StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
StackGenVis/frontend/src/components/Algorithms.vue

384 lines
14 KiB

<template>
<div>
<div id="exploding_boxplot" class="exploding_boxplot" style="min-height: 430px;"></div>
</div>
</template>
<script>
import { EventBus } from '../main.js'
import * as d3Base from 'd3'
import * as exploding_boxplot from 'd3_exploding_boxplot'
import 'd3_exploding_boxplot/src/d3_exploding_boxplot.css'
import $ from 'jquery'
// attach all d3 plugins to the d3 library
const d3 = Object.assign(d3Base)
export default {
name: 'Algorithms',
data () {
return {
PerformanceAllModels: '',
brushedBoxPl: [],
previousColor: 0,
selectedAlgorithm: 0,
AllAlgorithms: ['KNN','RF'],
KNNModels: 576, //KNN models
WH: [],
parameters: [],
algorithm1: [],
algorithm2: [],
factors: [1,1,1,1,1],
chart: '',
flagEmpty: 0,
ActiveModels: [],
}
},
methods: {
reset () {
d3.selectAll("#exploding_boxplot > *").remove()
},
boxplot () {
// reset the boxplot
d3.selectAll("#exploding_boxplot > *").remove()
// retrieve models ID
const Algor1IDs = this.PerformanceAllModels[0]
const Algor2IDs = this.PerformanceAllModels[8]
var factorsLocal = this.factors
var divide = 0
factorsLocal.forEach(element => {
divide = element + divide
});
var Mc1 = []
const performanceAlg1 = JSON.parse(this.PerformanceAllModels[6])
for (let j = 0; j < Object.values(performanceAlg1['mean_test_accuracy']).length; j++) {
let sum
sum = (factorsLocal[0] * Object.values(performanceAlg1['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlg1['mean_test_f1_macro'])[j]) + (factorsLocal[2] * Object.values(performanceAlg1['mean_test_precision'])[j]) + (factorsLocal[3] * Object.values(performanceAlg1['mean_test_recall'])[j]) + (factorsLocal[4] * Object.values(performanceAlg1['mean_test_jaccard'])[j])
Mc1.push((sum/divide)*100)
}
var Mc2 = []
const performanceAlg2 = JSON.parse(this.PerformanceAllModels[14])
for (let j = 0; j < Object.values(performanceAlg2['mean_test_accuracy']).length; j++) {
let sum2
sum2 = (factorsLocal[0] * Object.values(performanceAlg2['mean_test_accuracy'])[j]) + (factorsLocal[1] * Object.values(performanceAlg2['mean_test_f1_macro'])[j]) + (factorsLocal[2] * Object.values(performanceAlg2['mean_test_precision'])[j]) + (factorsLocal[3] * Object.values(performanceAlg2['mean_test_recall'])[j]) + (factorsLocal[4] * Object.values(performanceAlg2['mean_test_jaccard'])[j])
Mc2.push((sum2/divide)*100)
}
// retrieve the results like performance
const PerformAlgor1 = JSON.parse(this.PerformanceAllModels[1])
const PerformAlgor2 = JSON.parse(this.PerformanceAllModels[9])
// initialize/instansiate algorithms and parameters
this.algorithm1 = []
this.algorithm2 = []
this.parameters = []
for (var i = 0; i < Object.keys(PerformAlgor1['0']).length; i++) {
this.algorithm1.push({'Performance Metrics': Mc1[i],Algorithm:'KNN',Model:'Model ' + Algor1IDs[i] + '; Parameters '+JSON.stringify(Object.values(PerformAlgor1['params'])[i])+'; Performance Metrics ',ModelID:Algor1IDs[i]})
this.parameters.push(JSON.stringify(Object.values(PerformAlgor1['params'])[i]))
}
for (let j = 0; j < Object.keys(PerformAlgor2['0']).length; j++) {
this.algorithm2.push({'Performance Metrics': Mc2[j],Algorithm:'RF',Model:'Model ' + Algor2IDs[j] + '; Parameters '+JSON.stringify(Object.values(PerformAlgor2['params'])[j])+'; Performance Metrics ',ModelID:Algor2IDs[j]})
this.parameters.push(JSON.stringify(Object.values(PerformAlgor2['params'])[j]))
}
EventBus.$emit('ParametersAll', this.parameters)
// concat the data
var data = this.algorithm1.concat(this.algorithm2)
// aesthetic :
// y : point's value on y axis
// group : how to group data on x axis
// color : color of the point / boxplot
// label : displayed text in toolbox
this.chart = exploding_boxplot(data, {y:'Performance Metrics',group:'Algorithm',color:'Algorithm',label:'Model'})
this.chart.width(this.WH[0]*3) // interactive visualization
this.chart.height(this.WH[1]*0.9) // interactive visualization
