master
parent 8f1ca2a081
commit 655408f595
  1. BIN
      __pycache__/run.cpython-37.pyc
  2. 1
      cachedir/joblib/run/GridSearchForModels/10f352afa4c8547af96ab9905e3cfc87/metadata.json
  3. BIN
      cachedir/joblib/run/GridSearchForModels/1ace3632acb8ced29677b3bf1fd54ebb/output.pkl
  4. 1
      cachedir/joblib/run/GridSearchForModels/7ed3e4ea234ba6e59e062c08100338df/metadata.json
  5. BIN
      cachedir/joblib/run/GridSearchForModels/e32f76451401c1a4c95d459bb4c74ce5/output.pkl
  6. 2
      cachedir/joblib/run/GridSearchForModels/func_code.py
  7. 208
      frontend/src/components/BalancePredictions.vue
  8. 9
      frontend/src/components/BarChart.vue
  9. 108
      frontend/src/components/DataSpace.vue
  10. 140
      frontend/src/components/Main.vue
  11. 51
      frontend/src/components/PCPData.vue
  12. 66
      frontend/src/components/Parameters.vue
  13. 4
      frontend/src/components/PredictionsSpace.vue
  14. 2
      frontend/src/components/ScatterPlot.vue
  15. 4
      frontend/src/main.js
  16. 132
      run.py

Binary file not shown.

@ -1 +0,0 @@
{"duration": 348.3931636810303, "input_args": {"clf": "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',\n max_depth=None, max_features='auto', max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=119,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "576"}}

@ -1 +0,0 @@
{"duration": 258.0446789264679, "input_args": {"clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'weights': ['uniform', 'distance'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski']}", "eachAlgor": "'KNN'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "0"}}

@ -1,4 +1,4 @@
# first line: 307 # first line: 371
@memory.cache @memory.cache
def GridSearchForModels(clf, params, eachAlgor, factors, AlgorithmsIDsEnd): def GridSearchForModels(clf, params, eachAlgor, factors, AlgorithmsIDsEnd):

