_recall_macro','mean_test_f1_macro','mean_test_roc_auc_ovo'])
|
|
# concat parameters and performance
|
|
parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params'])
|
|
parametersLocal = parametersPerformancePerModel['params'].copy()
|
|
|
|
Models = []
|
|
for index, items in enumerate(parametersLocal):
|
|
Models.append(index)
|
|
parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ]
|
|
|
|
perModelProb = []
|
|
|
|
resultsWeighted = []
|
|
resultsCorrCoef = []
|
|
resultsLogLoss = []
|
|
resultsLogLossFinal = []
|
|
|
|
# influence calculation for all the instances
|
|
inputs = range(len(XData))
|
|
num_cores = multiprocessing.cpu_count()
|
|
|
|
for eachModelParameters in parametersLocalNew:
|
|
clf.set_params(**eachModelParameters)
|
|
clf.fit(XData, yData)
|
|
yPredict = clf.predict(XData)
|
|
yPredict = np.nan_to_num(yPredict)
|
|
yPredictProb = cross_val_predict(clf, XData, yData, cv=crossValidation, method='predict_proba')
|
|
yPredictProb = np.nan_to_num(yPredictProb)
|
|
perModelProb.append(yPredictProb.tolist())
|
|
|
|
resultsWeighted.append(geometric_mean_score(yData, yPredict, average='macro'))
|
|
resultsCorrCoef.append(matthews_corrcoef(yData, yPredict))
|
|
resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True))
|
|
|
|
maxLog = max(resultsLogLoss)
|
|
minLog = min(resultsLogLoss)
|
|
for each in resultsLogLoss:
|
|
resultsLogLossFinal.append((each-minLog)/(maxLog-minLog))
|
|
|
|
metrics.insert(5,'geometric_mean_score_macro',resultsWeighted)
|
|
metrics.insert(6,'matthews_corrcoef',resultsCorrCoef)
|
|
metrics.insert(7,'log_loss',resultsLogLossFinal)
|
|
|
|
perModelProbPandas = pd.DataFrame(perModelProb)
|
|
|
|
results.append(modelsIDs)
|
|
results.append(parametersPerformancePerModel)
|
|
results.append(metrics)
|
|
results.append(perModelProbPandas)
|
|
|
|
return results
|
|
|