parent 04032910a7
commit f473e54ae1
  1. BIN
      __pycache__/run.cpython-37.pyc
  2. BIN
      cachedir/joblib/run/GridSearchForModels/080d2e54a0c82b08dc590fe8fd0c0e50/output.pkl
  3. BIN
      cachedir/joblib/run/GridSearchForModels/26781766b48f23c7d17e27878821f297/output.pkl
  4. 1
      cachedir/joblib/run/GridSearchForModels/2dab796a5b751dd1136192a4c722feba/metadata.json
  5. BIN
      cachedir/joblib/run/GridSearchForModels/36dc3a0850dffe844fed9878ade921a0/output.pkl
  6. BIN
      cachedir/joblib/run/GridSearchForModels/3a13d5b70201fe9414df47025b428bbb/output.pkl
  7. BIN
      cachedir/joblib/run/GridSearchForModels/49a92b0a14ad78e0b022220570da44bd/output.pkl
  8. 1
      cachedir/joblib/run/GridSearchForModels/4d17e73710c1d8a53afd2430b1b370d4/metadata.json
  9. 1
      cachedir/joblib/run/GridSearchForModels/5621e8f8a676043bb4ef1ee18e128791/metadata.json
  10. 1
      cachedir/joblib/run/GridSearchForModels/655a6eaba76ddf35cbc9b77dd123f6d1/metadata.json
  11. 1
      cachedir/joblib/run/GridSearchForModels/66421e97b055342e7e63aae83a6e9b49/metadata.json
  12. 1
      cachedir/joblib/run/GridSearchForModels/6657b0bec5553e17d786be017af28c41/metadata.json
  13. 1
      cachedir/joblib/run/GridSearchForModels/6888817ccf76fe67584971034437f233/metadata.json
  14. BIN
      cachedir/joblib/run/GridSearchForModels/71a30e204b7f564a9970f857f81c8f4c/output.pkl
  15. BIN
      cachedir/joblib/run/GridSearchForModels/7524961f55a4c5f6a44519a30dccd14d/output.pkl
  16. 1
      cachedir/joblib/run/GridSearchForModels/7bc3e3feea131b3402478bc041615a34/metadata.json
  17. 1
      cachedir/joblib/run/GridSearchForModels/84ebbb538966f81baf960c8d388fc93c/metadata.json
  18. BIN
      cachedir/joblib/run/GridSearchForModels/8ed94d143124ddfc5c3de6619d88c674/output.pkl
  19. BIN
      cachedir/joblib/run/GridSearchForModels/91d55ca31fe5357961cc2d66be71e092/output.pkl
  20. 1
      cachedir/joblib/run/GridSearchForModels/9383e8896d95f9e1e25b608ca33e0f4e/metadata.json
  21. 1
      cachedir/joblib/run/GridSearchForModels/9bd661dd6799c27866025cbe33d490ee/metadata.json
  22. BIN
      cachedir/joblib/run/GridSearchForModels/9ef61bce076689bd316053f6cc408384/output.pkl
  23. 1
      cachedir/joblib/run/GridSearchForModels/a6e1c86dc9d3d2dbb9ca6197c70a02a9/metadata.json
  24. 1
      cachedir/joblib/run/GridSearchForModels/a81e8eef0c9ffe1e9e5b4abce8734e6a/metadata.json
  25. BIN
      cachedir/joblib/run/GridSearchForModels/b9afe8bd9b8e5855ff17f1954a58352d/output.pkl
  26. BIN
      cachedir/joblib/run/GridSearchForModels/ba1572a730b7b844e18b4c011a90a1cf/output.pkl
  27. 1
      cachedir/joblib/run/GridSearchForModels/bf24ce01a584b3438fbe38db27ba4cb3/metadata.json
  28. BIN
      cachedir/joblib/run/GridSearchForModels/c1c4b8e15fbffda75f2a4e9b9c95a524/output.pkl
  29. 1
      cachedir/joblib/run/GridSearchForModels/cf0ae38b4bb89b5de87ad55391a2c7cc/metadata.json
  30. 1
      cachedir/joblib/run/GridSearchForModels/cf6f6e78139c8ececc1cf7153490b24e/metadata.json
  31. 1
      cachedir/joblib/run/GridSearchForModels/d78502de08280e049410df0468e4cbab/metadata.json
  32. BIN
      cachedir/joblib/run/GridSearchForModels/d8817201a7a5f1c46da12fe70f404cf7/output.pkl
  33. 1
      cachedir/joblib/run/GridSearchForModels/d9cde41ca9be0fa46db6fe8a2c9b1d95/metadata.json
  34. 1
      cachedir/joblib/run/GridSearchForModels/dd8a1a124ca8df93a97ca4907bb5f007/metadata.json
  35. 1
      cachedir/joblib/run/GridSearchForModels/e0084a6c27d4b1128d4c84c200c7eefc/metadata.json
  36. BIN
      cachedir/joblib/run/GridSearchForModels/e1b0b2c6e9fb572358dcbfefd683ccd8/output.pkl
  37. 1
      cachedir/joblib/run/GridSearchForModels/e5db528caeaab8ad160eeaacffdd005c/metadata.json
  38. BIN
      cachedir/joblib/run/GridSearchForModels/e64ecf2db33835821c24d2f8aa8e02e6/output.pkl
  39. BIN
      cachedir/joblib/run/GridSearchForModels/e7b651673c69975a77ead47ba07521ed/output.pkl
  40. 1
      cachedir/joblib/run/GridSearchForModels/f1e1aa42dd34b354614621ec4f062fdf/metadata.json
  41. 5
      cachedir/joblib/run/GridSearchForModels/func_code.py
  42. 3
      frontend/src/components/Algorithms.vue
  43. 6
      frontend/src/components/BarChart.vue
  44. 2
      frontend/src/components/DataSetExecController.vue
  45. 21
      frontend/src/components/DataSpace.vue
  46. 4
      frontend/src/components/Heatmap.vue
  47. 11
      frontend/src/components/Main.vue
  48. 21
      frontend/src/components/PCPData.vue
  49. 3
      frontend/src/components/PerMetricBarChart.vue
  50. 7
      frontend/src/components/PredictionsSpace.vue
  51. 40
      frontend/src/components/Provenance.vue
  52. 65
      frontend/src/components/ScatterPlot.vue
  53. 5
      insertMongo.py
  54. 105
      run.py

Binary file not shown.

@ -0,0 +1 @@
{"duration": 832.7775752544403, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=42, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "2446", "toggle": "1"}}

@ -0,0 +1 @@
{"duration": 102.7560932636261, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "QuadraticDiscriminantAnalysis(priors=None, reg_param=0.98,\n store_covariance=False, tol=0.00081)", "params": "{'reg_param': [0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.62, 0.64, 0.66, 0.68, 0.7000000000000001, 0.72, 0.74, 0.76, 0.78, 0.8, 0.8200000000000001, 0.84, 0.86, 0.88, 0.9, 0.92, 0.9400000000000001, 0.96, 0.98], 'tol': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001]}", "eachAlgor": "'QDA'", "AlgorithmsIDsEnd": "2196", "toggle": "1"}}

@ -0,0 +1 @@
{"duration": 868.6400482654572, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "GradientBoostingClassifier(ccp_alpha=0.0, criterion='mae', init=None,\n learning_rate=0.12, loss='deviance', max_depth=3,\n max_features=None, max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=114,\n n_iter_no_change=None, presort='deprecated',\n random_state=42, subsample=1.0, tol=0.0001,\n validation_fraction=0.1, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "2926", "toggle": "1"}}

@ -1 +0,0 @@
{"duration": 78.71004891395569, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0", "toggle": "0"}}

@ -1 +0,0 @@
{"duration": 73.19320917129517, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=1.925, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=200,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=42, solver='saga', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [0.5, 0.575, 0.6499999999999999, 0.7249999999999999, 0.7999999999999998, 0.8749999999999998, 0.9499999999999997, 1.0249999999999997, 1.0999999999999996, 1.1749999999999996, 1.2499999999999996, 1.3249999999999995, 1.3999999999999995, 1.4749999999999994, 1.5499999999999994, 1.6249999999999993, 1.6999999999999993, 1.7749999999999992, 1.8499999999999992, 1.9249999999999992], 'max_iter': [50, 100, 150, 200], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "1356", "toggle": "0"}}

