StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
StackGenVis/frontend/node_modules/vega-geo/build/vega-geo.js

1245 lines
41 KiB

(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('vega-dataflow'), require('vega-util'), require('d3-array'), require('vega-statistics'), require('vega-projection'), require('d3-geo'), require('d3-color'), require('vega-canvas')) :
typeof define === 'function' && define.amd ? define(['exports', 'vega-dataflow', 'vega-util', 'd3-array', 'vega-statistics', 'vega-projection', 'd3-geo', 'd3-color', 'vega-canvas'], factory) :
(global = global || self, factory((global.vega = global.vega || {}, global.vega.transforms = {}), global.vega, global.vega, global.d3, global.vega, global.vega, global.d3, global.d3, global.vega));
}(this, (function (exports, vegaDataflow, vegaUtil, d3Array, vegaStatistics, vegaProjection, d3Geo, d3Color, vegaCanvas) { 'use strict';
function noop() {}
const cases = [
[],
[[[1.0, 1.5], [0.5, 1.0]]],
[[[1.5, 1.0], [1.0, 1.5]]],
[[[1.5, 1.0], [0.5, 1.0]]],
[[[1.0, 0.5], [1.5, 1.0]]],
[[[1.0, 1.5], [0.5, 1.0]], [[1.0, 0.5], [1.5, 1.0]]],
[[[1.0, 0.5], [1.0, 1.5]]],
[[[1.0, 0.5], [0.5, 1.0]]],
[[[0.5, 1.0], [1.0, 0.5]]],
[[[1.0, 1.5], [1.0, 0.5]]],
[[[0.5, 1.0], [1.0, 0.5]], [[1.5, 1.0], [1.0, 1.5]]],
[[[1.5, 1.0], [1.0, 0.5]]],
[[[0.5, 1.0], [1.5, 1.0]]],
[[[1.0, 1.5], [1.5, 1.0]]],
[[[0.5, 1.0], [1.0, 1.5]]],
[]
];
// Implementation adapted from d3/d3-contour. Thanks!
function contours() {
var dx = 1,
dy = 1,
smooth = smoothLinear;
function contours(values, tz) {
return tz.map(value => contour(values, value));
}
// Accumulate, smooth contour rings, assign holes to exterior rings.
// Based on https://github.com/mbostock/shapefile/blob/v0.6.2/shp/polygon.js
function contour(values, value) {
var polygons = [],
holes = [];
isorings(values, value, function(ring) {
smooth(ring, values, value);
if (area(ring) > 0) polygons.push([ring]);
else holes.push(ring);
});
holes.forEach(function(hole) {
for (var i = 0, n = polygons.length, polygon; i < n; ++i) {
if (contains((polygon = polygons[i])[0], hole) !== -1) {
polygon.push(hole);
return;
}
}
});
return {
type: 'MultiPolygon',
value: value,
coordinates: polygons
};
}
// Marching squares with isolines stitched into rings.
// Based on https://github.com/topojson/topojson-client/blob/v3.0.0/src/stitch.js
function isorings(values, value, callback) {
var fragmentByStart = new Array,
fragmentByEnd = new Array,
x, y, t0, t1, t2, t3;
// Special case for the first row (y = -1, t2 = t3 = 0).
x = y = -1;
t1 = values[0] >= value;
cases[t1 << 1].forEach(stitch);
while (++x < dx - 1) {
t0 = t1, t1 = values[x + 1] >= value;
cases[t0 | t1 << 1].forEach(stitch);
}
cases[t1 << 0].forEach(stitch);
// General case for the intermediate rows.
while (++y < dy - 1) {
x = -1;
t1 = values[y * dx + dx] >= value;
t2 = values[y * dx] >= value;
cases[t1 << 1 | t2 << 2].forEach(stitch);
while (++x < dx - 1) {
t0 = t1, t1 = values[y * dx + dx + x + 1] >= value;
t3 = t2, t2 = values[y * dx + x + 1] >= value;
cases[t0 | t1 << 1 | t2 << 2 | t3 << 3].forEach(stitch);
}
cases[t1 | t2 << 3].forEach(stitch);
}
// Special case for the last row (y = dy - 1, t0 = t1 = 0).
