StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics
https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
271 lines
8.3 KiB
271 lines
8.3 KiB
<template>
|
|
<div>
|
|
<div align="center">
|
|
Projection Selection: <select id="selectBarChart" @change="selectVisualRepresentation()">
|
|
<option value="mds" selected>MDS Projection</option>
|
|
<option value="tsne">t-SNE Projection</option>
|
|
</select>
|
|
Action: <button
|
|
id="RemoveStack"
|
|
v-on:click="RemoveStack">
|
|
<font-awesome-icon icon="minus" />
|
|
{{ valueStackRemove }}
|
|
</button>
|
|
</div>
|
|
<div id="OverviewPlotly" class="OverviewPlotly"></div>
|
|
</div>
|
|
</template>
|
|
|
|
<script>
|
|
import * as Plotly from 'plotly.js'
|
|
import * as d3Base from 'd3'
|
|
|
|
import { EventBus } from '../main.js'
|
|
|
|
// attach all d3 plugins to the d3 library
|
|
const d3 = Object.assign(d3Base)
|
|
|
|
export default {
|
|
name: 'ScatterPlot',
|
|
data () {
|
|
return {
|
|
ScatterPlotResults: '',
|
|
representationDef: 'mds',
|
|
representationSelection: 'MDS',
|
|
colorsforOver: [],
|
|
brushedBox : [],
|
|
max: 0,
|
|
min: 0,
|
|
WH: [],
|
|
parametersAll: [],
|
|
length: 0,
|
|
valueStackRemove: 'Remove from Stack',
|
|
DataPointsSelUpdate: []
|
|
}
|
|
},
|
|
methods: {
|
|
selectVisualRepresentation () {
|
|
const representationSelectionDocum = document.getElementById('selectBarChart')
|
|
this.representationSelection = representationSelectionDocum.options[representationSelectionDocum.selectedIndex].value
|
|
EventBus.$emit('RepresentationSelection', this.representationSelection)
|
|
},
|
|
RemoveStack () {
|
|
EventBus.$emit('PCPCallDB')
|
|
},
|
|
ScatterPlotView () {
|
|
|
|
function isEquivalent(a, b) {
|
|
// Create arrays of property names
|
|
var aProps = Object.getOwnPropertyNames(a);
|
|
var bProps = Object.getOwnPropertyNames(b);
|
|
|
|
// If number of properties is different,
|
|
// objects are not equivalent
|
|
if (aProps.length != bProps.length) {
|
|
return false;
|
|
}
|
|
|
|
for (var i = 0; i < aProps.length; i++) {
|
|
var propName = aProps[i];
|
|
|
|
// If values of same property are not equal,
|
|
// objects are not equivalent
|
|
if (a[propName] !== b[propName]) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If we made it this far, objects
|
|
// are considered equivalent
|
|
return true;
|
|
}
|
|
|
|
Plotly.purge('OverviewPlotly')
|
|
var colorsforScatterPlot = JSON.parse(this.ScatterPlotResults[0])
|
|
var MDSData = JSON.parse(this.ScatterPlotResults[1])
|
|
var parameters = JSON.parse(this.ScatterPlotResults[2])
|
|
var TSNEData = JSON.parse(this.ScatterPlotResults[12])
|
|
var modelId = JSON.parse(this.ScatterPlotResults[13])
|
|
|
|
EventBus.$emit('sendPointsNumber', modelId.length)
|
|
|
|
parameters = JSON.parse(parameters)
|
|
|
|
if (this.colorsforOver.length != 0) {
|
|
if (this.colorsforOver[1].length != 0) {
|
|
MDSData = this.colorsforOver[1]
|
|
TSNEData = this.colorsforOver[2]
|
|
}
|
|
if (this.colorsforOver[0].length != 0) {
|
|
colorsforScatterPlot = this.colorsforOver[0]
|
|
}
|
|
}
|
|
|
|
var classifiersInfoProcessing = []
|
|
for (let i = 0; i < modelId.length; i++) {
|
|
classifiersInfoProcessing[i] = 'Model ID: ' + modelId[i] + '; Details: ' + JSON.stringify(parameters[i])
|
|
}
|
|
|
|
var DataGeneral
|
|
var layout
|
|
if (this.representationDef == 'mds') {
|
|
DataGeneral = [{
|
|
type: 'scatter',
|
|
mode: 'markers',
|
|
x: MDSData[0],
|
|
y: MDSData[1],
|
|
hovertemplate:
|
|
"<b>%{text}</b><br><br>" +
|
|
"<extra></extra>",
|
|
text: classifiersInfoProcessing,
|
|
marker: {
|
|
color: colorsforScatterPlot,
|
|
size: 12,
|
|
colorscale: 'Viridis',
|
|
colorbar: {
|
|
title: 'Metrics Average',
|
|
titleside: 'Top'
|
|
},
|
|
}
|
|
|
|
}]
|
|
var width = this.WH[0]*3 // interactive visualization
|
|
var height = this.WH[1]*1.5 // interactive visualization