@ -1 +0,0 @@
{"duration": 467.56045484542847, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "SVC(C=4.39, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,\n decision_function_shape='ovr', degree=3, gamma='scale', kernel='sigmoid',\n max_iter=-1, probability=True, random_state=42, shrinking=True, tol=0.001,\n verbose=False)", "params": "{'C': [0.1, 0.21000000000000002, 0.32000000000000006, 0.43000000000000005, 0.54, 0.65, 0.7600000000000001, 0.8700000000000001, 0.9800000000000001, 1.09, 1.2000000000000002, 1.3100000000000003, 1.4200000000000004, 1.5300000000000002, 1.6400000000000003, 1.7500000000000002, 1.8600000000000003, 1.9700000000000004, 2.08, 2.1900000000000004, 2.3000000000000003, 2.4100000000000006, 2.5200000000000005, 2.6300000000000003, 2.7400000000000007, 2.8500000000000005, 2.9600000000000004, 3.0700000000000003, 3.1800000000000006, 3.2900000000000005, 3.4000000000000004, 3.5100000000000007, 3.6200000000000006, 3.7300000000000004, 3.8400000000000007, 3.9500000000000006, 4.0600000000000005, 4.17, 4.28, 4.390000000000001], 'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}", "eachAlgor": "'SVC'", "AlgorithmsIDsEnd": "576", "toggle": "0"}}

@ -1 +0,0 @@
{"duration": 71.4727611541748, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=42, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'ExtraT'", "AlgorithmsIDsEnd": "2606", "toggle": "0"}}

@ -0,0 +1 @@
{"duration": 296.77316904067993, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LogisticRegression(C=1.925, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=200,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=42, solver='saga', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [0.5, 0.575, 0.6499999999999999, 0.7249999999999999, 0.7999999999999998, 0.8749999999999998, 0.9499999999999997, 1.0249999999999997, 1.0999999999999996, 1.1749999999999996, 1.2499999999999996, 1.3249999999999995, 1.3999999999999995, 1.4749999999999994, 1.5499999999999994, 1.6249999999999993, 1.6999999999999993, 1.7749999999999992, 1.8499999999999992, 1.9249999999999992], 'max_iter': [50, 100, 150, 200], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "1356", "toggle": "1"}}

@ -0,0 +1 @@
{"duration": 344.13988876342773, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0", "toggle": "1"}}

File diff suppressed because one or more lines are too long

@ -0,0 +1 @@
{"duration": 296.7395670413971, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "MLPClassifier(activation='tanh', alpha=0.00081, batch_size='auto', beta_1=0.9,\n beta_2=0.999, early_stopping=False, epsilon=1e-08,\n hidden_layer_sizes=(100,), learning_rate='constant',\n learning_rate_init=0.001, max_fun=15000, max_iter=100,\n momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,\n power_t=0.5, random_state=42, shuffle=True, solver='sgd',\n tol=0.00081, validation_fraction=0.1, verbose=False,\n warm_start=False)", "params": "{'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "1236", "toggle": "1"}}

@ -1 +0,0 @@
{"duration": 17.923527240753174, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=0.99,\n solver='eigen', store_covariance=False, tol=0.0001)", "params": "{'shrinkage': [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35000000000000003, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41000000000000003, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47000000000000003, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.5700000000000001, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.6900000000000001, 0.7000000000000001, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.8200000000000001, 0.8300000000000001, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.9400000000000001, 0.9500000000000001, 0.96, 0.97, 0.98, 0.99], 'solver': ['lsqr', 'eigen']}", "eachAlgor": "'LDA'", "AlgorithmsIDsEnd": "1996", "toggle": "0"}}

@ -0,0 +1 @@
{"duration": 492.5374879837036, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=1.2,\n n_estimators=79, random_state=42)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], 'learning_rate': [0.1, 1.2000000000000002], 'algorithm': ['SAMME.R', 'SAMME']}", "eachAlgor": "'AdaB'", "AlgorithmsIDsEnd": "2766", "toggle": "1"}}

@ -1 +0,0 @@
{"duration": 37.2480902671814, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(activation='tanh', alpha=0.00081, batch_size='auto', beta_1=0.9,\n beta_2=0.999, early_stopping=False, epsilon=1e-08,\n hidden_layer_sizes=(100,), learning_rate='constant',\n learning_rate_init=0.001, max_fun=15000, max_iter=100,\n momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,\n power_t=0.5, random_state=42, shuffle=True, solver='sgd',\n tol=0.00081, validation_fraction=0.1, verbose=False,\n warm_start=False)", "params": "{'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "1236", "toggle": "0"}}

@ -1 +0,0 @@
{"duration": 97.17991495132446, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(ccp_alpha=0.0, criterion='mae', init=None,\n learning_rate=0.12, loss='deviance', max_depth=3,\n max_features=None, max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=114,\n n_iter_no_change=None, presort='deprecated',\n random_state=42, subsample=1.0, tol=0.0001,\n validation_fraction=0.1, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "2926", "toggle": "0"}}

@ -0,0 +1 @@
{"duration": 84.61651301383972, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=0.99,\n solver='eigen', store_covariance=False, tol=0.0001)", "params": "{'shrinkage': [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35000000000000003, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41000000000000003, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47000000000000003, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.5700000000000001, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.6900000000000001, 0.7000000000000001, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.8200000000000001, 0.8300000000000001, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.9400000000000001, 0.9500000000000001, 0.96, 0.97, 0.98, 0.99], 'solver': ['lsqr', 'eigen']}", "eachAlgor": "'LDA'", "AlgorithmsIDsEnd": "1996", "toggle": "1"}}

File diff suppressed because one or more lines are too long

@ -1 +0,0 @@
{"duration": 23.4118230342865, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "QuadraticDiscriminantAnalysis(priors=None, reg_param=0.98,\n store_covariance=False, tol=0.00081)", "params": "{'reg_param': [0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.62, 0.64, 0.66, 0.68, 0.7000000000000001, 0.72, 0.74, 0.76, 0.78, 0.8, 0.8200000000000001, 0.84, 0.86, 0.88, 0.9, 0.92, 0.9400000000000001, 0.96, 0.98], 'tol': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001]}", "eachAlgor": "'QDA'", "AlgorithmsIDsEnd": "2196", "toggle": "0"}}

@ -1 +0,0 @@
{"duration": 83.83173704147339, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=42, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "2446", "toggle": "0"}}

@ -0,0 +1 @@
{"duration": 585.050076007843, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "SVC(C=4.39, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,\n decision_function_shape='ovr', degree=3, gamma='scale', kernel='sigmoid',\n max_iter=-1, probability=True, random_state=42, shrinking=True, tol=0.001,\n verbose=False)", "params": "{'C': [0.1, 0.21000000000000002, 0.32000000000000006, 0.43000000000000005, 0.54, 0.65, 0.7600000000000001, 0.8700000000000001, 0.9800000000000001, 1.09, 1.2000000000000002, 1.3100000000000003, 1.4200000000000004, 1.5300000000000002, 1.6400000000000003, 1.7500000000000002, 1.8600000000000003, 1.9700000000000004, 2.08, 2.1900000000000004, 2.3000000000000003, 2.4100000000000006, 2.5200000000000005, 2.6300000000000003, 2.7400000000000007, 2.8500000000000005, 2.9600000000000004, 3.0700000000000003, 3.1800000000000006, 3.2900000000000005, 3.4000000000000004, 3.5100000000000007, 3.6200000000000006, 3.7300000000000004, 3.8400000000000007, 3.9500000000000006, 4.0600000000000005, 4.17, 4.28, 4.390000000000001], 'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}", "eachAlgor": "'SVC'", "AlgorithmsIDsEnd": "576", "toggle": "1"}}

@ -1 +0,0 @@
{"duration": 56.741621017456055, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=1.2,\n n_estimators=79, random_state=42)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], 'learning_rate': [0.1, 1.2000000000000002], 'algorithm': ['SAMME.R', 'SAMME']}", "eachAlgor": "'AdaB'", "AlgorithmsIDsEnd": "2766", "toggle": "0"}}

@ -0,0 +1 @@
{"duration": 667.0271377563477, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=42, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'ExtraT'", "AlgorithmsIDsEnd": "2606", "toggle": "1"}}

@ -1,7 +1,8 @@
# first line: 632 # first line: 642
@memory.cache @memory.cache
def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle): def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle):
print('inside models') print('toggle:',toggle)
#print('inside')
# instantiate spark session # instantiate spark session
spark = ( spark = (
SparkSession SparkSession