x = -1;
t2 = values[y * dx] >= value;
cases[t2 << 2].forEach(stitch);
while (++x < dx - 1) {
t3 = t2, t2 = values[y * dx + x + 1] >= value;
cases[t2 << 2 | t3 << 3].forEach(stitch);
}
cases[t2 << 3].forEach(stitch);
function stitch(line) {
var start = [line[0][0] + x, line[0][1] + y],
end = [line[1][0] + x, line[1][1] + y],
startIndex = index(start),
endIndex = index(end),
f, g;
if (f = fragmentByEnd[startIndex]) {
if (g = fragmentByStart[endIndex]) {
delete fragmentByEnd[f.end];
delete fragmentByStart[g.start];
if (f === g) {
f.ring.push(end);
callback(f.ring);
} else {
fragmentByStart[f.start] = fragmentByEnd[g.end] = {start: f.start, end: g.end, ring: f.ring.concat(g.ring)};
}
} else {
delete fragmentByEnd[f.end];
f.ring.push(end);
fragmentByEnd[f.end = endIndex] = f;
}
} else if (f = fragmentByStart[endIndex]) {
if (g = fragmentByEnd[startIndex]) {
delete fragmentByStart[f.start];
delete fragmentByEnd[g.end];
if (f === g) {
f.ring.push(end);
callback(f.ring);
} else {
fragmentByStart[g.start] = fragmentByEnd[f.end] = {start: g.start, end: f.end, ring: g.ring.concat(f.ring)};
}
} else {
delete fragmentByStart[f.start];
f.ring.unshift(start);
fragmentByStart[f.start = startIndex] = f;
}
} else {
fragmentByStart[startIndex] = fragmentByEnd[endIndex] = {start: startIndex, end: endIndex, ring: [start, end]};
}
}
}
function index(point) {
return point[0] * 2 + point[1] * (dx + 1) * 4;
}
function smoothLinear(ring, values, value) {
ring.forEach(function(point) {
var x = point[0],
y = point[1],
xt = x | 0,
yt = y | 0,
v0,
v1 = values[yt * dx + xt];
if (x > 0 && x < dx && xt === x) {
v0 = values[yt * dx + xt - 1];
point[0] = x + (value - v0) / (v1 - v0) - 0.5;
}
if (y > 0 && y < dy && yt === y) {
v0 = values[(yt - 1) * dx + xt];
point[1] = y + (value - v0) / (v1 - v0) - 0.5;
}
});
}
contours.contour = contour;
contours.size = function(_) {
if (!arguments.length) return [dx, dy];
var _0 = Math.ceil(_[0]), _1 = Math.ceil(_[1]);
if (!(_0 > 0) || !(_1 > 0)) vegaUtil.error('invalid size');
return dx = _0, dy = _1, contours;
};
contours.smooth = function(_) {
return arguments.length ? (smooth = _ ? smoothLinear : noop, contours) : smooth === smoothLinear;
};
return contours;
}
function area(ring) {
var i = 0,
n = ring.length,
area = ring[n - 1][1] * ring[0][0] - ring[n - 1][0] * ring[0][1];
while (++i < n) area += ring[i - 1][1] * ring[i][0] - ring[i - 1][0] * ring[i][1];
return area;
}
function contains(ring, hole) {
var i = -1, n = hole.length, c;
while (++i < n) if (c = ringContains(ring, hole[i])) return c;
return 0;
}
function ringContains(ring, point) {
var x = point[0], y = point[1], contains = -1;
for (var i = 0, n = ring.length, j = n - 1; i < n; j = i++) {
var pi = ring[i], xi = pi[0], yi = pi[1], pj = ring[j], xj = pj[0], yj = pj[1];
if (segmentContains(pi, pj, point)) return 0;
if (((yi > y) !== (yj > y)) && ((x < (xj - xi) * (y - yi) / (yj - yi) + xi))) contains = -contains;
}
return contains;
}
function segmentContains(a, b, c) {
var i; return collinear(a, b, c) && within(a[i = +(a[0] === b[0])], c[i], b[i]);
}
function collinear(a, b, c) {
return (b[0] - a[0]) * (c[1] - a[1]) === (c[0] - a[0]) * (b[1] - a[1]);
}
function within(p, q, r) {
return p <= q && q <= r || r <= q && q <= p;
}
function quantize(k, nice, zero) {
return function(values) {
var ex = vegaUtil.extent(values),
start = zero ? Math.min(ex[0], 0) : ex[0],
stop = ex[1],
span = stop - start,
step = nice ? d3Array.tickStep(start, stop, k) : (span / (k + 1));
return d3Array.range(step, stop, step);
};
}
/**
* Generate isocontours (level sets) based on input raster grid data.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {function(object): *} [params.field] - The field with raster grid
* data. If unspecified, the tuple itself is interpreted as a raster grid.
* @param {Array<number>} [params.thresholds] - Contour threshold array. If
* specified, the levels, nice, resolve, and zero parameters are ignored.
* @param {number} [params.levels] - The desired number of contour levels.
* @param {boolean} [params.nice] - Boolean flag indicating if the contour
* threshold values should be automatically aligned to "nice"
* human-friendly values. Setting this flag may cause the number of
* thresholds to deviate from the specified levels.
* @param {string} [params.resolve] - The method for resolving thresholds
* across multiple input grids. If 'independent' (the default), threshold
* calculation will be performed separately for each grid. If 'shared', a
* single set of threshold values will be used for all input grids.
* @param {boolean} [params.zero] - Boolean flag indicating if the contour
* threshold values should include zero.
* @param {boolean} [params.smooth] - Boolean flag indicating if the contour
* polygons should be smoothed using linear interpolation. The default is
* true. The parameter is ignored when using density estimation.
* @param {boolean} [params.scale] - Optional numerical value by which to
* scale the output isocontour coordinates. This parameter can be useful
* to scale the contours to match a desired output resolution.
* @param {string} [params.as='contour'] - The output field in which to store
* the generated isocontour data (default 'contour').