@ -7,6 +7,7 @@
<script> <script>
import { EventBus } from '../main.js' import { EventBus } from '../main.js'
import * as d3Base from 'd3' import * as d3Base from 'd3'
import { counter } from '@fortawesome/fontawesome-svg-core'
// attach all d3 plugins to the d3 library // attach all d3 plugins to the d3 library
const d3 = Object.assign(d3Base) const d3 = Object.assign(d3Base)
@ -15,19 +16,51 @@
name: 'BalancePredictions', name: 'BalancePredictions',
data () { data () {
return { return {
resultsfromOverview: 0, resultsfromOverview: '',
WH: [] newResultsFromSelection: '',
responsiveWidthHeight: []
} }
}, },
methods: { methods: {
Balance () { Balance () {
// erase histogram
// Clear Heatmap first
var svg = d3.select("#my_dataviz"); var svg = d3.select("#my_dataviz");
svg.selectAll("*").remove(); svg.selectAll("*").remove();
var widthInitial = this.WH[0]*3 // interactive visualization // responsive visualizations
var heightInitial = this.WH[1]/1.6 // interactive visualization var widthInitial = this.responsiveWidthHeight[0]*3
var heightInitial = this.responsiveWidthHeight[1]/1.6
var performancePerModel = JSON.parse(this.resultsfromOverview[0])
var performancePerModelSelection = []
if (this.newResultsFromSelection.length != 0) {
var performancePerModelSelection = JSON.parse(this.newResultsFromSelection[0])
}
var modelId = JSON.parse(this.resultsfromOverview[13])
var data = []
performancePerModel.forEach(element => {
let el = {}
el.type = "variable 1"
el.value = element * 100
data.push(el)
})
if (performancePerModelSelection.length == 0) {
performancePerModel.forEach(element => {
let el = {}
el.type = "variable 2"
el.value = element * 100
data.push(el)
})
} else {
performancePerModelSelection.forEach(element => {
let el = {}
el.type = "variable 2"
el.value = element * 100
data.push(el)
})
}
// set the dimensions and margins of the graph // set the dimensions and margins of the graph
var margin = {top: 10, right: 30, bottom: 50, left: 60}, var margin = {top: 10, right: 30, bottom: 50, left: 60},
@ -43,77 +76,118 @@
.attr("transform", .attr("transform",
"translate(" + margin.left + "," + margin.top + ")"); "translate(" + margin.left + "," + margin.top + ")");
// get the data
d3.csv("https://raw.githubusercontent.com/holtzy/D3-graph-gallery/master/DATA/data_doubleHist.csv").then( function(data) {
// add the x Axis // add the x Axis
var x = d3.scaleLinear() var x = d3.scaleLinear()
.domain([-10,15]) .domain([0,100])
.range([0, width]); .range([0, width]);
svg.append("g") svg.append("g")
.attr("transform", "translate(0," + height + ")") .attr("transform", "translate(0," + height + ")")
.call(d3.axisBottom(x)); .call(d3.axisBottom(x));
// add the first y Axis // set the parameters for the histogram
var histogram = d3.histogram()
.value(function(d) { return +d.value; }) // I need to give the vector of value
.domain(x.domain()) // then the domain of the graphic
.thresholds(x.ticks(40)); // then the numbers of bins
// And apply twice this function to data to get the bins.
var bins1 = histogram(data.filter( function(d){return d.type === "variable 1"} ));
var bins2 = histogram(data.filter( function(d){return d.type === "variable 2"} ));
// Y axis: scale and draw:
var y1 = d3.scaleLinear() var y1 = d3.scaleLinear()
.range([height/2, 0]) .range([height/2, 0])
.domain([0, 0.12]); .domain([0, d3.max(bins1, function(d) { return d.length; })]); // d3.hist has to be called before the Y axis obviously
svg.append("g") svg.append("g")
.attr("transform", "translate(-20,0)") .attr("transform", "translate(-20,0)")
.call(d3.axisLeft(y1).tickValues([0.05, 0.1])); .call(d3.axisLeft(y1));
// add the first y Axis // Y axis: scale and draw:
var y2 = d3.scaleLinear() var y2 = d3.scaleLinear()
.range([height/2, height]) .range([height/2, height])
.domain([0, 0.12]); .domain([0, d3.max(bins2, function(d) { return d.length; })]); // d3.hist has to be called before the Y axis obviously
svg.append("g") svg.append("g")
.attr("transform", "translate(-20,0)") .attr("transform", "translate(-20,0)")
.call(d3.axisLeft(y2).ticks(2).tickSizeOuter(0)); .call(d3.axisLeft(y2));
// Compute kernel density estimation // Add a tooltip div. Here I define the general feature of the tooltip: stuff that do not depend on the data point.
var kde = kernelDensityEstimator(kernelEpanechnikov(7), x.ticks(60)) // Its opacity is set to 0: we don't see it by default.
var density1 = kde( data.filter( function(d){return d.type === "variable 1"} ).map(function(d){ return d.value; }) ) var tooltip = d3.select("#my_dataviz")
var density2 = kde( data.filter( function(d){return d.type === "variable 2"} ).map(function(d){ return d.value; }) ) .append("div")
.style("opacity", 0)
// Plot the area .attr("class", "tooltip")
svg.append("path") .style("background-color", "black")
.attr("class", "mypath") .style("color", "white")
.datum(density1) .style("border-radius", "5px")
.attr("fill", "#000") .style("padding", "10px")
.attr("opacity", "1")
.attr("stroke", "#000") // A function that change this tooltip when the user hover a point.
.attr("stroke-width", 1) // Its opacity is set to 1: we can now see it. Plus it set the text and position of tooltip depending on the datapoint (d)
.attr("stroke-linejoin", "round") var showTooltip = function(d) {
.attr("d", d3.line() tooltip
.curve(d3.curveBasis) .transition()
.x(function(d) { return x(d[0]); }) .duration(100)
.y(function(d) { return y1(d[1]); }) .style("opacity", 1)
); tooltip
.html("Range: " + d.x0 + " - " + d.x1)
// Plot the area .style("left", (d3.mouse(this)[0]+20) + "px")
svg.append("path") .style("top", (d3.mouse(this)[1]) + "px")
.attr("class", "mypath") }
.datum(density2) var moveTooltip = function(d) {
.attr("fill", "#D3D3D3") tooltip
.attr("opacity", "1") .style("left", (d3.mouse(this)[0]+20) + "px")
.attr("stroke", "#000") .style("top", (d3.mouse(this)[1]) + "px")
.attr("stroke-width", 1) }
.attr("stroke-linejoin", "round") // A function that change this tooltip when the leaves a point: just need to set opacity to 0 again
.attr("d", d3.line() var hideTooltip = function(d) {
.curve(d3.curveBasis) tooltip
.x(function(d) { return x(d[0]); }) .transition()
.y(function(d) { return y2(d[1]); }) .duration(100)
); .style("opacity", 0)
}
}).catch(function(error){
// handle error // append the bars for series 1
}) svg.selectAll("rect")
.data(bins1)
.enter()
.append("rect")
.attr("x", 1)
.attr("transform", function(d) { return "translate(" + x(d.x0) + "," + y1(d.length) + ")"; })
.attr("width", function(d) { return x(d.x1) - x(d.x0) - 1 ; })
.attr("height", function(d) { return height/2 - y1(d.length); })
.attr("stroke-linejoin", "round")
.style("fill", "#000000")
.style("opacity", 1)
.on("mouseover", showTooltip )
.on("mousemove", moveTooltip )
.on("mouseleave", hideTooltip )
// append the bars for series 2
svg.selectAll("rect2")
.data(bins2)
.enter()
.append("rect")
.attr("x", 1)
.attr("transform", function(d) { return "translate(" + x(d.x0) + "," + height/2 + ")"; })
.attr("width", function(d) { return x(d.x1) - x(d.x0) - 1 ; })
.attr("height", function(d) { return y2(d.length) - height/2; })
.attr("stroke-linejoin", "round")
.style("fill", "#D3D3D3")
.style("opacity", 1)
// Show tooltip on hover
.on("mouseover", showTooltip )
.on("mousemove", moveTooltip )
.on("mouseleave", hideTooltip )
// Handmade legend // Handmade legend
var heightforText = 175 var heightforText = 175
svg.append("circle").attr("cx",80).attr("cy",heightforText).attr("r", 6).style("fill", "#000") svg.append("circle").attr("cx",30).attr("cy",heightforText).attr("r", 6).style("fill", "#000")
svg.append("circle").attr("cx",300).attr("cy",heightforText).attr("r", 6).style("fill", "#D3D3D3") svg.append("circle").attr("cx",350).attr("cy",heightforText).attr("r", 6).style("fill", "#D3D3D3")
svg.append("text").attr("x", 100).attr("y", heightforText).text("Entire distribution").style("font-size", "15px").attr("alignment-baseline","middle") svg.append("text").attr("x", 50).attr("y", heightforText).text("Entire distribution").style("font-size", "15px").attr("alignment-baseline","middle")
svg.append("text").attr("x", 320).attr("y", heightforText).text("Selected points").style("font-size", "15px").attr("alignment-baseline","middle") svg.append("text").attr("x", 210).attr("y", heightforText).text("Performance").style("font-size", "15px").attr("alignment-baseline","top")
svg.append("text").attr("x", 370).attr("y", heightforText).text("Selected points").style("font-size", "15px").attr("alignment-baseline","middle")
// Function to compute density // Function to compute density
function kernelDensityEstimator(kernel, X) { function kernelDensityEstimator(kernel, X) {
@ -133,10 +207,18 @@
mounted () { mounted () {
EventBus.$on('emittedEventCallingBalanceView', data => { this.resultsfromOverview = data} ) EventBus.$on('emittedEventCallingBalanceView', data => { this.resultsfromOverview = data} )
EventBus.$on('emittedEventCallingBalanceView', this.Balance) EventBus.$on('emittedEventCallingBalanceView', this.Balance)
EventBus.$on('UpdateBalanceView', data => { this.newResultsFromSelection = data} )
EventBus.$on('UpdateBalanceView', this.Balance)
EventBus.$on('Responsive', data => { EventBus.$on('Responsive', data => {
this.WH = data}) this.responsiveWidthHeight = data})
EventBus.$on('ResponsiveandChange', data => { EventBus.$on('ResponsiveandChange', data => {
this.WH = data}) this.responsiveWidthHeight = data})
} }
} }
</script> </script>
<style>
.hover {
fill: #69c;
}
</style>