@ -275,7 +275,7 @@ export default {
this.algorithmGradB.push({'# Performance (%) #': McGradB[j],Algorithm:'GradB',Model:'Model ID: ' + AlgorGradBIDs[j] + '<br> Parameters: '+JSON.stringify(Object.values(PerformAlgorGradB['params'])[j])+'<br> # Performance (%) #',ModelID:AlgorGradBIDs[j]}) this.algorithmGradB.push({'# Performance (%) #': McGradB[j],Algorithm:'GradB',Model:'Model ID: ' + AlgorGradBIDs[j] + '<br> Parameters: '+JSON.stringify(Object.values(PerformAlgorGradB['params'])[j])+'<br> # Performance (%) #',ModelID:AlgorGradBIDs[j]})
this.parameters.push(JSON.stringify(Object.values(PerformAlgorGradB['params'])[j])) this.parameters.push(JSON.stringify(Object.values(PerformAlgorGradB['params'])[j]))
} }
} else { } else {
for (var j = 0; j < Object.keys(PerformAlgorKNN['params']).length; j++) { for (var j = 0; j < Object.keys(PerformAlgorKNN['params']).length; j++) {
this.algorithmKNN.push({'# Performance (%) #': this.listClassPerf[0][j],Algorithm:'KNN',Model:'Model ID: ' + AlgorKNNIDs[j] + '<br> Parameters: '+JSON.stringify(Object.values(PerformAlgorKNN['params'])[j])+'<br> # Performance (%) #',ModelID:AlgorKNNIDs[j]}) this.algorithmKNN.push({'# Performance (%) #': this.listClassPerf[0][j],Algorithm:'KNN',Model:'Model ID: ' + AlgorKNNIDs[j] + '<br> Parameters: '+JSON.stringify(Object.values(PerformAlgorKNN['params'])[j])+'<br> # Performance (%) #',ModelID:AlgorKNNIDs[j]})
this.parameters.push(JSON.stringify(Object.values(PerformAlgorKNN['params'])[j])) this.parameters.push(JSON.stringify(Object.values(PerformAlgorKNN['params'])[j]))
@ -324,6 +324,7 @@ export default {
EventBus.$emit('ParametersAll', this.parameters) EventBus.$emit('ParametersAll', this.parameters)
// concat the data // concat the data
var data = this.algorithmKNN
var data = this.algorithmKNN.concat(this.algorithmSVC) var data = this.algorithmKNN.concat(this.algorithmSVC)
var data = data.concat(this.algorithmGausNB) var data = data.concat(this.algorithmGausNB)
var data = data.concat(this.algorithmMLP) var data = data.concat(this.algorithmMLP)

@ -550,6 +550,12 @@ export default {
} else if (tName == "> 50% Diameter Narrowing / Diseased"){ } else if (tName == "> 50% Diameter Narrowing / Diseased"){
tName = 1 tName = 1
this.tNameAll = 1 this.tNameAll = 1
} else if (tName == "Absence of Hypotheticality") {
tName = 0
this.tNameAll = 0
} else if (tName == "Presence of Hypotheticality"){
tName = 1
this.tNameAll = 1
} else { } else {
this.tNameAll = tName this.tNameAll = tName
} }

@ -4,7 +4,7 @@
<select id="selectFile" @change="selectDataSet()"> <select id="selectFile" @change="selectDataSet()">
<option value="HeartC.csv" selected>Heart Disease</option> <option value="HeartC.csv" selected>Heart Disease</option>
<option value="StanceC.csv">Stance in Texts</option> <option value="StanceC.csv">Stance in Texts</option>
<option value="DiabetesC.csv">Pima Indian Diabetes</option> <!--<option value="DiabetesC.csv">Pima Indian Diabetes</option>-->
<option value="IrisC.csv">Iris</option> <option value="IrisC.csv">Iris</option>
<option value="local">Upload New File</option> <option value="local">Upload New File</option>
</select> </select>

@ -75,7 +75,7 @@ export default {
RetrieveDataSet: 'HeartC', RetrieveDataSet: 'HeartC',
colorsValues: ['#808000','#008080','#bebada','#fccde5','#d9d9d9','#bc80bd','#ccebc5'], colorsValues: ['#808000','#008080','#bebada','#fccde5','#d9d9d9','#bc80bd','#ccebc5'],
onlyOnce: true, onlyOnce: true,
restylePoints: [] restylePoints: [],
} }
}, },
methods: { methods: {
@ -93,22 +93,27 @@ export default {
EventBus.$emit('SendFilter', this.userSelectedFilter) EventBus.$emit('SendFilter', this.userSelectedFilter)
}, },
merge() { merge() {
this.restylePoints = []
EventBus.$emit('SendAction', 'merge') EventBus.$emit('SendAction', 'merge')
EventBus.$emit('SendSelectedPointsToServerEventfromData', []) EventBus.$emit('SendSelectedPointsToServerEventfromData', [])
}, },
remove () { remove () {
this.restylePoints = []
EventBus.$emit('SendAction', 'remove') EventBus.$emit('SendAction', 'remove')
EventBus.$emit('SendSelectedPointsToServerEventfromData', []) EventBus.$emit('SendSelectedPointsToServerEventfromData', [])
}, },
compose () { compose () {
this.restylePoints = []
EventBus.$emit('SendAction', 'compose') EventBus.$emit('SendAction', 'compose')
EventBus.$emit('SendSelectedPointsToServerEventfromData', []) EventBus.$emit('SendSelectedPointsToServerEventfromData', [])
}, },
save () { save () {
this.restylePoints = []
EventBus.$emit('SendProvenance', 'save') EventBus.$emit('SendProvenance', 'save')
EventBus.$emit('SendSelectedPointsToServerEventfromData', []) EventBus.$emit('SendSelectedPointsToServerEventfromData', [])
}, },
restore () { restore () {
this.restylePoints = []
EventBus.$emit('SendProvenance', 'restore') EventBus.$emit('SendProvenance', 'restore')
EventBus.$emit('SendSelectedPointsToServerEventfromData', []) EventBus.$emit('SendSelectedPointsToServerEventfromData', [])
}, },
@ -132,6 +137,7 @@ export default {
const XandYCoordinatesMDS = JSON.parse(this.dataPoints[1]) const XandYCoordinatesMDS = JSON.parse(this.dataPoints[1])
const DataSet = JSON.parse(this.dataPoints[2]) const DataSet = JSON.parse(this.dataPoints[2])
const originalDataLabels = JSON.parse(this.dataPoints[3]) const originalDataLabels = JSON.parse(this.dataPoints[3])
//console.log(DataSetY) //console.log(DataSetY)
//const originalDataLabels = JSON.parse(this.dataPoints[4]) //const originalDataLabels = JSON.parse(this.dataPoints[4])
var DataSetParse = JSON.parse(DataSet) var DataSetParse = JSON.parse(DataSet)
@ -182,6 +188,10 @@ export default {
target_names.forEach(element => { target_names.forEach(element => {
beautifyLabels.push(element) beautifyLabels.push(element)
}); });
target_names = []
target_names.push(0)
target_names.push(1)
target_names.push(2)
} }
if (this.representationDef == 'mds') { if (this.representationDef == 'mds') {
@ -210,7 +220,6 @@ export default {
var traces = [] var traces = []
var layout = [] var layout = []
for (let i = 0; i < target_names.length; i++) { for (let i = 0; i < target_names.length; i++) {
const aux_X = result.Xax.filter((item, index) => originalDataLabels[index] == target_names[i]); const aux_X = result.Xax.filter((item, index) => originalDataLabels[index] == target_names[i]);
@ -287,9 +296,12 @@ export default {
for (let i = 0; i < result.Xax.length; i++) { for (let i = 0; i < result.Xax.length; i++) {
IDs.push(i) IDs.push(i)
if (this.restylePoints.length != 0) { if (this.restylePoints.length != 0) {
console.log('test1')
if (XandYCoordinatesMDS[0].length == this.restylePoints.length) { if (XandYCoordinatesMDS[0].length == this.restylePoints.length) {
console.log('test2')
colorUpdate.push('rgb(0, 0, 0)') colorUpdate.push('rgb(0, 0, 0)')
} else { } else {
console.log('test3')
if (this.restylePoints.includes(i)) { if (this.restylePoints.includes(i)) {
colorUpdate.push('rgb(175, 68, 39)') colorUpdate.push('rgb(175, 68, 39)')
} else { } else {
@ -297,7 +309,8 @@ export default {
} }
} }
} else { } else {
colorUpdate.push('rgb(0, 0, 0)') console.log('test')
colorUpdate.push('rgb(0, 0, 0)')
} }
} }
result.ID = IDs result.ID = IDs
@ -379,7 +392,7 @@ export default {
} }
} }
} else { } else {
colorUpdate.push('rgb(0, 0, 0)') colorUpdate.push('rgb(0, 0, 0)')
} }
} }
result.Xax = Xaxs result.Xax = Xaxs

