fixed reset

master
parent 8522375dfe
commit 9659322750
  1. BIN
      __pycache__/run.cpython-37.pyc
  2. 1
      cachedir/joblib/run/GridSearchForModels/0630790fa81d5b91e3195bd86de458e2/metadata.json
  3. 2
      cachedir/joblib/run/GridSearchForModels/34dd4fa44cf8d83f42cfacc70a3fdd71/metadata.json
  4. BIN
      cachedir/joblib/run/GridSearchForModels/38772970bb4c75821f5c00d545b8fd57/output.pkl
  5. 1
      cachedir/joblib/run/GridSearchForModels/3cc262c077a39d0c54e4037251751202/metadata.json
  6. BIN
      cachedir/joblib/run/GridSearchForModels/4afebc2c0f07454e4b3770e75aa3c9a7/output.pkl
  7. BIN
      cachedir/joblib/run/GridSearchForModels/65cf512fe73627ad01497d789001f38b/output.pkl
  8. 1
      cachedir/joblib/run/GridSearchForModels/7cd0b89df0e27ae606b59399cc748534/metadata.json
  9. 1
      cachedir/joblib/run/GridSearchForModels/c426e0f3d8f4e01216f1b2a58820e6ec/metadata.json
  10. BIN
      cachedir/joblib/run/GridSearchForModels/cb5182dde62f93055189ce0cf507866d/output.pkl
  11. 1
      cachedir/joblib/run/GridSearchForModels/cce4a92f4cbd0e736018f002fd195967/metadata.json
  12. BIN
      cachedir/joblib/run/GridSearchForModels/e195397de90ee1851c0cad58777740ff/output.pkl
  13. BIN
      cachedir/joblib/run/GridSearchForModels/ef9a593cce41dd71bdac1d445edc2a58/output.pkl
  14. 1
      cachedir/joblib/run/GridSearchForModels/fbe5cd8abe4f095b079dbe1880be140d/metadata.json
  15. 2
      cachedir/joblib/run/GridSearchForModels/func_code.py
  16. 6
      frontend/src/components/AlgorithmHyperParam.vue
  17. 18
      frontend/src/components/Algorithms.vue
  18. 7
      frontend/src/components/BalancePredictions.vue
  19. 6
      frontend/src/components/BarChart.vue
  20. 1
      frontend/src/components/DataSetExecController.vue
  21. 7
      frontend/src/components/DataSpace.vue
  22. 6
      frontend/src/components/FinalResultsLinePlot.vue
  23. 8
      frontend/src/components/Heatmap.vue
  24. 4
      frontend/src/components/Main.vue
  25. 7
      frontend/src/components/PCPData.vue
  26. 24
      frontend/src/components/Parameters.vue
  27. 8
      frontend/src/components/PerMetricBarChart.vue
  28. 7
      frontend/src/components/PredictionsSpace.vue
  29. 16
      frontend/src/components/Provenance.vue
  30. 6
      frontend/src/components/ScatterPlot.vue
  31. 13
      run.py

Binary file not shown.

@ -0,0 +1 @@
{"duration": 270.6007800102234, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'weights': ['uniform', 'distance'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski']}", "eachAlgor": "'KNN'", "factors": "[0, 1, 0, 1, 1]", "AlgorithmsIDsEnd": "0"}}

@ -1 +1 @@
{"duration": 307.1607220172882, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'weights': ['uniform', 'distance'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski']}", "eachAlgor": "'KNN'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "0"}}
{"duration": 270.70482993125916, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'weights': ['uniform', 'distance'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski']}", "eachAlgor": "'KNN'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "0"}}

@ -0,0 +1 @@
{"duration": 367.6226439476013, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',\n max_depth=None, max_features='auto', max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=119,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "factors": "[0.46, 1, 0.3, 1, 1]", "AlgorithmsIDsEnd": "576"}}