@ -18,7 +18,8 @@ export default {
ClassNamesOverview: '', ClassNamesOverview: '',
algorithmsinBar: [], algorithmsinBar: [],
modelsSelectedinBar: [], modelsSelectedinBar: [],
KNNModels: 576, //KNN models KNNModels: 576, //KNN models,
colorsValues: ['#6a3d9a','#b15928','#e31a1c'],
WH: [] WH: []
} }
}, },
@ -136,7 +137,7 @@ export default {
var traces = [] var traces = []
var tracesSel = [] var tracesSel = []
var data = [] var data = []
var colors = ['#a6cee3','#1f78b4','#b2df8a','#33a02c','#fb9a99','#e31a1c','#fdbf6f','#ff7f00','#cab2d6','#6a3d9a']
for (var i = 0; i < target_names.length; i++) { for (var i = 0; i < target_names.length; i++) {
traces[i] = { traces[i] = {
x: ['KNN', 'RF'], x: ['KNN', 'RF'],
@ -145,7 +146,7 @@ export default {
opacity: 0.5, opacity: 0.5,
marker: { marker: {
opacity: 0.5, opacity: 0.5,
color: colors[i] color: this.colorsValues[i]
}, },
type: 'bar' type: 'bar'
}; };
@ -158,7 +159,7 @@ export default {
mode: 'markers', mode: 'markers',
marker: { marker: {
opacity: 1.0, opacity: 1.0,
color: colors[i], color: this.colorsValues[i],
}, },
width: [0.1, 0.1] width: [0.1, 0.1]
}; };