//call chart on a div
this.chart('#exploding_boxplot')
// colorscale
const previousColor = ['#8dd3c7','#8da0cb']
// check for brushing
var el = document.getElementsByClassName('d3-exploding-boxplot boxcontent')
var overall = document.getElementsByClassName('overall')
this.brushStatus = document.getElementsByClassName('extent')
// on clicks
var flagEmptyKNN = 0
var flagEmptyRF = 0
el[0].onclick = function() {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point KNN')
for (let i = 0; i < allPoints.length; i++) {
allPoints[i].style.fill = previousColor[0]
allPoints[i].style.opacity = '1.0'
}
if (flagEmptyKNN == 0) {
flagEmptyKNN = 1
} else {
flagEmptyKNN = 0
}
EventBus.$emit('updateFlagKNN', flagEmptyKNN)
EventBus.$emit('PCPCall', 'KNN')
EventBus.$emit('updateBarChart', [])
}
el[1].onclick = function() {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point RF')
for (let i = 0; i < allPoints.length; i++) {
allPoints[i].style.fill = previousColor[1]
allPoints[i].style.opacity = '1.0'
}
if (flagEmptyRF == 0) {
flagEmptyRF = 1
} else {
flagEmptyRF = 0
}
EventBus.$emit('updateFlagRF', flagEmptyRF)
EventBus.$emit('PCPCall', 'RF')
EventBus.$emit('updateBarChart', [])
}
overall[0].ondblclick = function () {
flagEmptyKNN = 0
flagEmptyRF = 0
EventBus.$emit('clearPCP')
EventBus.$emit('alternateFlagLock', flagEmptyKNN)
EventBus.$emit('alternateFlagLock', flagEmptyKNN)
}
// check if brushed through all boxplots and not only one at a time
const myObserver = new ResizeObserver(entries => {
EventBus.$emit('brusheAllOn')
})
var brushRect = document.querySelector('.extent')
myObserver.observe(brushRect);
},
brushActivationAll () {
// continue here and select the correct points.
var limiter = this.chart.returnBrush()
var algorithm = []
const previousColor = ['#8dd3c7','#8da0cb']
var modelsActive = []
for (var j = 0; j < this.AllAlgorithms.length; j++) {
algorithm = []
if (this.AllAlgorithms[j] === 'KNN') {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point KNN')
algorithm = this.algorithm1
} else {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point RF')
algorithm = this.algorithm2
}
for (let k = 0; k < allPoints.length; k++) {
if (algorithm[k]['Performance Metrics'] < limiter[0] && algorithm[k]['Performance Metrics'] > limiter[1]) {
modelsActive.push(algorithm[k].ModelID)
}
}
for (let i = 0; i < allPoints.length; i++) {
if (this.AllAlgorithms[j] === 'KNN') {
allPoints[i].style.fill = previousColor[0]
} else {
allPoints[i].style.fill = previousColor[1]
}
}
if (modelsActive.length == 0) {
for (let i = 0; i < allPoints.length; i++) {
//if (modelsActive.indexOf(i) == -1) {
allPoints[i].style.fill = "#d3d3d3"
allPoints[i].style.opacity = '1.0'
//}
}
} else if (modelsActive.length == allPoints.length) {
for (let i = 0; i < allPoints.length; i++) {
if (this.AllAlgorithms[j] === 'KNN') {
allPoints[i].style.fill = previousColor[0]
allPoints[i].style.opacity = '1.0'
} else {
allPoints[i].style.fill = previousColor[1]
allPoints[i].style.opacity = '1.0'
}
}
} else {
for (let i = 0; i < allPoints.length; i++) {
allPoints[i].style.opacity = '1.0'
if (this.AllAlgorithms[j] === 'KNN') {
if (modelsActive.indexOf(i) == -1) {
allPoints[i].style.fill = "#d3d3d3"
allPoints[i].style.opacity = '0.4'
}
} else {
if (modelsActive.indexOf(i+this.KNNModels) == -1) {
allPoints[i].style.fill = "#d3d3d3"
allPoints[i].style.opacity = '0.4'
}
}
}
}
}
EventBus.$emit('sendParameters', this.parameters)
EventBus.$emit('updateActiveModels', modelsActive)
this.UpdateBarChart()
},
brushed () {
if (this.selectedAlgorithm == 'KNN') {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point KNN')
} else {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point RF')
}
const previousColor = ['#8dd3c7','#8da0cb']
var modelsActive = []
for (let j = 0; j < this.brushedBoxPl.length; j++) {
modelsActive.push(this.brushedBoxPl[j].model)
}
for (let i = 0; i < allPoints.length; i++) {
if (this.selectedAlgorithm == 'KNN') {
