StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
StackGenVis/frontend/node_modules/topojson-client/dist/topojson-client.js

519 lines
14 KiB

4 years ago
// https://github.com/topojson/topojson-client Version 2.1.0. Copyright 2016 Mike Bostock.
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(factory((global.topojson = global.topojson || {})));
}(this, (function (exports) { 'use strict';
var identity = function(x) {
return x;
};
var transform = function(topology) {
if ((transform = topology.transform) == null) return identity;
var transform,
x0,
y0,
kx = transform.scale[0],
ky = transform.scale[1],
dx = transform.translate[0],
dy = transform.translate[1];
return function(point, i) {
if (!i) x0 = y0 = 0;
point[0] = (x0 += point[0]) * kx + dx;
point[1] = (y0 += point[1]) * ky + dy;
return point;
};
};
var bbox = function(topology) {
var bbox = topology.bbox;
function bboxPoint(p0) {
p1[0] = p0[0], p1[1] = p0[1], t(p1);
if (p1[0] < x0) x0 = p1[0];
if (p1[0] > x1) x1 = p1[0];
if (p1[1] < y0) y0 = p1[1];
if (p1[1] > y1) y1 = p1[1];
}
function bboxGeometry(o) {
switch (o.type) {
case "GeometryCollection": o.geometries.forEach(bboxGeometry); break;
case "Point": bboxPoint(o.coordinates); break;
case "MultiPoint": o.coordinates.forEach(bboxPoint); break;
}
}
if (!bbox) {
var t = transform(topology), p0, p1 = new Array(2), name,
x0 = Infinity, y0 = x0, x1 = -x0, y1 = -x0;
topology.arcs.forEach(function(arc) {
var i = -1, n = arc.length;
while (++i < n) {
p0 = arc[i], p1[0] = p0[0], p1[1] = p0[1], t(p1, i);
if (p1[0] < x0) x0 = p1[0];
if (p1[0] > x1) x1 = p1[0];
if (p1[1] < y0) y0 = p1[1];
if (p1[1] > y1) y1 = p1[1];
}
});
for (name in topology.objects) {
bboxGeometry(topology.objects[name]);
}
bbox = topology.bbox = [x0, y0, x1, y1];
}
return bbox;
};
var reverse = function(array, n) {
var t, j = array.length, i = j - n;
while (i < --j) t = array[i], array[i++] = array[j], array[j] = t;
};
var feature = function(topology, o) {
return o.type === "GeometryCollection"
? {type: "FeatureCollection", features: o.geometries.map(function(o) { return feature$1(topology, o); })}
: feature$1(topology, o);
};
function feature$1(topology, o) {
var id = o.id,
bbox = o.bbox,
properties = o.properties == null ? {} : o.properties,
geometry = object(topology, o);
return id == null && bbox == null ? {type: "Feature", properties: properties, geometry: geometry}
: bbox == null ? {type: "Feature", id: id, properties: properties, geometry: geometry}
: {type: "Feature", id: id, bbox: bbox, properties: properties, geometry: geometry};
}
function object(topology, o) {
var transformPoint = transform(topology),
arcs = topology.arcs;
function arc(i, points) {
if (points.length) points.pop();
for (var a = arcs[i < 0 ? ~i : i], k = 0, n = a.length; k < n; ++k) {
points.push(transformPoint(a[k].slice(), k));
}
if (i < 0) reverse(points, n);
}
function point(p) {
return transformPoint(p.slice());
}
function line(arcs) {
var points = [];
for (var i = 0, n = arcs.length; i < n; ++i) arc(arcs[i], points);
if (points.length < 2) points.push(points[0].slice());
return points;
}
function ring(arcs) {
var points = line(arcs);
while (points.length < 4) points.push(points[0].slice());
return points;
}
function polygon(arcs) {
return arcs.map(ring);
}
function geometry(o) {
var type = o.type, coordinates;
switch (type) {
case "GeometryCollection": return {type: type, geometries: o.geometries.map(geometry)};
case "Point": coordinates = point(o.coordinates); break;
case "MultiPoint": coordinates = o.coordinates.map(point); break;
case "LineString": coordinates = line(o.arcs); break;
case "MultiLineString": coordinates = o.arcs.map(line); break;
case "Polygon": coordinates = polygon(o.arcs); break;
case "MultiPolygon": coordinates = o.arcs.map(polygon); break;
default: return null;
}
return {type: type, coordinates: coordinates};
}
return geometry(o);
}
var stitch = function(topology, arcs) {
var stitchedArcs = {},
fragmentByStart = {},
fragmentByEnd = {},
fragments = [],
emptyIndex = -1;
// Stitch empty arcs first, since they may be subsumed by other arcs.