*/
function Isocontour(params) {
vegaDataflow.Transform.call(this, null, params);
}
Isocontour.Definition = {
"type": "Isocontour",
"metadata": {"generates": true},
"params": [
{ "name": "field", "type": "field" },
{ "name": "thresholds", "type": "number", "array": true },
{ "name": "levels", "type": "number" },
{ "name": "nice", "type": "boolean", "default": false },
{ "name": "resolve", "type": "enum", "values": ["shared", "independent"], "default": "independent" },
{ "name": "zero", "type": "boolean", "default": true },
{ "name": "smooth", "type": "boolean", "default": true },
{ "name": "scale", "type": "number", "expr": true },
{ "name": "translate", "type": "number", "array": true, "expr": true },
{ "name": "as", "type": "string", "null": true, "default": "contour" }
]
};
var prototype = vegaUtil.inherits(Isocontour, vegaDataflow.Transform);
prototype.transform = function(_, pulse) {
if (this.value && !pulse.changed() && !_.modified()) {
return pulse.StopPropagation;
}
var out = pulse.fork(pulse.NO_SOURCE | pulse.NO_FIELDS),
source = pulse.materialize(pulse.SOURCE).source,
field = _.field || vegaUtil.identity,
contour = contours().smooth(_.smooth !== false),
tz = _.thresholds || levels(source, field, _),
as = _.as === null ? null : _.as || 'contour',
values = [];
source.forEach(t => {
const grid = field(t);
// generate contour paths in GeoJSON format
const paths = contour.size([grid.width, grid.height])(
grid.values, vegaUtil.isArray(tz) ? tz : tz(grid.values)
);
// adjust contour path coordinates as needed
transformPaths(paths, grid, t, _);
// ingest; copy source data properties to output
paths.forEach(p => {
values.push(vegaDataflow.rederive(t, vegaDataflow.ingest(as != null ? {[as]: p} : p)));
});
});
if (this.value) out.rem = this.value;
this.value = out.source = out.add = values;
return out;
};
function levels(values, f, _) {
const q = quantize(_.levels || 10, _.nice, _.zero !== false);
return _.resolve !== 'shared'
? q
: q(values.map(t => d3Array.max(f(t).values)));
}
function transformPaths(paths, grid, datum, _) {
let s = _.scale || grid.scale,
t = _.translate || grid.translate;
if (vegaUtil.isFunction(s)) s = s(datum, _);
if (vegaUtil.isFunction(t)) t = t(datum, _);
if ((s === 1 || s == null) && !t) return;
const sx = (vegaUtil.isNumber(s) ? s : s[0]) || 1,
sy = (vegaUtil.isNumber(s) ? s : s[1]) || 1,
tx = t && t[0] || 0,
ty = t && t[1] || 0;
paths.forEach(transform(grid, sx, sy, tx, ty));
}
function transform(grid, sx, sy, tx, ty) {
const x1 = grid.x1 || 0,
y1 = grid.y1 || 0,
flip = sx * sy < 0;
function transformPolygon(coordinates) {
coordinates.forEach(transformRing);
}
function transformRing(coordinates) {
if (flip) coordinates.reverse(); // maintain winding order
coordinates.forEach(transformPoint);
}
function transformPoint(coordinates) {
coordinates[0] = (coordinates[0] - x1) * sx + tx;
coordinates[1] = (coordinates[1] - y1) * sy + ty;
}
return function(geometry) {
geometry.coordinates.forEach(transformPolygon);
return geometry;
};
}
function radius(bw, data, f) {
const v = bw >= 0 ? bw : vegaStatistics.bandwidthNRD(data, f);
return Math.round((Math.sqrt(4 * v * v + 1) - 1) / 2);
}
function number(_) {
return vegaUtil.isFunction(_) ? _ : vegaUtil.constant(+_);
}
// Implementation adapted from d3/d3-contour. Thanks!