@ -229,7 +229,7 @@ export default {
//================================================== //==================================================
var viewerWidth = this.responsiveWidthHeight[0]*6.5 var viewerWidth = this.responsiveWidthHeight[0]*6.5
var viewerHeight = this.responsiveWidthHeight[1]*1.46 var viewerHeight = this.responsiveWidthHeight[1]*1.415
var viewerPosTop = viewerHeight * 0.1; var viewerPosTop = viewerHeight * 0.1;
var viewerPosLeft = viewerWidth*0.1; var viewerPosLeft = viewerWidth*0.1;
@ -351,7 +351,7 @@ export default {
}) })
.attr("class", "row"); .attr("class", "row");
svg.append("text").attr("x", 220).attr("y", -50).text("Models").style("font-size", "16px").attr("alignment-baseline","top") svg.append("text").attr("x", 220).attr("y", -50).text("Models").style("font-size", "16px").attr("alignment-baseline","top")
svg.append("text").attr("transform", "rotate(-90)").attr("x", -130).attr("y", -45).style("text-anchor", "middle").style("font-size", "16px").text("Data Features"); svg.append("text").attr("transform", "rotate(-90)").attr("x", -40).attr("y", -45).style("text-anchor", "middle").style("font-size", "16px").text("Data Features"); // -130 before for HeartC
var heatMap = row.selectAll(".cell") var heatMap = row.selectAll(".cell")
.data(function(d) { .data(function(d) {
return d; return d;

@ -89,7 +89,7 @@
<mdb-card style="margin-top: 15px;"> <mdb-card style="margin-top: 15px;">
<mdb-card-header color="primary-color" tag="h5" class="text-center">Data Space</mdb-card-header> <mdb-card-header color="primary-color" tag="h5" class="text-center">Data Space</mdb-card-header>
<mdb-card-body> <mdb-card-body>
<mdb-card-text class="text-center" style="min-height: 845px"> <mdb-card-text class="text-center" style="min-height: 822px">
<DataSpace/> <DataSpace/>
<PCPData/> <PCPData/>
</mdb-card-text> </mdb-card-text>
@ -100,7 +100,7 @@
<mdb-card style="margin-top: 15px;"> <mdb-card style="margin-top: 15px;">
<mdb-card-header color="primary-color" tag="h5" class="text-center">Features Selection for Each Model<small class="float-right"><active/></small></mdb-card-header> <mdb-card-header color="primary-color" tag="h5" class="text-center">Features Selection for Each Model<small class="float-right"><active/></small></mdb-card-header>
<mdb-card-body> <mdb-card-body>
<mdb-card-text class="text-center" style="min-height: 845px"> <mdb-card-text class="text-center" style="min-height: 822px">
<ToggleSelection/> <ToggleSelection/>
<br/> <br/>
<Heatmap/> <Heatmap/>
@ -118,7 +118,7 @@
[Sel: {{OverSelLength}} / All: {{OverAllLength}}]<small class="float-right"><active-scatter/></small> [Sel: {{OverSelLength}} / All: {{OverAllLength}}]<small class="float-right"><active-scatter/></small>
</mdb-card-header> </mdb-card-header>
<mdb-card-body> <mdb-card-body>
<mdb-card-text class="text-center" style="min-height: 845px"> <mdb-card-text class="text-center" style="min-height: 822px">
<ScatterPlot/> <ScatterPlot/>
<PerMetricBarChart/> <PerMetricBarChart/>
</mdb-card-text> </mdb-card-text>
@ -129,7 +129,7 @@
<mdb-card style="margin-top: 15px;"> <mdb-card style="margin-top: 15px;">
<mdb-card-header color="primary-color" tag="h5" class="text-center">Predictions' Space</mdb-card-header> <mdb-card-header color="primary-color" tag="h5" class="text-center">Predictions' Space</mdb-card-header>
<mdb-card-body> <mdb-card-body>
<mdb-card-text class="text-center" style="min-height: 845px"> <mdb-card-text class="text-center" style="min-height: 822px">
<PredictionsSpace/> <PredictionsSpace/>
<BalancePredictions/> <BalancePredictions/>
</mdb-card-text> </mdb-card-text>
@ -362,6 +362,7 @@ export default Vue.extend({
EventBus.$emit('ParametersProvenance', this.OverviewResults) EventBus.$emit('ParametersProvenance', this.OverviewResults)
EventBus.$emit('InitializeProvenance', this.selectedModels_Stack) EventBus.$emit('InitializeProvenance', this.selectedModels_Stack)
} }
this.keyData = false
this.getFinalResults() this.getFinalResults()
}) })
.catch(error => { .catch(error => {
@ -863,7 +864,6 @@ export default Vue.extend({
EventBus.$emit('emittedEventCallingTogglesUpdate', toggles) EventBus.$emit('emittedEventCallingTogglesUpdate', toggles)
}, },
DataSpaceFun () { DataSpaceFun () {
this.keyData = false
const path = `http://127.0.0.1:5000/data/SendDataSpacPoints` const path = `http://127.0.0.1:5000/data/SendDataSpacPoints`
const postData = { const postData = {
points: this.dataPointsSelfromDataSpace, points: this.dataPointsSelfromDataSpace,
@ -1098,6 +1098,7 @@ body {
top: 0px; top: 0px;
bottom: 0px; bottom: 0px;
margin-top: -4px !important; margin-top: -4px !important;
overflow-x: hidden !important;
} }
.modal-backdrop { .modal-backdrop {

@ -18,7 +18,8 @@ export default {
return { return {
PCPDataReceived: '', PCPDataReceived: '',
colorsValues: ['#808000','#008080','#bebada','#fccde5','#d9d9d9','#bc80bd','#ccebc5'], colorsValues: ['#808000','#008080','#bebada','#fccde5','#d9d9d9','#bc80bd','#ccebc5'],
ClassifierIDsListClearedData: [] ClassifierIDsListClearedData: [],
RetrieveDataSet: 'HeartC',
} }
}, },
methods: { methods: {
@ -34,7 +35,12 @@ export default {
var extraction = [] var extraction = []
for (let i = 0; i < DataSetParse.length; i++) { for (let i = 0; i < DataSetParse.length; i++) {
extraction.push(Object.assign(DataSetParse[i], {Outcome: target_names_original[i]}, {ID: i})) if (this.RetrieveDataSet == 'IrisC') {
extraction.push(Object.assign(DataSetParse[i], {Outcome: target_names[i]}, {ID: i}))
} else {
extraction.push(Object.assign(DataSetParse[i], {Outcome: target_names_original[i]}, {ID: i}))
}
} }
var colors = this.colorsValues var colors = this.colorsValues
EventBus.$emit('sendDatatoPickle', extraction) EventBus.$emit('sendDatatoPickle', extraction)
@ -50,9 +56,9 @@ export default {
var pc = ParCoords()("#PCPDataView") var pc = ParCoords()("#PCPDataView")
.data(DataSetParse) .data(DataSetParse)
.width(1200) .width(1200)
.height(280) .height(272)
.hideAxis(["Outcome","ID"]) .hideAxis(["Outcome","ID"])
.color(function(d, i) { return colors[target_names[i]] }) .color(function(d, i) { return colors[d.Outcome] })
.bundlingStrength(0) // set bundling strength .bundlingStrength(0) // set bundling strength
.smoothness(0) .smoothness(0)
.showControlPoints(false) .showControlPoints(false)
@ -65,9 +71,9 @@ export default {
var pc = ParCoords()("#PCPDataView") var pc = ParCoords()("#PCPDataView")
.data(DataSetParse) .data(DataSetParse)
.width(1200) .width(1200)
.height(280) .height(272)
.hideAxis(["Outcome","ID"]) .hideAxis(["Outcome","ID"])
.color(function(d, i) { return colors[target_names[i]] }) .color(function(d, i) { return colors[d.Outcome] })
.bundlingStrength(0) // set bundling strength .bundlingStrength(0) // set bundling strength
.smoothness(0) .smoothness(0)
.showControlPoints(false) .showControlPoints(false)
@ -77,6 +83,7 @@ export default {
.reorderable() .reorderable()
.interactive(); .interactive();
} }
pc.alphaOnBrushed(0.2);
pc.on('brushend', function(brushed, args){ pc.on('brushend', function(brushed, args){
var brushedCleared = [] var brushedCleared = []
for (let i = 0; i < brushed.length; i++) { for (let i = 0; i < brushed.length; i++) {
@ -98,6 +105,8 @@ export default {
// reset the views // reset the views
EventBus.$on('resetViews', this.reset) EventBus.$on('resetViews', this.reset)
EventBus.$on('SendToServerDataSetConfirmation', data => { this.RetrieveDataSet = data })
} }
} }
</script> </script>