@ -1,5 +1,43 @@
<template> <template>
<div id="OverviewDataPlotly" class="OverviewDataPlotly"></div> <div>
<div align="center">
Filter: <select id="selectFilterID" @change="selectAppliedFilter()">
<option value="mean" selected>Mean</option>
<option value="median">Median</option>
</select>
Action: <button
id="mergeID"
v-on:click="merge">
<font-awesome-icon icon="object-group" />
{{ mergeData }}
</button>
<button
id="composeID"
v-on:click="compose">
<font-awesome-icon icon="clone" />
{{ composeData }}
</button>
<button
id="removeID"
v-on:click="remove">
<font-awesome-icon icon="eraser" />
{{ removeData }}
</button>
Provenance Controller: <button
id="saveID"
v-on:click="save">
<font-awesome-icon icon="save" />
{{ saveData }}
</button>
<button
id="restoreID"
v-on:click="restore">
<font-awesome-icon icon="undo" />
{{ restoreData }}
</button>
</div>
<div id="OverviewDataPlotly" class="OverviewDataPlotly"></div>
</div>
</template> </template>
<script> <script>
@ -12,21 +50,47 @@ export default {
return { return {
dataPoints: '', dataPoints: '',
highlightedPoints: '', highlightedPoints: '',
mergeData: 'Merge',
removeData: 'Remove',
composeData: 'Compose',
saveData: 'Save Step',
restoreData: 'Restore Step',
userSelectedFilter: 'mean',
responsiveWidthHeight: [], responsiveWidthHeight: [],
colorsValues: ['#00bbbb','#b15928','#ff7f00'] colorsValues: ['#6a3d9a','#b15928','#e31a1c']
} }
}, },
methods: { methods: {
selectAppliedFilter () {
var representationSelectionDocum = document.getElementById('selectFilterID')
this.userSelectedFilter = representationSelectionDocum.options[representationSelectionDocum.selectedIndex].value
EventBus.$emit('SendFilter', this.userSelectedFilter)
},
merge() {
EventBus.$emit('SendAction', 'merge')
},
remove () {
EventBus.$emit('SendAction', 'remove')
},
compose () {
EventBus.$emit('SendAction', 'compose')
},
save () {
EventBus.$emit('SendProvenance', 'save')
},
restore () {
EventBus.$emit('SendProvenance', 'restore')
},
scatterPlotDataView () { scatterPlotDataView () {
// responsive visualization // responsive visualization
let width = this.responsiveWidthHeight[0]*3 let width = this.responsiveWidthHeight[0]*3
let height = this.responsiveWidthHeight[1]*2.1 let height = this.responsiveWidthHeight[1]*2.1
var target_names = JSON.parse(this.dataPoints[4]) var target_names = JSON.parse(this.dataPoints[0])
const XandYCoordinates = JSON.parse(this.dataPoints[7]) const XandYCoordinates = JSON.parse(this.dataPoints[1])
const DataSet = JSON.parse(this.dataPoints[14]) const DataSet = JSON.parse(this.dataPoints[2])
const DataSetY = JSON.parse(this.dataPoints[15]) const DataSetY = JSON.parse(this.dataPoints[3])
const originalDataLabels = JSON.parse(this.dataPoints[16]) const originalDataLabels = JSON.parse(this.dataPoints[4])
var DataSetParse = JSON.parse(DataSet) var DataSetParse = JSON.parse(DataSet)
let intData = [] let intData = []
@ -88,7 +152,7 @@ export default {
y: aux_Y, y: aux_Y,
mode: 'markers', mode: 'markers',
name: target_names[i], name: target_names[i],
marker: { color: this.colorsValues[i], line: { color: 'rgb(0, 0, 0)', width: 2 }, opacity: Opacity }, marker: { color: this.colorsValues[i], line: { color: 'rgb(0, 0, 0)', width: 2 }, opacity: Opacity, size: 12 },
hovertemplate: hovertemplate:
"<b>%{text}</b><br><br>" + "<b>%{text}</b><br><br>" +
"<extra></extra>", "<extra></extra>",
@ -114,6 +178,34 @@ export default {
var config = {scrollZoom: true, displaylogo: false, showLink: false, showSendToCloud: false, modeBarButtonsToRemove: ['toImage', 'toggleSpikelines', 'autoScale2d', 'hoverClosestGl2d','hoverCompareCartesian','select2d','hoverClosestCartesian','zoomIn2d','zoomOut2d','zoom2d'], responsive: true} var config = {scrollZoom: true, displaylogo: false, showLink: false, showSendToCloud: false, modeBarButtonsToRemove: ['toImage', 'toggleSpikelines', 'autoScale2d', 'hoverClosestGl2d','hoverCompareCartesian','select2d','hoverClosestCartesian','zoomIn2d','zoomOut2d','zoom2d'], responsive: true}
Plotly.newPlot('OverviewDataPlotly', traces, layout, config) Plotly.newPlot('OverviewDataPlotly', traces, layout, config)
this.selectedDataPoints()
},
selectedDataPoints () {
const OverviewDataPlotly = document.getElementById('OverviewDataPlotly')
OverviewDataPlotly.on('plotly_selected', function (evt) {
if (typeof evt !== 'undefined') {
const ClassifierIDsList = []
const ClassifierIDsListCleared = []
for (let i = 0; evt.points.length; i++) {
if (evt.points[i] === undefined) {
break
} else {
const OnlyId = evt.points[i].text.split(';')
ClassifierIDsList.push(OnlyId[0])
let numb = OnlyId[0].match(/\d/g);
numb = numb.join("");
let numberNumb = Number(numb)
ClassifierIDsListCleared.push(numberNumb)
}
}
if (ClassifierIDsList != '') {
EventBus.$emit('SendSelectedPointsToServerEventfromData', ClassifierIDsListCleared)
} else {
EventBus.$emit('SendSelectedPointsToServerEventfromData', '')
}
}
})
} }
}, },
mounted() { mounted() {