function density2D() {
var x = d => d[0],
y = d => d[1],
weight = vegaUtil.one,
bandwidth = [-1, -1],
dx = 960,
dy = 500,
k = 2; // log2(cellSize)
function density(data, counts) {
const rx = radius(bandwidth[0], data, x) >> k, // blur x-radius
ry = radius(bandwidth[1], data, y) >> k, // blur y-radius
ox = rx ? rx + 2 : 0, // x-offset padding for blur
oy = ry ? ry + 2 : 0, // y-offset padding for blur
n = 2 * ox + (dx >> k), // grid width
m = 2 * oy + (dy >> k), // grid height
values0 = new Float32Array(n * m),
values1 = new Float32Array(n * m);
let values = values0;
data.forEach(d => {
const xi = ox + (+x(d) >> k),
yi = oy + (+y(d) >> k);
if (xi >= 0 && xi < n && yi >= 0 && yi < m) {
values0[xi + yi * n] += +weight(d);
}
});
if (rx > 0 && ry > 0) {
blurX(n, m, values0, values1, rx);
blurY(n, m, values1, values0, ry);
blurX(n, m, values0, values1, rx);
blurY(n, m, values1, values0, ry);
blurX(n, m, values0, values1, rx);
blurY(n, m, values1, values0, ry);
} else if (rx > 0) {
blurX(n, m, values0, values1, rx);
blurX(n, m, values1, values0, rx);
blurX(n, m, values0, values1, rx);
values = values1;
} else if (ry > 0) {
blurY(n, m, values0, values1, ry);
blurY(n, m, values1, values0, ry);
blurY(n, m, values0, values1, ry);
values = values1;
}
// scale density estimates
// density in points per square pixel or probability density
let s = counts ? Math.pow(2, -2 * k) : 1 / d3Array.sum(values);
for (let i=0, sz=n*m; i<sz; ++i) values[i] *= s;
return {
values: values,
scale: 1 << k,
width: n,
height: m,
x1: ox,
y1: oy,
x2: ox + (dx >> k),
y2: oy + (dy >> k)
};
}
density.x = function(_) {
return arguments.length ? (x = number(_), density) : x;
};
density.y = function(_) {
return arguments.length ? (y = number(_), density) : y;
};
density.weight = function(_) {
return arguments.length ? (weight = number(_), density) : weight;
};
density.size = function(_) {
if (!arguments.length) return [dx, dy];
var _0 = Math.ceil(_[0]), _1 = Math.ceil(_[1]);
if (!(_0 >= 0) && !(_0 >= 0)) vegaUtil.error('invalid size');
return dx = _0, dy = _1, density;
};
density.cellSize = function(_) {
if (!arguments.length) return 1 << k;
if (!((_ = +_) >= 1)) vegaUtil.error('invalid cell size');
k = Math.floor(Math.log(_) / Math.LN2);
return density;
};
density.bandwidth = function(_) {
if (!arguments.length) return bandwidth;
_ = vegaUtil.array(_);
if (_.length === 1) _ = [+_[0], +_[0]];
if (_.length !== 2) vegaUtil.error('invalid bandwidth');
return bandwidth = _, density;
};
return density;
}
function blurX(n, m, source, target, r) {
const w = (r << 1) + 1;
for (let j = 0; j < m; ++j) {
for (let i = 0, sr = 0; i < n + r; ++i) {
if (i < n) {
sr += source[i + j * n];
}
if (i >= r) {
if (i >= w) {
sr -= source[i - w + j * n];
}
target[i - r + j * n] = sr / Math.min(i + 1, n - 1 + w - i, w);
}
}
}
}
function blurY(n, m, source, target, r) {
const w = (r << 1) + 1;
for (let i = 0; i < n; ++i) {
for (let j = 0, sr = 0; j < m + r; ++j) {
if (j < m) {
sr += source[i + j * n];
}
if (j >= r) {
if (j >= w) {
sr -= source[i + (j - w) * n];
}
target[i + (j - r) * n] = sr / Math.min(j + 1, m - 1 + w - j, w);
}
}
}
}
/**
* Perform 2D kernel-density estimation of point data.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {Array<number>} params.size - The [width, height] extent (in
* units of input pixels) over which to perform density estimation.
* @param {function(object): number} params.x - The x-coordinate accessor.
* @param {function(object): number} params.y - The y-coordinate accessor.
* @param {function(object): number} [params.weight] - The weight accessor.
* @param {Array<function(object): *>} [params.groupby] - An array of accessors
* to groupby.
* @param {number} [params.cellSize] - Contour density calculation cell size.
* This parameter determines the level of spatial approximation. For example,
* the default value of 4 maps to 2x reductions in both x- and y- dimensions.
* A value of 1 will result in an output raster grid whose dimensions exactly
* matches the size parameter.
* @param {Array<number>} [params.bandwidth] - The KDE kernel bandwidths,
* in pixels. The input can be a two-element array specifying separate
* x and y bandwidths, or a single-element array specifying both. If the
* bandwidth is unspecified or less than zero, the bandwidth will be
* automatically determined.
* @param {boolean} [params.counts=false] - A boolean flag indicating if the
* output values should be probability estimates (false, default) or
* smoothed counts (true).
* @param {string} [params.as='grid'] - The output field in which to store
* the generated raster grid (default 'grid').