allPoints[i].style.fill = previousColor[0]
} else {
allPoints[i].style.fill = previousColor[1]
}
}
if (modelsActive.length == 0) {
for (let i = 0; i < allPoints.length; i++) {
//if (modelsActive.indexOf(i) == -1) {
allPoints[i].style.fill = "#d3d3d3"
allPoints[i].style.opacity = '1.0'
//}
}
} else if (modelsActive.length == allPoints.length) {
for (let i = 0; i < allPoints.length; i++) {
if (this.selectedAlgorithm == 'KNN') {
allPoints[i].style.fill = previousColor[0]
allPoints[i].style.opacity = '1.0'
} else {
allPoints[i].style.fill = previousColor[1]
allPoints[i].style.opacity = '1.0'
}
}
} else {
for (let i = 0; i < allPoints.length; i++) {
allPoints[i].style.opacity = '1.0'
if (this.selectedAlgorithm == 'KNN') {
if (modelsActive.indexOf(i) == -1) {
allPoints[i].style.fill = "#d3d3d3"
allPoints[i].style.opacity = '0.4'
}
} else {
if (modelsActive.indexOf(i+this.KNNModels) == -1) {
allPoints[i].style.fill = "#d3d3d3"
allPoints[i].style.opacity = '0.4'
}
}
}
}
EventBus.$emit('sendParameters', this.parameters)
EventBus.$emit('updateActiveModels', modelsActive)
this.UpdateBarChart()
},
UpdateBarChart () {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point')
var activeModels = []
var algorithmsSelected = []
var modelsSelected =[]
for (let i = 0; i < allPoints.length; i++) {
if (allPoints[i].style.fill != "rgb(211, 211, 211)") {
activeModels.push(allPoints[i].__data__.Model)
if (allPoints[i].__data__.Algorithm === 'KNN') {
algorithmsSelected.push('KNN')
}
else {
algorithmsSelected.push('RF')
}
}
}
if (activeModels.length == 0){
} else {
for (let i = 0; i<activeModels.length; i++) {
var array = activeModels[i].split(';')
var temp = array[0].split(' ')
modelsSelected.push(temp[1])
}
}
EventBus.$emit('updateBarChartAlgorithm', algorithmsSelected)
EventBus.$emit('updateBarChart', modelsSelected)
},
selectedPointsPerAlgorithm () {
var allPoints = document.getElementsByClassName('d3-exploding-boxplot point')
var activeModels = []
var algorithmsSelected = []
var models = []
for (let i = 0; i < allPoints.length; i++) {
if (allPoints[i].style.fill != "rgb(211, 211, 211)") {
activeModels.push(allPoints[i].__data__.Model)
if (allPoints[i].__data__.Algorithm === 'KNN') {
algorithmsSelected.push('KNN')
}
else {
algorithmsSelected.push('RF')
}
}
}
if (activeModels.length == 0){
alert('No models selected, please, retry!')
} else {
for (let i = 0; i<activeModels.length; i++) {
var array = activeModels[i].split(';')
var temp = array[0].split(' ')
models.push(temp[1])
}
EventBus.$emit('ReturningAlgorithms', algorithmsSelected)
EventBus.$emit('ReturningBrushedPointsIDs', models)
}
},
previousBoxPlotState () {
var el = document.getElementsByClassName('d3-exploding-boxplot box')
if (document.getElementById('PCP').style.display == 'none') {
} else {
if (this.selectedAlgorithm == 'KNN') {
$(el)[0].dispatchEvent(new Event('click'))
} else if (this.selectedAlgorithm == 'RF') {
$(el)[2].dispatchEvent(new Event('click'))
} else {
}
}
}
},
mounted () {
EventBus.$on('emittedEventCallingModelBrushed', this.selectedPointsPerAlgorithm)
EventBus.$on('emittedEventCallingAllAlgorithms', data => {
this.PerformanceAllModels = data})
EventBus.$on('emittedEventCallingAllAlgorithms', this.boxplot)
EventBus.$on('emittedEventCallingBrushedBoxPlot', data => {
this.brushedBoxPl = data})
EventBus.$on('emittedEventCallingBrushedBoxPlot', this.brushed),
EventBus.$on('Responsive', data => {
this.WH = data})
EventBus.$on('ResponsiveandChange', data => {
this.WH = data})
EventBus.$on('ResponsiveandChange', this.boxplot)
EventBus.$on('ResponsiveandChange', this.previousBoxPlotState)
EventBus.$on('emittedEventCallingSelectedALgorithm', data => {
this.selectedAlgorithm = data})
EventBus.$on('brusheAllOn', this.brushActivationAll)
EventBus.$on('CallFactorsView', data => { this.factors = data })
EventBus.$on('CallFactorsView', this.boxplot)
// reset the views
EventBus.$on('resetViews', this.reset)
}
}
</script>