@ -15,7 +15,7 @@
</mdb-card-body> </mdb-card-body>
</mdb-card> </mdb-card>
<mdb-card style="margin-top: 15px"> <mdb-card style="margin-top: 15px">
<mdb-card-header color="primary-color" tag="h5" class="text-center">HyperParameters Space Exploration Overview and Visual Encoding</mdb-card-header> <mdb-card-header color="primary-color" tag="h5" class="text-center">HyperParameters Space Exploration Overview</mdb-card-header>
<mdb-card-body> <mdb-card-body>
<Parameters/> <Parameters/>
</mdb-card-body> </mdb-card-body>
@ -49,6 +49,7 @@
<mdb-card-body> <mdb-card-body>
<mdb-card-text class="text-center"> <mdb-card-text class="text-center">
<DataSpace/> <DataSpace/>
<PCPData/>
</mdb-card-text> </mdb-card-text>
</mdb-card-body> </mdb-card-body>
</mdb-card> </mdb-card>
@ -136,6 +137,7 @@ import ToggleSelection from './ToggleSelection.vue'
import FinalResultsLinePlot from './FinalResultsLinePlot.vue' import FinalResultsLinePlot from './FinalResultsLinePlot.vue'
import Provenance from './Provenance.vue' import Provenance from './Provenance.vue'
import Parameters from './Parameters.vue' import Parameters from './Parameters.vue'
import PCPData from './PCPData.vue'
import axios from 'axios' import axios from 'axios'
import { loadProgressBar } from 'axios-progress-bar' import { loadProgressBar } from 'axios-progress-bar'
import 'axios-progress-bar/dist/nprogress.css' import 'axios-progress-bar/dist/nprogress.css'
@ -167,6 +169,7 @@ export default Vue.extend({
ToggleSelection, ToggleSelection,
Provenance, Provenance,
Parameters, Parameters,
PCPData,
FinalResultsLinePlot, FinalResultsLinePlot,
mdbCard, mdbCard,
mdbCardBody, mdbCardBody,
@ -177,6 +180,7 @@ export default Vue.extend({
return { return {
Collection: 0, Collection: 0,
OverviewResults: 0, OverviewResults: 0,
preDataResults: '',
RetrieveValueFile: 'IrisC', RetrieveValueFile: 'IrisC',
ClassifierIDsList: '', ClassifierIDsList: '',
SelectedFeaturesPerClassifier: '', SelectedFeaturesPerClassifier: '',
@ -207,7 +211,12 @@ export default Vue.extend({
AlgorithmsUpdate: [], AlgorithmsUpdate: [],
SelectedMetricsForModels: [], SelectedMetricsForModels: [],
DataPointsSel: '', DataPointsSel: '',
DataPointsModels: '' DataPointsModels: '',
dataPointsSelfromDataSpace: '',
userSelectedFilterMain: 'mean',
actionData: '',
filterData: '',
provenanceData: ''
} }
}, },
methods: { methods: {
@ -267,7 +276,6 @@ export default Vue.extend({
EventBus.$emit('emitToggles', this.OverviewResults) EventBus.$emit('emitToggles', this.OverviewResults)
EventBus.$emit('emittedEventCallingToggles', toggles) EventBus.$emit('emittedEventCallingToggles', toggles)
EventBus.$emit('emittedEventCallingHeatmapView', this.OverviewResults) EventBus.$emit('emittedEventCallingHeatmapView', this.OverviewResults)
EventBus.$emit('emittedEventCallingDataSpacePlotView', this.OverviewResults)
EventBus.$emit('emittedEventCallingPredictionsSpacePlotView', this.OverviewResults) EventBus.$emit('emittedEventCallingPredictionsSpacePlotView', this.OverviewResults)
EventBus.$emit('emittedEventCallingBalanceView', this.OverviewResults) EventBus.$emit('emittedEventCallingBalanceView', this.OverviewResults)
this.getFinalResults() this.getFinalResults()
@ -421,6 +429,7 @@ export default Vue.extend({
this.DataPointsModels = response.data.DataPointsModels this.DataPointsModels = response.data.DataPointsModels
console.log('Server successfully sent the new models for the scatterplot!') console.log('Server successfully sent the new models for the scatterplot!')
EventBus.$emit('UpdateModelsScatterplot', this.DataPointsModels) EventBus.$emit('UpdateModelsScatterplot', this.DataPointsModels)
EventBus.$emit('UpdateBalanceView', this.DataPointsModels)
}) })
.catch(error => { .catch(error => {
console.log(error) console.log(error)
@ -486,12 +495,34 @@ export default Vue.extend({
axios.post(path, postData, axiosConfig) axios.post(path, postData, axiosConfig)
.then(response => { .then(response => {
console.log('Send request to server! FileName was sent successfully!') console.log('Send request to server! FileName was sent successfully!')
this.SendAlgorithmsToServer() this.DataSpaceCall()
this.SendAlgorithmsToServer()
}) })
.catch(error => { .catch(error => {
console.log(error) console.log(error)
}) })
}, },
DataSpaceCall () {
const path = `http://localhost:5000/data/requestDataSpaceResults`
const axiosConfig = {
headers: {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Headers': 'Origin, Content-Type, X-Auth-Token',
'Access-Control-Allow-Methods': 'GET, PUT, POST, DELETE, OPTIONS'
}
}
axios.get(path, axiosConfig)
.then(response => {
this.preDataResults = response.data.preDataResults
EventBus.$emit('emittedEventCallingDataSpacePlotView', this.preDataResults)
EventBus.$emit('emittedEventCallingDataPCP', this.preDataResults)
})
.catch(error => {
console.log(error)
})
},
SendAlgorithmsToServer () { SendAlgorithmsToServer () {
const path = `http://127.0.0.1:5000/data/ServerRequestSelParameters` const path = `http://127.0.0.1:5000/data/ServerRequestSelParameters`
const postData = { const postData = {
@ -682,9 +713,93 @@ export default Vue.extend({
toggles.push(this.toggle2) toggles.push(this.toggle2)
toggles.push(this.toggle3) toggles.push(this.toggle3)
EventBus.$emit('emittedEventCallingTogglesUpdate', toggles) EventBus.$emit('emittedEventCallingTogglesUpdate', toggles)
} },
DataSpaceFun () {
const path = `http://127.0.0.1:5000/data/SendDataSpacPoints`
const postData = {
points: this.dataPointsSelfromDataSpace
}
const axiosConfig = {
headers: {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Headers': 'Origin, Content-Type, X-Auth-Token',
'Access-Control-Allow-Methods': 'GET, PUT, POST, DELETE, OPTIONS'
}
}
axios.post(path, postData, axiosConfig)
.then(response => {
console.log('Send request to server! Brushed points sent successfully!')
})
.catch(error => {
console.log(error)
})
},
FilterFun () {
const path = `http://127.0.0.1:5000/data/UpdateFilter`
const postData = {
filter: this.filterData
}
const axiosConfig = {
headers: {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Headers': 'Origin, Content-Type, X-Auth-Token',
'Access-Control-Allow-Methods': 'GET, PUT, POST, DELETE, OPTIONS'
}
}
axios.post(path, postData, axiosConfig)
.then(response => {
console.log('Send request to server! Updated filter!')
})
.catch(error => {
console.log(error)
})
},
ActionFun () {
const path = `http://127.0.0.1:5000/data/UpdateAction`
const postData = {
action: this.actionData
}
const axiosConfig = {
headers: {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Headers': 'Origin, Content-Type, X-Auth-Token',
'Access-Control-Allow-Methods': 'GET, PUT, POST, DELETE, OPTIONS'
}
}
axios.post(path, postData, axiosConfig)
.then(response => {
console.log('Send request to server! Updated action!')
})
.catch(error => {
console.log(error)
})
},
ProvenanceControlFun () {
const path = `http://127.0.0.1:5000/data/UpdateProvenanceState`
const postData = {
provenance: this.provenanceData
}
const axiosConfig = {
headers: {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Headers': 'Origin, Content-Type, X-Auth-Token',
'Access-Control-Allow-Methods': 'GET, PUT, POST, DELETE, OPTIONS'
}
}
axios.post(path, postData, axiosConfig)
.then(response => {
console.log('Send request to server! Updated provenance state!')
})
.catch(error => {
console.log(error)
})
},
}, },
created() { created () {
// does the browser support the Navigation Timing API? // does the browser support the Navigation Timing API?
if (window.performance) { if (window.performance) {
console.info("window.performance is supported"); console.info("window.performance is supported");
@ -741,6 +856,19 @@ export default Vue.extend({
EventBus.$on('sendPointsNumber', data => {this.OverAllLength = data}) EventBus.$on('sendPointsNumber', data => {this.OverAllLength = data})
EventBus.$on('AllSelModels', data => {this.valueSel = data}) EventBus.$on('AllSelModels', data => {this.valueSel = data})
EventBus.$on('RemoveFromStack', this.RemoveFromStackModels) EventBus.$on('RemoveFromStack', this.RemoveFromStackModels)
EventBus.$on('SendSelectedPointsToServerEventfromData', data => {this.dataPointsSelfromDataSpace = data})
EventBus.$on('SendSelectedPointsToServerEventfromData', this.DataSpaceFun)
EventBus.$on('SendFilter', data => {this.filterData = data})
EventBus.$on('SendFilter', this.FilterFun)
EventBus.$on('SendAction', data => {this.actionData = data})
EventBus.$on('SendAction', this.ActionFun)
EventBus.$on('SendProvenance', data => {this.provenanceData = data})
EventBus.$on('SendProvenance', this.ProvenanceControlFun)
//Prevent double click to search for a word. //Prevent double click to search for a word.
document.addEventListener('mousedown', function (event) { document.addEventListener('mousedown', function (event) {
if (event.detail > 1) { if (event.detail > 1) {