@ -85,7 +85,7 @@ export default {
} }
} }
var width = this.WH[0]*6.5 // interactive visualization var width = this.WH[0]*6.5 // interactive visualization
var height = this.WH[1]*0.5 // interactive visualization var height = this.WH[1]*0.482 // interactive visualization
var trace1 = { var trace1 = {
x: x, x: x,
y: perModelAllClear, y: perModelAllClear,
@ -180,6 +180,7 @@ export default {
EventBus.$on('InitializeMetricsBarChart', data => {this.barchartmetrics = data;}) EventBus.$on('InitializeMetricsBarChart', data => {this.barchartmetrics = data;})
EventBus.$on('InitializeMetricsBarChart', this.LineBar) EventBus.$on('InitializeMetricsBarChart', this.LineBar)
EventBus.$on('InitializeMetricsBarChartPrediction', data => {this.SelBarChartMetrics.length = []})
EventBus.$on('InitializeMetricsBarChartPrediction', data => {this.barchartmetrics[9] = data;}) EventBus.$on('InitializeMetricsBarChartPrediction', data => {this.barchartmetrics[9] = data;})
EventBus.$on('InitializeMetricsBarChartPrediction', this.LineBar) EventBus.$on('InitializeMetricsBarChartPrediction', this.LineBar)

@ -55,7 +55,7 @@ export default {
// responsive visualization // responsive visualization
var width = this.WH[0]*6.5 // interactive visualization var width = this.WH[0]*6.5 // interactive visualization
var height = this.WH[1]*1.22 // interactive visualization var height = this.WH[1]*1.185 // interactive visualization
var XandYCoordinatesMDS var XandYCoordinatesMDS
var target_names = JSON.parse(this.PredictionsData[4]) var target_names = JSON.parse(this.PredictionsData[4])
if (this.UpdatedData.length != 0) { if (this.UpdatedData.length != 0) {
@ -74,6 +74,7 @@ export default {
stringParameters.push(JSON.stringify(DataSetParse[i]).replace(/,/gi, '<br>')) stringParameters.push(JSON.stringify(DataSetParse[i]).replace(/,/gi, '<br>'))
} }
const XandYCoordinatesTSNE = JSON.parse(this.PredictionsData[18]) const XandYCoordinatesTSNE = JSON.parse(this.PredictionsData[18])
console.log(XandYCoordinatesTSNE)
const XandYCoordinatesUMAP= JSON.parse(this.PredictionsData[19]) const XandYCoordinatesUMAP= JSON.parse(this.PredictionsData[19])
var result = []; var result = [];
@ -93,6 +94,10 @@ export default {
target_names.forEach(element => { target_names.forEach(element => {
beautifyLabels.push(element) beautifyLabels.push(element)
}); });
target_names = []
target_names.push(0)
target_names.push(1)
target_names.push(2)
} }
if (this.representationDef == 'mds') { if (this.representationDef == 'mds') {

@ -1,11 +1,11 @@
<template> <template>
<div> <div>
<div class="squares-container" style="min-height: 374px; margin-left: 35px"> <div class="squares-container" style="overflow: auto; width: 6000px; min-height: 374px; margin-left: 10px; margin-top:-10px">
<div id="tooltip"></div> <!-- new --> <div id="tooltip"></div> <!-- new -->
<div id="performanceCapture" style="min-height: 150px; margin-top: -10px !important;"></div> <!-- new --> <div id="performanceCapture" style="overflow: auto; width: 6000px; min-height: 150px;"></div> <!-- new -->
<canvas id="main-canvas" style="overflow-y: auto; overflow-x: auto; height:190px;"></canvas> <canvas id="main-canvas" style="overflow-y: auto; overflow-x: auto; height:190px;"></canvas>
<br> <br>
<div id="dynamic-buttons"></div> <div id="dynamic-buttons" style="overflow: auto; width: 6000px;"></div>
</div> </div>
</div> </div>
</template> </template>
@ -236,7 +236,7 @@ export default {
// here 10 was 5! // here 10 was 5!
let pScale = Stardust.scale.custom(` let pScale = Stardust.scale.custom(`
Vector2( Vector2(
20 + column * 195 + typeColumnIndex % 12 * 11.7, 20 + column * 207 + typeColumnIndex % 12 * 11.7,
height - 10 - floor(typeColumnIndex / 12) * 10 height - 10 - floor(typeColumnIndex / 12) * 10
) )
`); `);
@ -335,7 +335,13 @@ export default {
} }
} }
const stringStep = "Stacking Ensemble " const stringStep = "Stacking Ensemble "
var myButton = '<button id="HistoryReturnButtons'+this.counter+'" class="dynamic_buttons">'+stringStep+this.counter+'</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;' if (this.counter == 1) {
var text = "Parent Stack ID: None"
} else {
var text1 = "Parent Stack ID: "
var text = text1.concat(this.flagUpdated+1)
}
var myButton = '<button id="HistoryReturnButtons'+this.counter+'" class="dynamic_buttons" data-placement="bottom" title="'+text+'">'+stringStep+this.counter+'</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'
$("#dynamic-buttons").append(myButton); $("#dynamic-buttons").append(myButton);
EventBus.$emit('requestProven',this.counter-1) EventBus.$emit('requestProven',this.counter-1)
@ -351,15 +357,25 @@ export default {
btns.forEach(btnlocal => { btns.forEach(btnlocal => {
btnlocal.style.fontWeight = 'normal'; btnlocal.style.fontWeight = 'normal';
}); })
var btn = document.getElementById($(this).attr('id')); var btn = document.getElementById($(this).attr('id'));
btn.style.fontWeight = 'bold'; btn.style.fontWeight = 'bold'
EventBus.$emit('ChangeKey', 0) EventBus.$emit('ChangeKey', 0)
EventBus.$emit('requestProven',parseInt($(this).attr('id').replace(/\D/g,''))-1) EventBus.$emit('requestProven',parseInt($(this).attr('id').replace(/\D/g,''))-1)
} })
);
var btns = document.getElementsByClassName('dynamic_buttons')
btns.forEach(btnlocal => {
btnlocal.style.fontWeight = 'normal';
})
var idConcat = "HistoryReturnButtons".concat(this.counter)
var btn = document.getElementById(idConcat);
btn.style.fontWeight = 'bold';
}, },
RadialPerf () { RadialPerf () {
this.firstInside++ this.firstInside++
@ -391,8 +407,8 @@ export default {
{value: this.Stack_scoresMean3, label: "Recall", color: scaleColor(this.Stack_scoresMean3)}, {value: this.Stack_scoresMean3, label: "Recall", color: scaleColor(this.Stack_scoresMean3)},
{value: this.Stack_scoresMean4, label: "F1 Score", color: scaleColor(this.Stack_scoresMean4)} {value: this.Stack_scoresMean4, label: "F1 Score", color: scaleColor(this.Stack_scoresMean4)}
]; ];
console.log(data)
var svg = d3.select('#svg'+this.firstInside).attr('width', width).attr('height', width).style('margin-right', '38px'); var svg = d3.select('#svg'+this.firstInside).attr('width', width).attr('height', width).style('margin-right', '48px');
var arcs = data.map(function (obj, i) { var arcs = data.map(function (obj, i) {
return d3.svg.arc().innerRadius(i * arcSize + innerRadius).outerRadius((i + 1) * arcSize - (width / 100) + innerRadius); return d3.svg.arc().innerRadius(i * arcSize + innerRadius).outerRadius((i + 1) * arcSize - (width / 100) + innerRadius);
@ -454,7 +470,7 @@ export default {
return 0; return 0;
}) })
.attr("xlink:href", "#Text" + r.data.object.label) .attr("xlink:href", "#Text" + r.data.object.label)
.attr("startOffset", '5') .attr("startOffset", '0')
.attr("dy", '-3em') .attr("dy", '-3em')
.text(lableObj.value + '%'); .text(lableObj.value + '%');
} }