*/
function KDE2D(params) {
vegaDataflow.Transform.call(this, null, params);
}
KDE2D.Definition = {
"type": "KDE2D",
"metadata": {"generates": true},
"params": [
{ "name": "size", "type": "number", "array": true, "length": 2, "required": true },
{ "name": "x", "type": "field", "required": true },
{ "name": "y", "type": "field", "required": true },
{ "name": "weight", "type": "field" },
{ "name": "groupby", "type": "field", "array": true },
{ "name": "cellSize", "type": "number" },
{ "name": "bandwidth", "type": "number", "array": true, "length": 2 },
{ "name": "counts", "type": "boolean", "default": false },
{ "name": "as", "type": "string", "default": "grid"}
]
};
var prototype$1 = vegaUtil.inherits(KDE2D, vegaDataflow.Transform);
const PARAMS = ['x', 'y', 'weight', 'size', 'cellSize', 'bandwidth'];
function params(obj, _) {
PARAMS.forEach(param => _[param] != null ? obj[param](_[param]) : 0);
return obj;
}
prototype$1.transform = function(_, pulse) {
if (this.value && !pulse.changed() && !_.modified())
return pulse.StopPropagation;
var out = pulse.fork(pulse.NO_SOURCE | pulse.NO_FIELDS),
source = pulse.materialize(pulse.SOURCE).source,
groups = partition(source, _.groupby),
names = (_.groupby || []).map(vegaUtil.accessorName),
kde = params(density2D(), _),
as = _.as || 'grid',
values = [];
function set(t, vals) {
for (let i=0; i<names.length; ++i) t[names[i]] = vals[i];
return t;
}
// generate density raster grids
values = groups.map(g => vegaDataflow.ingest(
set({[as]: kde(g, _.counts)}, g.dims)
));
if (this.value) out.rem = this.value;
this.value = out.source = out.add = values;
return out;
};
function partition(data, groupby) {
var groups = [],
get = f => f(t),
map, i, n, t, k, g;
// partition data points into groups
if (groupby == null) {
groups.push(data);
} else {
for (map={}, i=0, n=data.length; i<n; ++i) {
t = data[i];
k = groupby.map(get);
g = map[k];
if (!g) {
map[k] = (g = []);
g.dims = k;
groups.push(g);
}
g.push(t);
}
}
return groups;
}
/**
* Generate contours based on kernel-density estimation of point data.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {Array<number>} params.size - The dimensions [width, height] over which to compute contours.
* If the values parameter is provided, this must be the dimensions of the input data.
* If density estimation is performed, this is the output view dimensions in pixels.
* @param {Array<number>} [params.values] - An array of numeric values representing an
* width x height grid of values over which to compute contours. If unspecified, this
* transform will instead attempt to compute contours for the kernel density estimate
* using values drawn from data tuples in the input pulse.
* @param {function(object): number} [params.x] - The pixel x-coordinate accessor for density estimation.
* @param {function(object): number} [params.y] - The pixel y-coordinate accessor for density estimation.
* @param {function(object): number} [params.weight] - The data point weight accessor for density estimation.
* @param {number} [params.cellSize] - Contour density calculation cell size.
* @param {number} [params.bandwidth] - Kernel density estimation bandwidth.
* @param {Array<number>} [params.thresholds] - Contour threshold array. If
* this parameter is set, the count and nice parameters will be ignored.
* @param {number} [params.count] - The desired number of contours.
* @param {boolean} [params.nice] - Boolean flag indicating if the contour
* threshold values should be automatically aligned to "nice"
* human-friendly values. Setting this flag may cause the number of
* thresholds to deviate from the specified count.
* @param {boolean} [params.smooth] - Boolean flag indicating if the contour
* polygons should be smoothed using linear interpolation. The default is
* true. The parameter is ignored when using density estimation.
*/
function Contour(params) {
vegaDataflow.Transform.call(this, null, params);
}
Contour.Definition = {
"type": "Contour",
"metadata": {"generates": true},
"params": [
{ "name": "size", "type": "number", "array": true, "length": 2, "required": true },
{ "name": "values", "type": "number", "array": true },
{ "name": "x", "type": "field" },
{ "name": "y", "type": "field" },
{ "name": "weight", "type": "field" },
{ "name": "cellSize", "type": "number" },
{ "name": "bandwidth", "type": "number" },
{ "name": "count", "type": "number" },
{ "name": "nice", "type": "boolean", "default": false },
{ "name": "thresholds", "type": "number", "array": true },
{ "name": "smooth", "type": "boolean", "default": true }
]
};
var prototype$2 = vegaUtil.inherits(Contour, vegaDataflow.Transform);
prototype$2.transform = function(_, pulse) {
if (this.value && !pulse.changed() && !_.modified()) {
return pulse.StopPropagation;
}
var out = pulse.fork(pulse.NO_SOURCE | pulse.NO_FIELDS),
contour = contours().smooth(_.smooth !== false),
values = _.values,
thresh = _.thresholds || quantize(_.count || 10, _.nice, !!values),
size = _.size, grid, post;
if (!values) {
values = pulse.materialize(pulse.SOURCE).source;
grid = params(density2D(), _)(values, true);
post = transform(grid, grid.scale || 1, grid.scale || 1, 0, 0);
size = [grid.width, grid.height];
values = grid.values;
}
thresh = vegaUtil.isArray(thresh) ? thresh : thresh(values);
values = contour.size(size)(values, thresh);
if (post) values.forEach(post);
if (this.value) out.rem = this.value;
this.value = out.source = out.add = (values || []).map(vegaDataflow.ingest);
return out;
};
var Feature = 'Feature';
var FeatureCollection = 'FeatureCollection';
var MultiPoint = 'MultiPoint';
/**
* Consolidate an array of [longitude, latitude] points or GeoJSON features
* into a combined GeoJSON object. This transform is particularly useful for
* combining geo data for a Projection's fit argument. The resulting GeoJSON
* data is available as this transform's value. Input pulses are unchanged.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {Array<function(object): *>} [params.fields] - A two-element array
* of field accessors for the longitude and latitude values.