@ -0,0 +1 @@
{"duration": 279.6587002277374, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'weights': ['uniform', 'distance'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski']}", "eachAlgor": "'KNN'", "factors": "[0.46, 1, 0.3, 1, 1]", "AlgorithmsIDsEnd": "0"}}

@ -1 +0,0 @@
{"duration": 393.25071001052856, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',\n max_depth=None, max_features='auto', max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=119,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "576"}}

@ -0,0 +1 @@
{"duration": 372.7683711051941, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',\n max_depth=None, max_features='auto', max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=119,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "factors": "[0, 1, 0, 1, 1]", "AlgorithmsIDsEnd": "576"}}

@ -0,0 +1 @@
{"duration": 367.4382128715515, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',\n max_depth=None, max_features='auto', max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=119,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "576"}}

@ -1,4 +1,4 @@
# first line: 454
# first line: 464
@memory.cache
def GridSearchForModels(XData, yData, clf, params, eachAlgor, factors, AlgorithmsIDsEnd):

@ -23,6 +23,9 @@ export default {
}
},
methods: {
reset () {
d3.selectAll("#PCP > *").remove();
},
PCPView () {
d3.selectAll("#PCP > *").remove();
if (this.selAlgorithm != '') {
@ -87,6 +90,9 @@ export default {
EventBus.$on('emittedEventCallingModel', this.PCPView)
EventBus.$on('ResponsiveandChange', this.PCPView)
EventBus.$on('emittedEventCallingModelClear', this.clear)
// reset view
EventBus.$on('resetViews', this.reset)
}
}
</script>

@ -31,13 +31,16 @@ export default {
algorithm2: [],
chart: '',
flagEmpty: 0,
ActiveModels: []
ActiveModels: [],
}
},
methods: {
reset () {
d3.selectAll("#exploding_boxplot > *").remove()
},
boxplot () {
// reset the boxplot
d3.selectAll("#exploding_boxplot > *").remove();
d3.selectAll("#exploding_boxplot > *").remove()
// retrieve models ID
const Algor1IDs = this.PerformanceAllModels[0]
@ -81,6 +84,7 @@ export default {
const previousColor = ['#8dd3c7','#8da0cb']
// check for brushing
var el = document.getElementsByClassName('d3-exploding-boxplot boxcontent')
var overall = document.getElementsByClassName('overall')
this.brushStatus = document.getElementsByClassName('extent')
// on clicks
@ -121,6 +125,13 @@ export default {
EventBus.$emit('PCPCall', 'RF')
EventBus.$emit('updateBarChart', [])
}
overall[0].ondblclick = function () {
flagEmptyKNN = 0
flagEmptyRF = 0
EventBus.$emit('alternateFlagLock', flagEmptyKNN)
}
// check if brushed through all boxplots and not only one at a time
const myObserver = new ResizeObserver(entries => {
EventBus.$emit('brusheAllOn')
@ -337,6 +348,9 @@ export default {
EventBus.$on('emittedEventCallingSelectedALgorithm', data => {
this.selectedAlgorithm = data})
EventBus.$on('brusheAllOn', this.brushActivationAll)
// reset the views
EventBus.$on('resetViews', this.reset)
}
}
</script>

@ -22,6 +22,10 @@
}
},
methods: {
reset () {
var svg = d3.select("#my_dataviz");
svg.selectAll("*").remove();
},
Balance () {
// erase histogram
var svg = d3.select("#my_dataviz");
@ -213,6 +217,9 @@
this.responsiveWidthHeight = data})
EventBus.$on('ResponsiveandChange', data => {
this.responsiveWidthHeight = data})
// reset view
EventBus.$on('resetViews', this.reset)
}
}
</script>