@ -71,18 +71,22 @@ export default {
this.newColorsUpdate = [] this.newColorsUpdate = []
EventBus.$emit('updateBold', '') EventBus.$emit('updateBold', '')
EventBus.$emit('updateBoxPlots') EventBus.$emit('updateBoxPlots')
this.colorsStore = [] this.colorsStore.pop()
this.MDSStore = [] this.MDSStore.pop()
this.parametersStore = [] this.parametersStore.pop()
this.TSNEStore = [] this.modelIDStore.pop()
this.modelIDStore = [] this.UMAPStore.pop()
this.UMAPStore = []
this.ScatterPlotView() this.ScatterPlotView()
}, },
reset () { reset () {
Plotly.purge('OverviewPlotly') Plotly.purge('OverviewPlotly')
}, },
selectVisualRepresentation () { selectVisualRepresentation () {
this.colorsStore.pop()
this.MDSStore.pop()
this.parametersStore.pop()
this.modelIDStore.pop()
this.UMAPStore.pop()
const representationSelectionDocum = document.getElementById('selectBarChart') const representationSelectionDocum = document.getElementById('selectBarChart')
this.representationSelection = representationSelectionDocum.options[representationSelectionDocum.selectedIndex].value this.representationSelection = representationSelectionDocum.options[representationSelectionDocum.selectedIndex].value
EventBus.$emit('RepresentationSelection', this.representationSelection) EventBus.$emit('RepresentationSelection', this.representationSelection)
@ -106,6 +110,11 @@ export default {
colorsforScatterPlot = JSON.parse(this.ScatterPlotResults[0]) colorsforScatterPlot = JSON.parse(this.ScatterPlotResults[0])
if (this.newColorsUpdate.length != 0) { if (this.newColorsUpdate.length != 0) {
this.colorsStore.pop()
this.MDSStore.pop()
this.parametersStore.pop()
this.modelIDStore.pop()
this.UMAPStore.pop()
colorsforScatterPlot = [] colorsforScatterPlot = []
let resultsClear = JSON.parse(this.newColorsUpdate) let resultsClear = JSON.parse(this.newColorsUpdate)
for (let j = 0; j < Object.values(resultsClear).length; j++) { for (let j = 0; j < Object.values(resultsClear).length; j++) {
@ -120,7 +129,28 @@ export default {
var TSNEData = JSON.parse(this.ScatterPlotResults[12]) var TSNEData = JSON.parse(this.ScatterPlotResults[12])
var modelId = JSON.parse(this.ScatterPlotResults[13]) var modelId = JSON.parse(this.ScatterPlotResults[13])
var UMAPData = JSON.parse(this.ScatterPlotResults[17]) var UMAPData = JSON.parse(this.ScatterPlotResults[17])
if (this.DataPointsSelUpdate.length != 0) {
this.colorsStore.pop()
this.MDSStore.pop()
this.parametersStore.pop()
this.modelIDStore.pop()
this.UMAPStore.pop()
}
if (this.keyLocal == 0) { if (this.keyLocal == 0) {
if (this.DataPointsSelUpdate.length != 0) {
colorsforScatterPlot = JSON.parse(this.DataPointsSelUpdate[0])
}
if (this.DataPointsSelUpdate.length != 0) {
MDSData = JSON.parse(this.DataPointsSelUpdate[1])
}
this.colorsStore.pop()
this.MDSStore.pop()
this.parametersStore.pop()
this.modelIDStore.pop()
this.UMAPStore.pop()
this.colorsStore.push(colorsforScatterPlot) this.colorsStore.push(colorsforScatterPlot)
this.MDSStore.push(MDSData) this.MDSStore.push(MDSData)
this.parametersStore.push(parameters) this.parametersStore.push(parameters)
@ -160,7 +190,6 @@ export default {
var listofNumbersModelsIDs = [] var listofNumbersModelsIDs = []
var StackModelsIDs = [] var StackModelsIDs = []
console.log(this.ModelsIDGray.length)
if (this.ModelsIDGray.length != 0) { if (this.ModelsIDGray.length != 0) {
for (let j = 0; j < this.ModelsIDGray.length; j++){ for (let j = 0; j < this.ModelsIDGray.length; j++){
listofNumbersModelsIDs.push(parseInt(this.ModelsIDGray[j])) listofNumbersModelsIDs.push(parseInt(this.ModelsIDGray[j]))
@ -171,14 +200,6 @@ export default {
var MDSDataNewY = [] var MDSDataNewY = []
var colorsforScatterPlotNew = [] var colorsforScatterPlotNew = []
if (this.DataPointsSelUpdate.length != 0) {
this.colorsStore.pop()
this.MDSStore.pop()
this.parametersStore.pop()
this.modelIDStore.pop()
this.UMAPStore.pop()
}
for (let i = 0; i < modelId.length; i++) { for (let i = 0; i < modelId.length; i++) {
if (listofNumbersModelsIDs.includes(modelId[i])) { if (listofNumbersModelsIDs.includes(modelId[i])) {
StackModelsIDs.push(modelId[i]) StackModelsIDs.push(modelId[i])
@ -199,10 +220,10 @@ export default {
} }
} }
} }
this.DataPointsSelUpdate = [] this.DataPointsSelUpdate = []
MDSData[0] = MDSDataNewX MDSData[0] = MDSDataNewX
MDSData[1] = MDSDataNewY MDSData[1] = MDSDataNewY
console.log(StackModelsIDs)
modelId = StackModelsIDs modelId = StackModelsIDs
parameters = parametersNew parameters = parametersNew
colorsforScatterPlot = colorsforScatterPlotNew colorsforScatterPlot = colorsforScatterPlotNew
@ -213,19 +234,15 @@ export default {
//this.TSNEStore.push(TSNEData) //this.TSNEStore.push(TSNEData)
this.modelIDStore.push(modelId) this.modelIDStore.push(modelId)
this.UMAPStore.push(UMAPData) this.UMAPStore.push(UMAPData)
console.log(this.activeModels) console.log('mpike5')
colorsforScatterPlot = this.colorsStore.slice(this.activeModels,this.activeModels+1)[0] colorsforScatterPlot = this.colorsStore.slice(this.activeModels,this.activeModels+1)[0]
MDSData = this.MDSStore.slice(this.activeModels,this.activeModels+1)[0] MDSData = this.MDSStore.slice(this.activeModels,this.activeModels+1)[0]
parameters = this.parametersStore.slice(this.activeModels,this.activeModels+1)[0] parameters = this.parametersStore.slice(this.activeModels,this.activeModels+1)[0]
//TSNEData = this.TSNEStore.slice(this.activeModels,this.activeModels+1)[0] //TSNEData = this.TSNEStore.slice(this.activeModels,this.activeModels+1)[0]
modelId = this.modelIDStore.slice(this.activeModels,this.activeModels+1)[0] modelId = this.modelIDStore.slice(this.activeModels,this.activeModels+1)[0]
console.log(modelId)
//UMAPData = this.UMAPStore.slice(this.activeModels,this.activeModels+1)[0] //UMAPData = this.UMAPStore.slice(this.activeModels,this.activeModels+1)[0]
} }
console.log(this.colorsStore)
console.log(colorsforScatterPlot)
EventBus.$emit('sendPointsNumber', modelId.length) EventBus.$emit('sendPointsNumber', modelId.length)
var classifiersInfoProcessing = [] var classifiersInfoProcessing = []
for (let i = 0; i < modelId.length; i++) { for (let i = 0; i < modelId.length; i++) {
@ -234,6 +251,8 @@ export default {
EventBus.$emit('NewHeatmapAccordingtoNewStack', modelId) EventBus.$emit('NewHeatmapAccordingtoNewStack', modelId)
} }
console.log(this.colorsStore)
console.log(this.MDSStore)
var DataGeneral var DataGeneral
var maxX var maxX
@ -242,7 +261,7 @@ export default {
var minY var minY
var width = this.WH[0]*6.5 // interactive visualization var width = this.WH[0]*6.5 // interactive visualization
var height = this.WH[1]*1.22 // interactive visualization var height = this.WH[1]*1.192 // interactive visualization
var layout var layout
if (this.representationDef == 'mds') { if (this.representationDef == 'mds') {
@ -443,13 +462,11 @@ export default {
ClassifierIDsListCleared.push(numberNumb) ClassifierIDsListCleared.push(numberNumb)
} }
} }
console.log(ClassifierIDsListCleared)
for (let i = 0; i < allModels.length; i++) { for (let i = 0; i < allModels.length; i++) {
if (!ClassifierIDsListCleared.includes(allModels[i])) { if (!ClassifierIDsListCleared.includes(allModels[i])) {
pushModelsRemainingTemp.push(allModels[i]) pushModelsRemainingTemp.push(allModels[i])
} }
} }
console.log(pushModelsRemainingTemp)
EventBus.$emit('updateRemaining', pushModelsRemainingTemp) EventBus.$emit('updateRemaining', pushModelsRemainingTemp)
if (allModels != '') { if (allModels != '') {
EventBus.$emit('ChangeKey', 1) EventBus.$emit('ChangeKey', 1)