* @param {function(object): *} params.geojson - A field accessor for
* retrieving GeoJSON feature data.
*/
function GeoJSON(params) {
vegaDataflow.Transform.call(this, null, params);
}
GeoJSON.Definition = {
"type": "GeoJSON",
"metadata": {},
"params": [
{ "name": "fields", "type": "field", "array": true, "length": 2 },
{ "name": "geojson", "type": "field" },
]
};
var prototype$3 = vegaUtil.inherits(GeoJSON, vegaDataflow.Transform);
prototype$3.transform = function(_, pulse) {
var features = this._features,
points = this._points,
fields = _.fields,
lon = fields && fields[0],
lat = fields && fields[1],
geojson = _.geojson || (!fields && vegaUtil.identity),
flag = pulse.ADD,
mod;
mod = _.modified()
|| pulse.changed(pulse.REM)
|| pulse.modified(vegaUtil.accessorFields(geojson))
|| (lon && (pulse.modified(vegaUtil.accessorFields(lon))))
|| (lat && (pulse.modified(vegaUtil.accessorFields(lat))));
if (!this.value || mod) {
flag = pulse.SOURCE;
this._features = (features = []);
this._points = (points = []);
}
if (geojson) {
pulse.visit(flag, function(t) {
features.push(geojson(t));
});
}
if (lon && lat) {
pulse.visit(flag, function(t) {
var x = lon(t),
y = lat(t);
if (x != null && y != null && (x = +x) === x && (y = +y) === y) {
points.push([x, y]);
}
});
features = features.concat({
type: Feature,
geometry: {
type: MultiPoint,
coordinates: points
}
});
}
this.value = {
type: FeatureCollection,
features: features
};
};
/**
* Map GeoJSON data to an SVG path string.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {function(number, number): *} params.projection - The cartographic
* projection to apply.
* @param {function(object): *} [params.field] - The field with GeoJSON data,
* or null if the tuple itself is a GeoJSON feature.
* @param {string} [params.as='path'] - The output field in which to store
* the generated path data (default 'path').
*/
function GeoPath(params) {
vegaDataflow.Transform.call(this, null, params);
}
GeoPath.Definition = {
"type": "GeoPath",
"metadata": {"modifies": true},
"params": [
{ "name": "projection", "type": "projection" },
{ "name": "field", "type": "field" },
{ "name": "pointRadius", "type": "number", "expr": true },
{ "name": "as", "type": "string", "default": "path" }
]
};
var prototype$4 = vegaUtil.inherits(GeoPath, vegaDataflow.Transform);
prototype$4.transform = function(_, pulse) {
var out = pulse.fork(pulse.ALL),
path = this.value,
field = _.field || vegaUtil.identity,
as = _.as || 'path',
flag = out.SOURCE;
function set(t) { t[as] = path(field(t)); }
if (!path || _.modified()) {
// parameters updated, reset and reflow
this.value = path = vegaProjection.getProjectionPath(_.projection);
out.materialize().reflow();
} else {
flag = field === vegaUtil.identity || pulse.modified(field.fields)
? out.ADD_MOD
: out.ADD;
}
var prev = initPath(path, _.pointRadius);
out.visit(flag, set);
path.pointRadius(prev);
return out.modifies(as);
};
function initPath(path, pointRadius) {
var prev = path.pointRadius();
path.context(null);
if (pointRadius != null) {
path.pointRadius(pointRadius);
}
return prev;
}
/**
* Geo-code a longitude/latitude point to an x/y coordinate.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {function(number, number): *} params.projection - The cartographic
* projection to apply.
* @param {Array<function(object): *>} params.fields - A two-element array of
* field accessors for the longitude and latitude values.
* @param {Array<string>} [params.as] - A two-element array of field names
* under which to store the result. Defaults to ['x','y'].
*/
function GeoPoint(params) {
vegaDataflow.Transform.call(this, null, params);
}
GeoPoint.Definition = {
"type": "GeoPoint",
"metadata": {"modifies": true},
"params": [
{ "name": "projection", "type": "projection", "required": true },
{ "name": "fields", "type": "field", "array": true, "required": true, "length": 2 },
{ "name": "as", "type": "string", "array": true, "length": 2, "default": ["x", "y"] }
]
};
var prototype$5 = vegaUtil.inherits(GeoPoint, vegaDataflow.Transform);
prototype$5.transform = function(_, pulse) {
var proj = _.projection,
lon = _.fields[0],
lat = _.fields[1],
as = _.as || ['x', 'y'],
x = as[0],
y = as[1],
mod;
function set(t) {
var xy = proj([lon(t), lat(t)]);
if (xy) {
t[x] = xy[0];
t[y] = xy[1];
} else {
t[x] = undefined;
t[y] = undefined;
}
}
if (_.modified()) {
// parameters updated, reflow
pulse = pulse.materialize().reflow(true).visit(pulse.SOURCE, set);
} else {
mod = pulse.modified(lon.fields) || pulse.modified(lat.fields);
pulse.visit(mod ? pulse.ADD_MOD : pulse.ADD, set);
}
return pulse.modifies(as);
};
/**
* Annotate items with a geopath shape generator.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {function(number, number): *} params.projection - The cartographic
* projection to apply.