@ -170,7 +170,9 @@ export default {
},
reset ()
{
setTimeout(() => {
Plotly.purge('barChart')
}, 50);
}
},
mounted() {
@ -181,11 +183,13 @@ export default {
EventBus.$on('emittedEventCallingBarChart', this.BarChartView)
EventBus.$on('emittedEventCallingUpdateBarChart', data => { this.ModelsChosen = data })
EventBus.$on('emittedEventCallingUpdateBarChart', this.BarChartView)
EventBus.$on('resetViews', this.reset)
EventBus.$on('Responsive', data => {
this.WH = data})
EventBus.$on('ResponsiveandChange', data => {
this.WH = data})
// reset view
EventBus.$on('resetViews', this.reset)
}
}
</script>

@ -78,6 +78,7 @@ export default {
},
reset () {
EventBus.$emit('reset')
EventBus.$emit('alternateFlagLock')
},
confirm () {
EventBus.$emit('ConfirmDataSet')

@ -61,6 +61,9 @@ export default {
}
},
methods: {
reset () {
Plotly.purge('OverviewDataPlotly')
},
selectAppliedFilter () {
var representationSelectionDocum = document.getElementById('selectFilterID')
this.userSelectedFilter = representationSelectionDocum.options[representationSelectionDocum.selectedIndex].value
@ -82,7 +85,6 @@ export default {
EventBus.$emit('SendProvenance', 'restore')
},
scatterPlotDataView () {
Plotly.purge('OverviewDataPlotly')
// responsive visualization
@ -227,6 +229,9 @@ export default {
this.responsiveWidthHeight = data})
EventBus.$on('ResponsiveandChange', data => {
this.responsiveWidthHeight = data})
// reset view
EventBus.$on('resetViews', this.reset)
}
}
</script>

@ -41,6 +41,9 @@ export default {
}
},
methods: {
reset () {
Plotly.purge('LinePlot')
},
LinePlotView () {
this.NumberofExecutions ++
this.xaxis.push(this.NumberofExecutions)
@ -289,6 +292,9 @@ export default {
EventBus.$on('emittedEventCallingLinePlot', data => {
this.FinalResultsforLinePlot = data})
EventBus.$on('emittedEventCallingLinePlot', this.LinePlotView)
// reset the views
EventBus.$on('resetViews', this.reset)
}
}
</script>

@ -30,8 +30,11 @@ export default {
Refresh () {
EventBus.$emit('SendSelectedFeaturesEvent', '')
},
reset () {
var svg = d3.select("#Heatmap");
svg.selectAll("*").remove();
},
Heatmap () {
// Clear Heatmap first
var svg = d3.select("#Heatmap");
svg.selectAll("*").remove();
@ -578,6 +581,9 @@ export default {
EventBus.$on('resetViews', this.reset)
EventBus.$on('SendSelectedPointsToBrushHeatmap', data => { this.highlighted = data; })
EventBus.$on('SendSelectedPointsToBrushHeatmap', this.brush)
// reset the views
EventBus.$on('resetViews', this.reset)
}
}
</script>

@ -696,6 +696,7 @@ export default Vue.extend({
.then(response => {
console.log('The server side was reset! Done.')
this.reset = false
EventBus.$emit('resetViews')
})
.catch(error => {
console.log(error)
@ -733,7 +734,10 @@ export default Vue.extend({
axios.post(path, postData, axiosConfig)
.then(response => {
console.log('The client send the new factors! Done.')
// this is if we need to change the factors even before models are there
//if (this.OverviewResults != 0) {
this.RetrieveNewColors()
// }
})
.catch(error => {
console.log(error)

@ -21,13 +21,15 @@ export default {
}
},
methods: {
reset () {
d3.selectAll("#PCPDataView > *").remove();
},
PCPView () {
d3.selectAll("#PCPDataView > *").remove();
const DataSetNew = JSON.parse(this.PCPDataReceived[2])
var DataSetParse = JSON.parse(DataSetNew)
const target_names = JSON.parse(this.PCPDataReceived[3])
var colors = this.colorsValues
console.log(target_names)
this.pc = ParCoords()("#PCPDataView")
.data(DataSetParse)
@ -46,6 +48,9 @@ export default {
EventBus.$on('emittedEventCallingDataPCP', data => { this.PCPDataReceived = data })
EventBus.$on('emittedEventCallingDataPCP', this.PCPView)
EventBus.$on('ResponsiveandChange', this.PCPView)
// reset the views
EventBus.$on('resetViews', this.reset)
}
}
</script>