|
|
layout = {
|
|
title: 'Models Performance (MDS)',
|
|
xaxis: {
|
|
visible: false
|
|
},
|
|
yaxis: {
|
|
visible: false
|
|
},
|
|
autosize: true,
|
|
width: width,
|
|
height: height,
|
|
dragmode: 'lasso',
|
|
hovermode: "closest",
|
|
hoverlabel: { bgcolor: "#FFF" },
|
|
legend: {orientation: 'h', y: -0.3},
|
|
}
|
|
} else {
|
|
var result = TSNEData.reduce(function(r, a) {
|
|
a.forEach(function(s, i) {
|
|
var key = i === 0 ? 'Xax' : 'Yax';
|
|
|
|
r[key] || (r[key] = []); // if key not found on result object, add the key with empty array as the value
|
|
|
|
r[key].push(s);
|
|
})
|
|
return r;
|
|
}, {})
|
|
|
|
DataGeneral = [{
|
|
type: 'scatter',
|
|
mode: 'markers',
|
|
x: result.Xax,
|
|
y: result.Yax,
|
|
hovertemplate:
|
|
"<b>%{text}</b><br><br>" +
|
|
"<extra></extra>",
|
|
text: classifiersInfoProcessing,
|
|
marker: {
|
|
color: colorsforScatterPlot,
|
|
size: 12,
|
|
colorscale: 'Viridis',
|
|
colorbar: {
|
|
title: 'Metrics Average',
|
|
titleside: 'Top'
|
|
},
|
|
}
|
|
}]
|
|
layout = {
|
|
title: 'Models Performance (t-SNE)',
|
|
xaxis: {
|
|
visible: false
|
|
},
|
|
yaxis: {
|
|
visible: false
|
|
},
|
|
dragmode: 'lasso',
|
|
hovermode: "closest",
|
|
hoverlabel: { bgcolor: "#FFF" },
|
|
legend: {orientation: 'h', y: -0.3},
|
|
}
|
|
|
|
}
|
|
|
|
var config = {scrollZoom: true, displaylogo: false, showLink: false, showSendToCloud: false, modeBarButtonsToRemove: ['toImage', 'toggleSpikelines', 'autoScale2d', 'hoverClosestGl2d','hoverCompareCartesian','select2d','hoverClosestCartesian','zoomIn2d','zoomOut2d','zoom2d'], responsive: true}
|
|
|
|
var scat = document.getElementById('OverviewPlotly')
|
|
|
|
Plotly.newPlot(scat, DataGeneral, layout, config)
|
|
|
|
this.selectedPointsOverview()
|
|
},
|
|
selectedPointsOverview () {
|
|
const OverviewPlotly = document.getElementById('OverviewPlotly')
|
|
OverviewPlotly.on('plotly_selected', function (evt) {
|
|
if (typeof evt !== 'undefined') {
|
|
const ClassifierIDsList = []
|
|
for (let i = 0; evt.points.length; i++) {
|
|
if (evt.points[i] === undefined) {
|
|
break
|
|
} else {
|
|
const OnlyId = evt.points[i].text.split(';')
|
|
ClassifierIDsList.push(OnlyId[0])
|
|
}
|
|
}
|
|
if (ClassifierIDsList != '') {
|
|
EventBus.$emit('SendSelectedPointsToServerEvent', ClassifierIDsList)
|
|
} else {
|
|
EventBus.$emit('SendSelectedPointsToServerEvent', '')
|
|
}
|
|
}
|
|
})
|
|
},
|
|
UpdateScatter () {
|
|
this.ScatterPlotView()
|
|
},
|
|
animate() {
|
|
var colorsforScatterPlot = JSON.parse(this.DataPointsSelUpdate[0])
|
|
var MDSData = JSON.parse(this.DataPointsSelUpdate[1])
|
|
Plotly.animate('OverviewPlotly', {
|
|
data: [
|
|
{x: MDSData[0], y: MDSData[1],marker: {
|
|
color: colorsforScatterPlot,
|
|
}}
|
|
],
|
|
traces: [0],
|
|
layout: {}
|
|
}, {
|
|
transition: {
|
|
duration: 1000,
|
|
easing: 'cubic-in-out'
|
|
},
|
|
frame: {
|
|
duration: 1000
|
|
}
|
|
})
|
|
}
|
|
},
|
|
mounted() {
|
|
EventBus.$on('emittedEventCallingBrushedBoxPlot', data => {
|
|
this.brushedBox = data})
|
|
EventBus.$on('emittedEventCallingScatterPlot', data => {
|
|
this.ScatterPlotResults = data})
|
|
EventBus.$on('emittedEventCallingScatterPlot', this.ScatterPlotView)
|
|
EventBus.$on('getColors', data => {
|
|
this.colorsforOver = data})
|
|
EventBus.$on('Responsive', data => {
|
|
this.WH = data})
|
|
EventBus.$on('ResponsiveandChange', data => {
|
|
this.WH = data})
|
|
EventBus.$on('ParametersAll', data => { this.parametersAll = data })
|
|
EventBus.$on('getColors', this.UpdateScatter)
|
|
EventBus.$on('RepresentationSelection', data => {this.representationDef = data})
|
|
EventBus.$on('RepresentationSelection', this.ScatterPlotView)
|
|
EventBus.$on('UpdateModelsScatterplot', data => {this.DataPointsSelUpdate = data})
|
|
EventBus.$on('UpdateModelsScatterplot', this.animate)
|
|
}
|
|
}
|
|
</script> |