arcs.forEach(function(i, j) {
var arc = topology.arcs[i < 0 ? ~i : i], t;
if (arc.length < 3 && !arc[1][0] && !arc[1][1]) {
t = arcs[++emptyIndex], arcs[emptyIndex] = i, arcs[j] = t;
}
});
arcs.forEach(function(i) {
var e = ends(i),
start = e[0],
end = e[1],
f, g;
if (f = fragmentByEnd[start]) {
delete fragmentByEnd[f.end];
f.push(i);
f.end = end;
if (g = fragmentByStart[end]) {
delete fragmentByStart[g.start];
var fg = g === f ? f : f.concat(g);
fragmentByStart[fg.start = f.start] = fragmentByEnd[fg.end = g.end] = fg;
} else {
fragmentByStart[f.start] = fragmentByEnd[f.end] = f;
}
} else if (f = fragmentByStart[end]) {
delete fragmentByStart[f.start];
f.unshift(i);
f.start = start;
if (g = fragmentByEnd[start]) {
delete fragmentByEnd[g.end];
var gf = g === f ? f : g.concat(f);
fragmentByStart[gf.start = g.start] = fragmentByEnd[gf.end = f.end] = gf;
} else {
fragmentByStart[f.start] = fragmentByEnd[f.end] = f;
}
} else {
f = [i];
fragmentByStart[f.start = start] = fragmentByEnd[f.end = end] = f;
}
});
function ends(i) {
var arc = topology.arcs[i < 0 ? ~i : i], p0 = arc[0], p1;
if (topology.transform) p1 = [0, 0], arc.forEach(function(dp) { p1[0] += dp[0], p1[1] += dp[1]; });
else p1 = arc[arc.length - 1];
return i < 0 ? [p1, p0] : [p0, p1];
}
function flush(fragmentByEnd, fragmentByStart) {
for (var k in fragmentByEnd) {
var f = fragmentByEnd[k];
delete fragmentByStart[f.start];
delete f.start;
delete f.end;
f.forEach(function(i) { stitchedArcs[i < 0 ? ~i : i] = 1; });
fragments.push(f);
}
}
flush(fragmentByEnd, fragmentByStart);
flush(fragmentByStart, fragmentByEnd);
arcs.forEach(function(i) { if (!stitchedArcs[i < 0 ? ~i : i]) fragments.push([i]); });
return fragments;
};
var mesh = function(topology) {
return object(topology, meshArcs.apply(this, arguments));
};
function meshArcs(topology, object$$1, filter) {
var arcs, i, n;
if (arguments.length > 1) arcs = extractArcs(topology, object$$1, filter);
else for (i = 0, arcs = new Array(n = topology.arcs.length); i < n; ++i) arcs[i] = i;
return {type: "MultiLineString", arcs: stitch(topology, arcs)};
}
function extractArcs(topology, object$$1, filter) {
var arcs = [],
geomsByArc = [],
geom;
function extract0(i) {
var j = i < 0 ? ~i : i;
(geomsByArc[j] || (geomsByArc[j] = [])).push({i: i, g: geom});
}
function extract1(arcs) {
arcs.forEach(extract0);
}
function extract2(arcs) {
arcs.forEach(extract1);
}
function extract3(arcs) {
arcs.forEach(extract2);
}
function geometry(o) {
switch (geom = o, o.type) {
case "GeometryCollection": o.geometries.forEach(geometry); break;
case "LineString": extract1(o.arcs); break;
case "MultiLineString": case "Polygon": extract2(o.arcs); break;
case "MultiPolygon": extract3(o.arcs); break;
}
}
geometry(object$$1);
geomsByArc.forEach(filter == null
? function(geoms) { arcs.push(geoms[0].i); }
: function(geoms) { if (filter(geoms[0].g, geoms[geoms.length - 1].g)) arcs.push(geoms[0].i); });
return arcs;
}
function planarRingArea(ring) {
var i = -1, n = ring.length, a, b = ring[n - 1], area = 0;
while (++i < n) a = b, b = ring[i], area += a[0] * b[1] - a[1] * b[0];
return Math.abs(area); // Note: doubled area!