@ -0,0 +1,51 @@
<template>
<div id="PCPDataView" class="parcoords" style="width: 300px; height:200px"></div>
</template>
<script>
import 'parcoord-es/dist/parcoords.css';
import ParCoords from 'parcoord-es';
import * as d3Base from 'd3'
// attach all d3 plugins to the d3 library
const d3 = Object.assign(d3Base)
import { EventBus } from '../main.js'
export default {
name: 'PCPData',
data () {
return {
PCPDataReceived: '',
colorsValues: ['#6a3d9a','#b15928','#e31a1c']
}
},
methods: {
PCPView () {
d3.selectAll("#PCPDataView > *").remove();
const target_names = JSON.parse(this.PCPDataReceived[3])
const DataSet = JSON.parse(this.PCPDataReceived[5])
const target = JSON.parse(this.PCPDataReceived[6])
var colors = this.colorsValues
this.pc = ParCoords()("#PCPDataView")
.data(DataSet)
.color(function(d, i) { return colors[target_names[i]] })
.hideAxis([target,'_id','InstanceID'])
.bundlingStrength(0) // set bundling strength
.smoothness(0)
.showControlPoints(false)
.render()
.brushMode('1D-axes')
.reorderable()
.interactive();
},
},
// fix when selecting points the pcp should update!
mounted() {
EventBus.$on('emittedEventCallingDataPCP', data => { this.PCPDataReceived = data })
EventBus.$on('emittedEventCallingDataPCP', this.PCPView)
EventBus.$on('ResponsiveandChange', this.PCPView)
}
}
</script>