@ -28,8 +28,13 @@ export default {
}
},
methods: {
reset () {
setTimeout(() => {
var svg = d3.select("#overview");
svg.selectAll("*").remove();
}, 50);
},
draw () {
// Clear Heatmap first
var svg = d3.select("#overview");
svg.selectAll("*").remove();
@ -176,16 +181,13 @@ export default {
countRFRelated.push(JSON.parse(this.storeParameters[this.storeActiveModels[i]]))
}
}
//console.log(countkNNRelated)
//console.log(countRFRelated)
n_neighbors = ([... new Set(countkNNRelated.map(data => data.n_neighbors))].length / 25) * 100
metric = ([... new Set(countkNNRelated.map(data => data.metric))].length / 4) * 100
algorithm = ([... new Set(countkNNRelated.map(data => data.algorithm))].length / 3) * 100
weight = ([... new Set(countkNNRelated.map(data => data.weight))].length / 2) * 100
n_estimators = ([... new Set(countRFRelated.map(data => data.n_estimators))].length / 80) * 100
criterion = ([... new Set(countRFRelated.map(data => data.criterion))].length / 2) * 100
//console.log(algorithm)
}
var data = [
@ -388,7 +390,6 @@ export default {
// adjust dy (labels vertical start) based on number of lines (i.e. tspans)
question_text.each(function(d, i) {
//console.log(d3.select(this)[0]);
var textPath = d3.select(this)[0][0],
tspanCount = textPath.childNodes.length;
@ -572,6 +573,10 @@ export default {
.attr('width', width - 2 * padding)
.attr('height', height - 2 * padding);
*/
},
updateFlags () {
this.FlagKNN = 0
this.FlagRF = 0
}
},
mounted () {
@ -587,6 +592,12 @@ export default {
this.WH = data})
EventBus.$on('ResponsiveandChange', data => {
this.WH = data})
// reset the views
EventBus.$on('resetViews', this.reset)
EventBus.$on('alternateFlagLock', this.updateFlags)
EventBus.$on('alternateFlagLock', this.draw)
}
}
@ -595,7 +606,6 @@ export default {
<style>
/* Styles go here */
.category-circle {
fill: url(#gradient-categorization);
}

@ -17,7 +17,6 @@ export default {
},
methods: {
LineBar () {
Plotly.purge('PerMetricBar')
var metricsPerModel = JSON.parse(this.barchartmetrics[9])
@ -73,7 +72,9 @@ export default {
}}};
Plotly.newPlot('PerMetricBar', data, layout, {displayModeBar:false}, {staticPlot: true});
//}
},
reset () {
Plotly.purge('PerMetricBar')
}
},
mounted () {
@ -86,6 +87,9 @@ export default {
EventBus.$on('UpdateBarChartperMetric', data => {
this.SelBarChartMetrics = data})
EventBus.$on('UpdateBarChartperMetric', this.LineBar)
// reset view
EventBus.$on('resetViews', this.reset)
}
}
</script>

@ -17,6 +17,9 @@ export default {
}
},
methods: {
reset () {
Plotly.purge('OverviewPredPlotly')
},
ScatterPlotDataView () {
Plotly.purge('OverviewPredPlotly')
@ -26,7 +29,6 @@ export default {
var target_names = JSON.parse(this.PredictionsData[4])
const XandYCoordinates = JSON.parse(this.PredictionsData[8])
console.log(XandYCoordinates)
const DataSet = JSON.parse(this.PredictionsData[14])
const DataSetY = JSON.parse(this.PredictionsData[15])
const originalDataLabels = JSON.parse(this.PredictionsData[16])
@ -148,6 +150,9 @@ export default {
this.WH = data})
EventBus.$on('ResponsiveandChange', data => {
this.WH = data})
// reset the views
EventBus.$on('resetViews', this.reset)
}
}
</script>