@ -9,7 +9,8 @@ import os
def import_content(filepath): def import_content(filepath):
mng_client = pymongo.MongoClient('localhost', 27017) mng_client = pymongo.MongoClient('localhost', 27017)
mng_db = mng_client['mydb'] mng_db = mng_client['mydb']
collection_name = 'StanceCTest' #collection_name = 'StanceCTest'
collection_name = 'StanceC'
db_cm = mng_db[collection_name] db_cm = mng_db[collection_name]
cdir = os.path.dirname(__file__) cdir = os.path.dirname(__file__)
file_res = os.path.join(cdir, filepath) file_res = os.path.join(cdir, filepath)
@ -20,5 +21,5 @@ def import_content(filepath):
db_cm.insert(data_json) db_cm.insert(data_json)
if __name__ == "__main__": if __name__ == "__main__":
filepath = '/Users/anchaa/Documents/Research/StackVis_code/StackVis/stancetest.csv' filepath = '/Users/anchaa/Documents/Research/StackVis_code/StackVis/stance.csv'
import_content(filepath) import_content(filepath)

105
run.py

@ -74,9 +74,15 @@ def Reset():
global previousState global previousState
previousState = [] previousState = []
global filterActionFinal
filterActionFinal = ''
global keySpecInternal global keySpecInternal
keySpecInternal = 1 keySpecInternal = 1
global dataSpacePointsIDs
dataSpacePointsIDs = []
global previousStateActive global previousStateActive
previousStateActive = [] previousStateActive = []
@ -175,6 +181,9 @@ def Reset():
global target_names global target_names
target_names = [] target_names = []
global target_namesLoc
target_namesLoc = []
return 'The reset was done!' return 'The reset was done!'
# Retrieve data from client and select the correct data set # Retrieve data from client and select the correct data set
@ -191,6 +200,12 @@ def RetrieveFileName():
global keySpecInternal global keySpecInternal
keySpecInternal = 1 keySpecInternal = 1
global filterActionFinal
filterActionFinal = ''
global dataSpacePointsIDs
dataSpacePointsIDs = []
global RANDOM_SEED global RANDOM_SEED
RANDOM_SEED = 42 RANDOM_SEED = 42
@ -290,6 +305,11 @@ def RetrieveFileName():
global target_names global target_names
target_names = [] target_names = []
global target_namesLoc
target_namesLoc = []
DataRawLength = -1 DataRawLength = -1
DataRawLengthTest = -1 DataRawLengthTest = -1
@ -352,6 +372,7 @@ def SendToServerData():
global AllTargets global AllTargets
global target_names global target_names
global target_namesLoc
AllTargets = [o[target] for o in DataResultsRaw] AllTargets = [o[target] for o in DataResultsRaw]
AllTargetsFloatValues = [] AllTargetsFloatValues = []
@ -392,8 +413,10 @@ def CollectionData():
def DataSetSelection(): def DataSetSelection():
global XDataTest, yDataTest global XDataTest, yDataTest
XDataTest = pd.DataFrame() XDataTest = pd.DataFrame()
yDataTest = []
global StanceTest global StanceTest
global AllTargets
global target_names
target_namesLoc = []
if (StanceTest): if (StanceTest):
DataResultsTest = copy.deepcopy(DataResultsRawTest) DataResultsTest = copy.deepcopy(DataResultsRawTest)
@ -412,7 +435,7 @@ def DataSetSelection():
del dictionary['InstanceID'] del dictionary['InstanceID']
del dictionary[target] del dictionary[target]
AllTargetsTest = [o[target] for o in DataResultsRaw] AllTargetsTest = [o[target] for o in DataResultsRawTest]
AllTargetsFloatValuesTest = [] AllTargetsFloatValuesTest = []
previous = None previous = None
@ -450,8 +473,6 @@ def DataSetSelection():
del dictionary['InstanceID'] del dictionary['InstanceID']
del dictionary[target] del dictionary[target]
global AllTargets
global target_names
AllTargets = [o[target] for o in DataResultsRaw] AllTargets = [o[target] for o in DataResultsRaw]
AllTargetsFloatValues = [] AllTargetsFloatValues = []
@ -487,7 +508,6 @@ def callPreResults():
global yData global yData
global target_names global target_names
global impDataInst global impDataInst
print(XData)
DataSpaceResMDS = FunMDS(XData) DataSpaceResMDS = FunMDS(XData)
DataSpaceResTSNE = FunTsne(XData) DataSpaceResTSNE = FunTsne(XData)
DataSpaceResTSNE = DataSpaceResTSNE.tolist() DataSpaceResTSNE = DataSpaceResTSNE.tolist()
@ -633,7 +653,8 @@ memory = Memory(location, verbose=0)
# calculating for all algorithms and models the performance and other results # calculating for all algorithms and models the performance and other results
@memory.cache @memory.cache
def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle): def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle):
print('inside models') print('toggle:',toggle)
#print('inside')
# instantiate spark session # instantiate spark session
spark = ( spark = (
SparkSession SparkSession
@ -1023,7 +1044,6 @@ def PreprocessingMetrics():
dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :]
dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :]
dfGradBFiltered = dfGradB.loc[GradBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :]
df_concatMetrics = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) df_concatMetrics = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered])
return df_concatMetrics return df_concatMetrics
@ -1075,7 +1095,6 @@ def PreprocessingPred():
dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :]
dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :]
dfGradBFiltered = dfGradB.loc[GradBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :]
df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered])
predictions = [] predictions = []
for column, content in df_concatProbs.items(): for column, content in df_concatProbs.items():
@ -1159,19 +1178,14 @@ def PreprocessingPredUpdate(Models):
predictionsSel.append(el) predictionsSel.append(el)
PredictionSpaceSel = FunMDS(predictionsSel) PredictionSpaceSel = FunMDS(predictionsSel)
print(PredictionSpaceSel)
PredictionSpaceSelComb = [list(a) for a in zip(PredictionSpaceSel[0], PredictionSpaceSel[1])] PredictionSpaceSelComb = [list(a) for a in zip(PredictionSpaceSel[0], PredictionSpaceSel[1])]
print(PredictionSpaceSelComb)
mtx2PredFinal = [] mtx2PredFinal = []
mtx2Pred, mtx2Pred, disparityPred = procrustes(PredictionSpaceAllComb, PredictionSpaceSelComb) mtx2Pred, mtx2Pred, disparityPred = procrustes(PredictionSpaceAllComb, PredictionSpaceSelComb)
#a1 = [i[1] for i in mtx2Pred]
#b1 = [i[0] for i in mtx2Pred]
#print(a1)
a1, b1 = zip(*mtx2Pred) a1, b1 = zip(*mtx2Pred)
mtx2PredFinal.append(a1) mtx2PredFinal.append(a1)
mtx2PredFinal.append(b1) mtx2PredFinal.append(b1)
print(mtx2Pred)
return [mtx2PredFinal,listIDsRemoved] return [mtx2PredFinal,listIDsRemoved]
def PreprocessingParam(): def PreprocessingParam():
@ -1679,7 +1693,22 @@ def processDataInstance(ModelsIDs, allParametersPerformancePerModel):
dfGradBFiltered = dfGradB.loc[GradBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :]
df_connect = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) df_connect = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered])
global yData global yData
global filterActionFinal
global dataSpacePointsIDs
lengthDF = len(df_connect.columns)
if (filterActionFinal == 'compose'):
getList = []
for index, row in df_connect.iterrows():
yDataSelected = []
for column in row[dataSpacePointsIDs]:
yDataSelected.append(column)
storeMode = mode(yDataSelected)
getList.append(storeMode)
df_connect[str(lengthDF)] = getList
countCorrect = [] countCorrect = []
length = len(df_connect.index) length = len(df_connect.index)
for index, element in enumerate(yData): for index, element in enumerate(yData):
@ -2292,13 +2321,13 @@ def RetrieveSelDataPoints():
dfGradBCleared = dfGradB.drop(dfGradB.index[set_diff_df]) dfGradBCleared = dfGradB.drop(dfGradB.index[set_diff_df])
df_concatMetrics = pd.concat([dfKNNCleared, dfSVCCleared, dfGausNBCleared, dfMLPCleared, dfLRCleared, dfLDACleared, dfQDACleared, dfRFCleared, dfExtraTCleared, dfAdaBCleared, dfGradBCleared]) df_concatMetrics = pd.concat([dfKNNCleared, dfSVCCleared, dfGausNBCleared, dfMLPCleared, dfLRCleared, dfLDACleared, dfQDACleared, dfRFCleared, dfExtraTCleared, dfAdaBCleared, dfGradBCleared])