@ -1,6 +1,14 @@
<template> <template>
<div> <div>
<div id="overview"></div> <b-row class="md-3">
<b-col cols="12">
<div id="overview"></div>
</b-col>
<!--
<b-col cols="4">
<div id="encodings"></div>
</b-col>-->
</b-row>
</div> </div>
</template> </template>
@ -515,7 +523,56 @@ export default {
d3.selectAll("text.temporary-text").remove() d3.selectAll("text.temporary-text").remove()
} }
} },
drawEncodings () {
// Clear Heatmap first
var svg = d3.select("#encodings");
svg.selectAll("*").remove();
var widthinter = this.WH[0]*0.95 // interactive visualization
var heightinter = this.WH[1]*0.5 // interactive visualization
/*
// Create the SVG element and set its dimensions.
var width = widthinter,
height = heightinter,
padding = 15;
var div = d3.select('#encodings'),
svg = div.append('svg');
svg.attr('width', width).attr('height', height);
// Create the svg:defs element and the main gradient definition.
var svgDefs = svg.append('defs');
var mainGradient = svgDefs.append('linearGradient')
.attr("id", "mainGradient")
.attr("x1", "0%")
.attr("x2", "100%")
.attr("y1", "0%")
.attr("y2", "100%");
mainGradient.append("stop")
.attr('class', 'start')
.attr("offset", "0%")
.attr("stop-color", "red")
.attr("stop-opacity", 1);
mainGradient.append("stop")
.attr('class', 'end')
.attr("offset", "100%")
.attr("stop-color", "blue")
.attr("stop-opacity", 1);
// Use the gradient to set the shape fill, via CSS.
svg.append('rect')
.classed('filled', true)
.attr('x', padding)
.attr('y', padding)
.attr('width', width - 2 * padding)
.attr('height', height - 2 * padding);
*/
}
}, },
mounted () { mounted () {
EventBus.$on('updateFlagKNN', data => { this.FlagKNN = data }) EventBus.$on('updateFlagKNN', data => { this.FlagKNN = data })
@ -525,6 +582,7 @@ export default {
EventBus.$on('sendParameters', data => { this.storeParameters = data }) EventBus.$on('sendParameters', data => { this.storeParameters = data })
EventBus.$on('updateActiveModels', data => { this.storeActiveModels = data }) EventBus.$on('updateActiveModels', data => { this.storeActiveModels = data })
EventBus.$on('updateActiveModels', this.draw) EventBus.$on('updateActiveModels', this.draw)
EventBus.$on('updateActiveModels', this.drawEncodings)
EventBus.$on('Responsive', data => { EventBus.$on('Responsive', data => {
this.WH = data}) this.WH = data})
EventBus.$on('ResponsiveandChange', data => { EventBus.$on('ResponsiveandChange', data => {
@ -602,4 +660,8 @@ export default {
font-size: 14px; font-size: 14px;
fill: #fff; fill: #fff;
} }
.filled {
fill: url(#mainGradient);
}
</style> </style>

@ -12,7 +12,7 @@ export default {
return { return {
PredictionsData: '', PredictionsData: '',
UpdatedData: '', UpdatedData: '',
colorsValues: ['#00bbbb','#b15928','#ff7f00'], colorsValues: ['#6a3d9a','#b15928','#e31a1c'],
responsiveWidthHeight: [] responsiveWidthHeight: []
} }
}, },
@ -65,7 +65,7 @@ export default {
y: aux_Y, y: aux_Y,
mode: 'markers', mode: 'markers',
name: target_names[i], name: target_names[i],
marker: { color: this.colorsValues[i], line: { color: 'rgb(0, 0, 0)', width: 2 }, opacity: 1 }, marker: { color: this.colorsValues[i], line: { color: 'rgb(0, 0, 0)', width: 2 }, opacity: 1, size: 12 },
hovertemplate: hovertemplate:
"<b>%{text}</b><br><br>" + "<b>%{text}</b><br><br>" +
"<extra></extra>", "<extra></extra>",

@ -31,7 +31,7 @@ export default {
return { return {
ScatterPlotResults: '', ScatterPlotResults: '',
representationDef: 'mds', representationDef: 'mds',
representationSelection: 'MDS', representationSelection: 'mds',
colorsforOver: [], colorsforOver: [],
brushedBox : [], brushedBox : [],
max: 0, max: 0,

@ -6,10 +6,10 @@ import 'bootstrap-vue/dist/bootstrap-vue.css'
import router from './router' import router from './router'
import { library } from '@fortawesome/fontawesome-svg-core' import { library } from '@fortawesome/fontawesome-svg-core'
import { FontAwesomeIcon } from '@fortawesome/vue-fontawesome' import { FontAwesomeIcon } from '@fortawesome/vue-fontawesome'
import { faUpload, faPlay, faCheck, faSave, faTrash, faPlus, faBalanceScale, faMinus} from '@fortawesome/free-solid-svg-icons' import { faUpload, faPlay, faCheck, faSave, faTrash, faPlus, faBalanceScale, faMinus, faEraser, faClone, faObjectGroup, faUndo } from '@fortawesome/free-solid-svg-icons'
import bFormSlider from 'vue-bootstrap-slider' import bFormSlider from 'vue-bootstrap-slider'
library.add(faUpload, faPlay, faCheck, faSave, faTrash, faPlus, faBalanceScale, faMinus) library.add(faUpload, faPlay, faCheck, faSave, faTrash, faPlus, faBalanceScale, faMinus, faEraser, faClone, faObjectGroup, faUndo)
Vue.component('font-awesome-icon', FontAwesomeIcon) Vue.component('font-awesome-icon', FontAwesomeIcon)