* @param {function(object): *} [params.field] - The field with GeoJSON data,
* or null if the tuple itself is a GeoJSON feature.
* @param {string} [params.as='shape'] - The output field in which to store
* the generated path data (default 'shape').
*/
function GeoShape(params) {
vegaDataflow.Transform.call(this, null, params);
}
GeoShape.Definition = {
"type": "GeoShape",
"metadata": {"modifies": true, "nomod": true},
"params": [
{ "name": "projection", "type": "projection" },
{ "name": "field", "type": "field", "default": "datum" },
{ "name": "pointRadius", "type": "number", "expr": true },
{ "name": "as", "type": "string", "default": "shape" }
]
};
var prototype$6 = vegaUtil.inherits(GeoShape, vegaDataflow.Transform);
prototype$6.transform = function(_, pulse) {
var out = pulse.fork(pulse.ALL),
shape = this.value,
as = _.as || 'shape',
flag = out.ADD;
if (!shape || _.modified()) {
// parameters updated, reset and reflow
this.value = shape = shapeGenerator(
vegaProjection.getProjectionPath(_.projection),
_.field || vegaUtil.field('datum'),
_.pointRadius
);
out.materialize().reflow();
flag = out.SOURCE;
}
out.visit(flag, function(t) { t[as] = shape; });
return out.modifies(as);
};
function shapeGenerator(path, field, pointRadius) {
var shape = pointRadius == null
? function(_) { return path(field(_)); }
: function(_) {
var prev = path.pointRadius(),
value = path.pointRadius(pointRadius)(field(_));
path.pointRadius(prev);
return value;
};
shape.context = function(_) {
path.context(_);
return shape;
};
return shape;
}
/**
* GeoJSON feature generator for creating graticules.
* @constructor
*/
function Graticule(params) {
vegaDataflow.Transform.call(this, [], params);
this.generator = d3Geo.geoGraticule();
}
Graticule.Definition = {
"type": "Graticule",
"metadata": {"changes": true, "generates": true},
"params": [
{ "name": "extent", "type": "array", "array": true, "length": 2,
"content": {"type": "number", "array": true, "length": 2} },
{ "name": "extentMajor", "type": "array", "array": true, "length": 2,
"content": {"type": "number", "array": true, "length": 2} },
{ "name": "extentMinor", "type": "array", "array": true, "length": 2,
"content": {"type": "number", "array": true, "length": 2} },
{ "name": "step", "type": "number", "array": true, "length": 2 },
{ "name": "stepMajor", "type": "number", "array": true, "length": 2, "default": [90, 360] },
{ "name": "stepMinor", "type": "number", "array": true, "length": 2, "default": [10, 10] },
{ "name": "precision", "type": "number", "default": 2.5 }
]
};
var prototype$7 = vegaUtil.inherits(Graticule, vegaDataflow.Transform);
prototype$7.transform = function(_, pulse) {
var src = this.value,
gen = this.generator, t;
if (!src.length || _.modified()) {
for (var prop in _) {
if (vegaUtil.isFunction(gen[prop])) {
gen[prop](_[prop]);
}
}
}
t = gen();
if (src.length) {
pulse.mod.push(vegaDataflow.replace(src[0], t));
} else {
pulse.add.push(vegaDataflow.ingest(t));
}
src[0] = t;
return pulse;
};
/**
* Render a heatmap image for input raster grid data.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {function(object): *} [params.field] - The field with raster grid
* data. If unspecified, the tuple itself is interpreted as a raster grid.
* @param {string} [params.color] - A constant color value or function for
* individual pixel color. If a function, it will be invoked with an input
* object that includes $x, $y, $value, and $max fields for the grid.
* @param {number} [params.opacity] - A constant opacity value or function for
* individual pixel opacity. If a function, it will be invoked with an input
* object that includes $x, $y, $value, and $max fields for the grid.
* @param {string} [params.resolve] - The method for resolving maximum values
* across multiple input grids. If 'independent' (the default), maximum
* calculation will be performed separately for each grid. If 'shared',
* a single global maximum will be used for all input grids.
* @param {string} [params.as='image'] - The output field in which to store
* the generated bitmap canvas images (default 'image').