@ -28,10 +28,17 @@ export default {
typeCounter: [],
typeColumnCounter: [],
KNNModels: 576, //KNN models
platform: ''
}
},
methods: {
reset () {
if (this.platform == '') {
} else {
this.platform.clear();
}
},
provenance () {
var canvas = document.getElementById("main-canvas");
var width = this.WH[0]*9 // interactive visualization
@ -41,7 +48,7 @@ export default {
var flagRF = 0
var StackInfo = JSON.parse(this.stackInformation[1])
// Create a WebGL 2D platform on the canvas:
var platform = Stardust.platform("webgl-2d", canvas, width, height);
this.platform = Stardust.platform("webgl-2d", canvas, width, height);
for (let i = 0; i < StackInfo.length; i++) {
if (StackInfo[i] < this.KNNModels){
@ -75,7 +82,7 @@ export default {
let isotype = new Stardust.mark.circle();
// Create the mark object.
let isotypes = Stardust.mark.create(isotype, platform);
let isotypes = Stardust.mark.create(isotype, this.platform);
let isotypeHeight = 18;
let colors = [[141,211,199], [141,160,203]];
@ -123,6 +130,9 @@ export default {
this.WH = data})
EventBus.$on('ResponsiveandChange', data => {
this.WH = data})
// reset the views
EventBus.$on('resetViews', this.reset)
}
}

@ -45,6 +45,9 @@ export default {
}
},
methods: {
reset () {
Plotly.purge('OverviewPlotly')
},
selectVisualRepresentation () {
const representationSelectionDocum = document.getElementById('selectBarChart')
this.representationSelection = representationSelectionDocum.options[representationSelectionDocum.selectedIndex].value
@ -280,6 +283,9 @@ export default {
EventBus.$on('RepresentationSelection', this.ScatterPlotView)
EventBus.$on('UpdateModelsScatterplot', data => {this.DataPointsSelUpdate = data})
EventBus.$on('UpdateModelsScatterplot', this.animate)
// reset view
EventBus.$on('resetViews', this.reset)
}
}
</script>

@ -131,7 +131,6 @@ def Reset():
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/ServerRequest', methods=["GET", "POST"])
def RetrieveFileName():
fileName = request.get_data().decode('utf8').replace("'", '"')
#global featureSelection
@ -195,9 +194,6 @@ def RetrieveFileName():
global loopFeatures
loopFeatures = 2
global factors
factors = [1,1,1,1,1]
# models
global KNNModels
KNNModels = []
@ -438,6 +434,7 @@ def RetrieveModel():
global algorithms
algorithms = RetrievedModel['Algorithms']
global factors
global XData
global yData
@ -653,10 +650,16 @@ def RetrieveModelsParam():
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/factors', methods=["GET", "POST"])
def RetrieveFactors():
global factors
global allParametersPerformancePerModel
Factors = request.get_data().decode('utf8').replace("'", '"')
FactorsInt = json.loads(Factors)
factors = FactorsInt['Factors']
# this is if we want to change the factors before running the search
#if (len(allParametersPerformancePerModel) == 0):
# pass
#else:
global sumPerClassifierSel
global ModelSpaceMDSNew
global ModelSpaceTSNENew
@ -1459,7 +1462,7 @@ def RetrieveAction():
filterActionFinal = filterActionCleared['action']
if (filterActionFinal == 'merge'): # fix merge
if (filterActionFinal == 'merge'):
if (filterDataFinal == 'mean' or filterDataFinal == ''):
mean = XData.iloc[dataSpacePointsIDs, :].mean()
XData.loc[len(XData)]= mean

Loading…
Cancel
Save