df_concatMetrics = df_concatMetrics.reset_index(drop=True) df_concatMetrics = df_concatMetrics.reset_index(drop=True)
print(df_concatMetrics)
global foreachMetricResults global foreachMetricResults
foreachMetricResults = [] foreachMetricResults = []
foreachMetricResults = preProcSumForEachMetric(factors, df_concatMetrics) foreachMetricResults = preProcSumForEachMetric(factors, df_concatMetrics)
df_concatMetrics.loc[:, 'log_loss'] = 1 - df_concatMetrics.loc[:, 'log_loss'] df_concatMetrics.loc[:, 'log_loss'] = 1 - df_concatMetrics.loc[:, 'log_loss']
print(df_concatMetrics)
global sumPerClassifierSelUpdate global sumPerClassifierSelUpdate
sumPerClassifierSelUpdate = [] sumPerClassifierSelUpdate = []
sumPerClassifierSelUpdate = preProcsumPerMetricAccordingtoData(factors, df_concatMetrics) sumPerClassifierSelUpdate = preProcsumPerMetricAccordingtoData(factors, df_concatMetrics)
@ -2308,8 +2337,7 @@ def RetrieveSelDataPoints():
ModelSpaceMDSNewSel = FunMDS(df_concatMetrics) ModelSpaceMDSNewSel = FunMDS(df_concatMetrics)
ModelSpaceMDSNewSelComb = [list(a) for a in zip(ModelSpaceMDSNewSel[0], ModelSpaceMDSNewSel[1])] ModelSpaceMDSNewSelComb = [list(a) for a in zip(ModelSpaceMDSNewSel[0], ModelSpaceMDSNewSel[1])]
print(len(ModelSpaceMDSNewComb))
print(len(ModelSpaceMDSNewSelComb))
global mt2xFinal global mt2xFinal
mt2xFinal = [] mt2xFinal = []
mtx1, mtx2, disparity = procrustes(ModelSpaceMDSNewComb, ModelSpaceMDSNewSelComb) mtx1, mtx2, disparity = procrustes(ModelSpaceMDSNewComb, ModelSpaceMDSNewSelComb)
@ -2883,7 +2911,7 @@ def EnsembleModel(Models, keyRetrieved):
dfParamGradBFilt = dfParamGradB.iloc[:,0] dfParamGradBFilt = dfParamGradB.iloc[:,0]
for index, eachelem in enumerate(GradBModels): for index, eachelem in enumerate(GradBModels):
arg = dfParamGradBFilt[eachelem-GradBModelsCount] arg = dfParamGradBFilt[eachelem-GradBModelsCount]
all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), GradientBoostingClassifier().set_params(**arg))) all_classifiers.append(make_pipeline(ColumnSelector(cols=featureSelection['featureSelection'][countItems]), GradientBoostingClassifier(random_state=RANDOM_SEED).set_params(**arg)))
store = index store = index
flag = 1 flag = 1
@ -2932,12 +2960,11 @@ def EnsembleModel(Models, keyRetrieved):
# if (keyRetrieved == 0): # if (keyRetrieved == 0):
# pass # pass
# else: # else:
global StanceTest
if (keySpec == 0 or keySpec == 1): if (keySpec == 0 or keySpec == 1):
num_cores = multiprocessing.cpu_count() num_cores = multiprocessing.cpu_count()
inputsSc = ['accuracy','precision_weighted','recall_weighted','f1_weighted'] inputsSc = ['accuracy','precision_weighted','recall_weighted','f1_weighted']
flat_results = Parallel(n_jobs=num_cores)(delayed(solve)(StanceTest,XDataTest,yDataTest,sclf,keyData,keySpec,keySpecInternal,previousState,previousStateActive,XData,yData,crossValidation,item,index) for index, item in enumerate(inputsSc)) flat_results = Parallel(n_jobs=num_cores)(delayed(solve)(sclf,keyData,keySpec,keySpecInternal,previousState,previousStateActive,XData,yData,crossValidation,item,index) for index, item in enumerate(inputsSc))
scores = [item for sublist in flat_results for item in sublist] scores = [item for sublist in flat_results for item in sublist]
if (keySpec == 0): if (keySpec == 0):
@ -2950,6 +2977,15 @@ def EnsembleModel(Models, keyRetrieved):
previousState.append(scores[11]) previousState.append(scores[11])
previousState.append(scores[14]) previousState.append(scores[14])
previousState.append(scores[15]) previousState.append(scores[15])
previousStateActive = []
previousStateActive.append(scores[0])
previousStateActive.append(scores[1])
previousStateActive.append(scores[4])
previousStateActive.append(scores[5])
previousStateActive.append(scores[8])
previousStateActive.append(scores[9])
previousStateActive.append(scores[12])
previousStateActive.append(scores[13])
elif (keySpec == 1): elif (keySpec == 1):
if (keySpecInternal == 1): if (keySpecInternal == 1):
previousStateActive = [] previousStateActive = []
@ -3007,10 +3043,20 @@ def EnsembleModel(Models, keyRetrieved):
scores.append(previousStateActive[7]) scores.append(previousStateActive[7])
previousState.append(previousStateActive[6]) previousState.append(previousStateActive[6])
previousState.append(previousStateActive[7]) previousState.append(previousStateActive[7])
print(scores)
global StanceTest
if (StanceTest):
sclf.fit(XData, yData)
y_pred = sclf.predict(XDataTest)
print(accuracy_score(yDataTest, y_pred))
print(precision_score(yDataTest, y_pred, average='weighted'))
print(recall_score(yDataTest, y_pred, average='weighted'))
print(f1_score(yDataTest, y_pred, average='weighted'))
return 'Okay' return 'Okay'
def solve(StanceTest,y_Test,y_true,sclf,keyData,keySpec,keySpecInternal,previousStateLoc,previousStateActiveLoc,XData,yData,crossValidation,scoringIn,loop): def solve(sclf,keyData,keySpec,keySpecInternal,previousStateLoc,previousStateActiveLoc,XData,yData,crossValidation,scoringIn,loop):
scoresLoc = [] scoresLoc = []
if (keySpec == 0): if (keySpec == 0):
temp = model_selection.cross_val_score(sclf, XData, yData, cv=crossValidation, scoring=scoringIn, n_jobs=-1) temp = model_selection.cross_val_score(sclf, XData, yData, cv=crossValidation, scoring=scoringIn, n_jobs=-1)
@ -3055,22 +3101,13 @@ def solve(StanceTest,y_Test,y_true,sclf,keyData,keySpec,keySpecInternal,previous
scoresLoc.append(temp.std()) scoresLoc.append(temp.std())
scoresLoc.append(temp.mean()) scoresLoc.append(temp.mean())
scoresLoc.append(temp.std()) scoresLoc.append(temp.std())
if (StanceTest):
y_pred = sclf.predict(y_Test)
if (loop == 0):
print(accuracy_score(y_true, y_pred))
elif (loop == 1):
print(precision_score(y_true, y_pred, average='weighted'))
elif (loop == 2):
print(recall_score(y_true, y_pred, average='weighted'))
else:
print(f1_score(y_true, y_pred, average='weighted'))
return scoresLoc return scoresLoc
# Sending the final results to be visualized as a line plot # Sending the final results to be visualized as a line plot
@app.route('/data/SendFinalResultsBacktoVisualize', methods=["GET", "POST"]) @app.route('/data/SendFinalResultsBacktoVisualize', methods=["GET", "POST"])
def SendToPlotFinalResults(): def SendToPlotFinalResults():
global scores
response = { response = {
'FinalResults': scores 'FinalResults': scores
} }
@ -3116,12 +3153,12 @@ def RetrieveAction():
global filterActionFinal global filterActionFinal
global filterDataFinal global filterDataFinal
global dataSpacePointsIDs
global XData global XData
global yData global yData
filterActionFinal = filterActionCleared['action'] filterActionFinal = filterActionCleared['action']
dataSpacePointsIDs = filterActionCleared['points'] dataSpacePointsIDs = filterActionCleared['points']
print(dataSpacePointsIDs)
if (filterActionFinal == 'merge'): if (filterActionFinal == 'merge'):
if (filterDataFinal == 'mean' or filterDataFinal == ''): if (filterDataFinal == 'mean' or filterDataFinal == ''):
mean = XData.loc[dataSpacePointsIDs, :].mean() mean = XData.loc[dataSpacePointsIDs, :].mean()
@ -3164,6 +3201,7 @@ def RetrieveProvenance():
global XData global XData
global yDataStored global yDataStored
global yData global yData
global filterActionFinal
# save and restore # save and restore
if (filterProvenanceFinal == 'save'): if (filterProvenanceFinal == 'save'):
@ -3172,5 +3210,6 @@ def RetrieveProvenance():
else: else:
XData = XDataStored.copy() XData = XDataStored.copy()
yData = yDataStored.copy() yData = yDataStored.copy()
filterActionFinal = ''
return 'Done' return 'Done'
Loading…
Cancel
Save