*/
function Heatmap(params) {
vegaDataflow.Transform.call(this, null, params);
}
Heatmap.Definition = {
"type": "heatmap",
"metadata": {"modifies": true},
"params": [
{ "name": "field", "type": "field" },
{ "name": "color", "type": "string", "expr": true},
{ "name": "opacity", "type": "number", "expr": true},
{ "name": "resolve", "type": "enum", "values": ["shared", "independent"], "default": "independent" },
{ "name": "as", "type": "string", "default": "image" }
]
};
var prototype$8 = vegaUtil.inherits(Heatmap, vegaDataflow.Transform);
prototype$8.transform = function(_, pulse) {
if (!pulse.changed() && !_.modified()) {
return pulse.StopPropagation;
}
var source = pulse.materialize(pulse.SOURCE).source,
shared = _.resolve === 'shared',
field = _.field || vegaUtil.identity,
opacity = opacity_(_.opacity, _),
color = color_(_.color, _),
as = _.as || 'image',
obj = {
$x: 0, $y: 0, $value: 0,
$max: shared ? d3Array.max(source.map(t => d3Array.max(field(t).values))) : 0
};
source.forEach(t => {
const v = field(t);
// build proxy data object
const o = vegaUtil.extend({}, t, obj);
// set maximum value if not globally shared
if (!shared) o.$max = d3Array.max(v.values || []);
// generate canvas image
// optimize color/opacity if not pixel-dependent
t[as] = toCanvas(v, o,
color.dep ? color : vegaUtil.constant(color(o)),
opacity.dep ? opacity : vegaUtil.constant(opacity(o))
);
});
return pulse.reflow(true).modifies(as);
};
// get image color function
function color_(color, _) {
let f;
if (vegaUtil.isFunction(color)) {
f = obj => d3Color.rgb(color(obj, _));
f.dep = dependency(color);
} else {
// default to mid-grey
f = vegaUtil.constant(d3Color.rgb(color || '#888'));
}
return f;
}
// get image opacity function
function opacity_(opacity, _) {
let f;
if (vegaUtil.isFunction(opacity)) {
f = obj => opacity(obj, _);
f.dep = dependency(opacity);
} else if (opacity) {
f = vegaUtil.constant(opacity);
} else {
// default to [0, max] opacity gradient
f = obj => (obj.$value / obj.$max) || 0;
f.dep = true;
}
return f;
}
// check if function depends on individual pixel data
function dependency(f) {
if (!vegaUtil.isFunction(f)) return false;
const set = vegaUtil.toSet(vegaUtil.accessorFields(f));
return set.$x || set.$y || set.$value || set.$max;
}
// render raster grid to canvas
function toCanvas(grid, obj, color, opacity) {
const n = grid.width,
m = grid.height,
x1 = grid.x1 || 0,
y1 = grid.y1 || 0,
x2 = grid.x2 || n,
y2 = grid.y2 || m,
val = grid.values,
value = val ? i => val[i] : vegaUtil.zero,
can = vegaCanvas.canvas(x2 - x1, y2 - y1),
ctx = can.getContext('2d'),
img = ctx.getImageData(0, 0, x2 - x1, y2 - y1),
pix = img.data;
for (let j=y1, k=0; j<y2; ++j) {
obj.$y = j - y1;
for (let i=x1, r=j*n; i<x2; ++i, k+=4) {
obj.$x = i - x1;
obj.$value = value(i + r);
const v = color(obj);
pix[k+0] = v.r;
pix[k+1] = v.g;
pix[k+2] = v.b;
pix[k+3] = ~~(255 * opacity(obj));
}
}
ctx.putImageData(img, 0, 0);
return can;
}
/**
* Maintains a cartographic projection.
* @constructor
* @param {object} params - The parameters for this operator.
*/
function Projection(params) {
vegaDataflow.Transform.call(this, null, params);
this.modified(true); // always treat as modified
}
var prototype$9 = vegaUtil.inherits(Projection, vegaDataflow.Transform);
prototype$9.transform = function(_, pulse) {
var proj = this.value;
if (!proj || _.modified('type')) {
this.value = (proj = create(_.type));
vegaProjection.projectionProperties.forEach(function(prop) {
if (_[prop] != null) set(proj, prop, _[prop]);
});
} else {
vegaProjection.projectionProperties.forEach(function(prop) {
if (_.modified(prop)) set(proj, prop, _[prop]);
});
}
if (_.pointRadius != null) proj.path.pointRadius(_.pointRadius);
if (_.fit) fit(proj, _);
return pulse.fork(pulse.NO_SOURCE | pulse.NO_FIELDS);
};
function fit(proj, _) {
var data = collectGeoJSON(_.fit);
_.extent ? proj.fitExtent(_.extent, data)
: _.size ? proj.fitSize(_.size, data) : 0;
}
function create(type) {
var constructor = vegaProjection.projection((type || 'mercator').toLowerCase());
if (!constructor) vegaUtil.error('Unrecognized projection type: ' + type);
return constructor();
}
function set(proj, key, value) {
if (vegaUtil.isFunction(proj[key])) proj[key](value);
}
function collectGeoJSON(data) {
data = vegaUtil.array(data);
return data.length === 1 ? data[0]
: {
type: FeatureCollection,
features: data.reduce((a, f) => a.concat(featurize(f)), [])
};
}
function featurize(f) {
return f.type === FeatureCollection
? f.features
: vegaUtil.array(f).filter(d => d != null).map(
d => d.type === Feature ? d : {type: Feature, geometry: d}
);
}
exports.contour = Contour;
exports.geojson = GeoJSON;
exports.geopath = GeoPath;
exports.geopoint = GeoPoint;
exports.geoshape = GeoShape;
exports.graticule = Graticule;
exports.heatmap = Heatmap;
exports.isocontour = Isocontour;
exports.kde2d = KDE2D;
exports.projection = Projection;
Object.defineProperty(exports, '__esModule', { value: true });
})));