132
run.py

@ -7,6 +7,7 @@ import collections
import numpy as np import numpy as np
import re import re
from numpy import array from numpy import array
from statistics import mode
import pandas as pd import pandas as pd
import warnings import warnings
import copy import copy
@ -66,6 +67,12 @@ def Reset():
global yData global yData
yData = [] yData = []
global XDataStored
XDataStored = []
global yDataStored
yDataStored = []
global detailsParams global detailsParams
detailsParams = [] detailsParams = []
@ -136,6 +143,15 @@ def RetrieveFileName():
global yData global yData
yData = [] yData = []
global XDataStored
XDataStored = []
global yDataStored
yDataStored = []
global filterDataFinal
filterDataFinal = 'mean'
global ClassifierIDsList global ClassifierIDsList
ClassifierIDsList = '' ClassifierIDsList = ''
@ -223,6 +239,8 @@ def DataSetSelection():
DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResultsRaw.sort(key=lambda x: x[target], reverse=True)
DataResults.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True)
dataBefore = copy.deepcopy(DataResults)
for dictionary in DataResults: for dictionary in DataResults:
del dictionary['_id'] del dictionary['_id']
@ -251,9 +269,40 @@ def DataSetSelection():
global XData, yData, RANDOM_SEED global XData, yData, RANDOM_SEED
XData, yData = ArrayDataResults, AllTargetsFloatValues XData, yData = ArrayDataResults, AllTargetsFloatValues
global XDataStored, yDataStored
XDataStored = XData.copy()
yDataStored = yData.copy()
DataSpaceRes = FunTsne(XData)
DataSpaceListRes = DataSpaceRes.tolist()
XDataJSONEntireSetRes = XData.to_json(orient='records')
global preResults
preResults = []
preResults.append(json.dumps(target_names)) # Position: 0
preResults.append(json.dumps(DataSpaceListRes)) # Position: 1
preResults.append(json.dumps(XDataJSONEntireSetRes)) # Position: 2
preResults.append(json.dumps(yData)) # Position: 3
preResults.append(json.dumps(AllTargets)) # Position: 4
preResults.append(json.dumps(dataBefore)) # Position: 5
preResults.append(json.dumps(target)) # Position: 6
warnings.simplefilter('ignore') warnings.simplefilter('ignore')
return 'Everything is okay' return 'Everything is okay'
# Sending each model's results to frontend
@app.route('/data/requestDataSpaceResults', methods=["GET", "POST"])
def SendDataSpaceResults():
global preResults
response = {
'preDataResults': preResults,
}
return jsonify(response)
# Main function # Main function
if __name__ == '__main__': if __name__ == '__main__':
app.run() app.run()
@ -1259,4 +1308,85 @@ def SendToPlotFinalResults():
response = { response = {
'FinalResults': scores 'FinalResults': scores
} }
return jsonify(response) return jsonify(response)
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/UpdateFilter', methods=["GET", "POST"])
def RetrieveFilter():
filterData = request.get_data().decode('utf8').replace("'", '"')
filterDataCleared = json.loads(filterData)
global filterDataFinal
filterDataFinal = filterDataCleared['filter']
return 'Done'
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/SendDataSpacPoints', methods=["GET", "POST"])
def RetrieveDataSpacePoints():
dataSpacePoints = request.get_data().decode('utf8').replace("'", '"')
dataSpacePointsCleared = json.loads(dataSpacePoints)
global dataSpacePointsIDs
dataSpacePointsIDs = dataSpacePointsCleared['points']
return 'Done'
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/UpdateAction', methods=["GET", "POST"])
def RetrieveAction():
filterAction = request.get_data().decode('utf8').replace("'", '"')
filterActionCleared = json.loads(filterAction)
global filterActionFinal
global dataSpacePointsIDs
global filterDataFinal
global XData
global yData
filterActionFinal = filterActionCleared['action']
if (filterActionFinal == 'merge'): # fix merge
if (filterDataFinal == 'mean' or filterDataFinal == ''):
mean = XData.iloc[dataSpacePointsIDs, :].mean()
XData.loc[len(XData)]= mean
else:
median = XData.iloc[dataSpacePointsIDs, :].median()
XData.loc[len(XData)]= median
elif (filterActionFinal == 'compose'):
if (filterDataFinal == 'mean' or filterDataFinal == ''):
mean = XData.iloc[dataSpacePointsIDs, :].mean()
XData.loc[len(XData)]= mean
else:
median = XData.iloc[dataSpacePointsIDs, :].median()
XData.loc[len(XData)]= median
yDataSelected = [yData[i] for i in dataSpacePointsIDs]
storeMode = mode(yDataSelected)
yData.append(storeMode)
else:
XData = XData.drop(dataSpacePointsIDs)
yData = [i for j, i in enumerate(yData) if j not in dataSpacePointsIDs]
print(XData)
print(yData)
return 'Done'
# Retrieve data from client
@cross_origin(origin='localhost',headers=['Content-Type','Authorization'])
@app.route('/data/UpdateProvenanceState', methods=["GET", "POST"])
def RetrieveProvenance():
filterProvenance = request.get_data().decode('utf8').replace("'", '"')
filterProvenanceCleared = json.loads(filterProvenance)
global filterProvenanceFinal
filterProvenanceFinal = filterProvenanceCleared['provenance']
global XDataStored
global XData
global yDataStored
global yData
# fix save and restore
if (filterProvenanceFinal == 'restore'):
XData = XDataStored.copy()
yData = yDataStored.copy()
return 'Done'
Loading…
Cancel
Save