}
var merge = function(topology) {
return object(topology, mergeArcs.apply(this, arguments));
};
function mergeArcs(topology, objects) {
var polygonsByArc = {},
polygons = [],
groups = [];
objects.forEach(geometry);
function geometry(o) {
switch (o.type) {
case "GeometryCollection": o.geometries.forEach(geometry); break;
case "Polygon": extract(o.arcs); break;
case "MultiPolygon": o.arcs.forEach(extract); break;
}
}
function extract(polygon) {
polygon.forEach(function(ring) {
ring.forEach(function(arc) {
(polygonsByArc[arc = arc < 0 ? ~arc : arc] || (polygonsByArc[arc] = [])).push(polygon);
});
});
polygons.push(polygon);
}
function area(ring) {
return planarRingArea(object(topology, {type: "Polygon", arcs: [ring]}).coordinates[0]);
}
polygons.forEach(function(polygon) {
if (!polygon._) {
var group = [],
neighbors = [polygon];
polygon._ = 1;
groups.push(group);
while (polygon = neighbors.pop()) {
group.push(polygon);
polygon.forEach(function(ring) {
ring.forEach(function(arc) {
polygonsByArc[arc < 0 ? ~arc : arc].forEach(function(polygon) {
if (!polygon._) {
polygon._ = 1;
neighbors.push(polygon);
}
});
});
});
}
}
});
polygons.forEach(function(polygon) {
delete polygon._;
});
return {
type: "MultiPolygon",
arcs: groups.map(function(polygons) {
var arcs = [], n;
// Extract the exterior (unique) arcs.
polygons.forEach(function(polygon) {
polygon.forEach(function(ring) {
ring.forEach(function(arc) {
if (polygonsByArc[arc < 0 ? ~arc : arc].length < 2) {
arcs.push(arc);
}
});
});
});
// Stitch the arcs into one or more rings.
arcs = stitch(topology, arcs);
// If more than one ring is returned,
// at most one of these rings can be the exterior;
// choose the one with the greatest absolute area.
if ((n = arcs.length) > 1) {
for (var i = 1, k = area(arcs[0]), ki, t; i < n; ++i) {
if ((ki = area(arcs[i])) > k) {
t = arcs[0], arcs[0] = arcs[i], arcs[i] = t, k = ki;
}
}
}
return arcs;
})
};
}
var bisect = function(a, x) {
var lo = 0, hi = a.length;
while (lo < hi) {
var mid = lo + hi >>> 1;
if (a[mid] < x) lo = mid + 1;
else hi = mid;
}
return lo;
};
var neighbors = function(objects) {
var indexesByArc = {}, // arc index -> array of object indexes
neighbors = objects.map(function() { return []; });
function line(arcs, i) {
arcs.forEach(function(a) {
if (a < 0) a = ~a;
var o = indexesByArc[a];
if (o) o.push(i);
else indexesByArc[a] = [i];
});
}
function polygon(arcs, i) {
arcs.forEach(function(arc) { line(arc, i); });
}
function geometry(o, i) {
if (o.type === "GeometryCollection") o.geometries.forEach(function(o) { geometry(o, i); });
else if (o.type in geometryType) geometryType[o.type](o.arcs, i);
}
var geometryType = {
LineString: line,
MultiLineString: polygon,
Polygon: polygon,
MultiPolygon: function(arcs, i) { arcs.forEach(function(arc) { polygon(arc, i); }); }
};
objects.forEach(geometry);
for (var i in indexesByArc) {
for (var indexes = indexesByArc[i], m = indexes.length, j = 0; j < m; ++j) {
for (var k = j + 1; k < m; ++k) {
var ij = indexes[j], ik = indexes[k], n;
if ((n = neighbors[ij])[i = bisect(n, ik)] !== ik) n.splice(i, 0, ik);
if ((n = neighbors[ik])[i = bisect(n, ij)] !== ij) n.splice(i, 0, ij);
}
}
}
return neighbors;
};
var quantize = function(topology, n) {
if (!((n = Math.floor(n)) >= 2)) throw new Error("n must be ≥2");
if (topology.transform) throw new Error("already quantized");
var bb = bbox(topology), name,
dx = bb[0], kx = (bb[2] - dx) / (n - 1) || 1,
dy = bb[1], ky = (bb[3] - dy) / (n - 1) || 1;
function quantizePoint(p) {
p[0] = Math.round((p[0] - dx) / kx);
p[1] = Math.round((p[1] - dy) / ky);
}
function quantizeGeometry(o) {
switch (o.type) {
case "GeometryCollection": o.geometries.forEach(quantizeGeometry); break;
case "Point": quantizePoint(o.coordinates); break;
case "MultiPoint": o.coordinates.forEach(quantizePoint); break;
}
}
topology.arcs.forEach(function(arc) {
var i = 1,
j = 1,
n = arc.length,
pi = arc[0],
x0 = pi[0] = Math.round((pi[0] - dx) / kx),
y0 = pi[1] = Math.round((pi[1] - dy) / ky),
pj,
x1,
y1;
for (; i < n; ++i) {
pi = arc[i];
x1 = Math.round((pi[0] - dx) / kx);
y1 = Math.round((pi[1] - dy) / ky);
if (x1 !== x0 || y1 !== y0) {
pj = arc[j++];
pj[0] = x1 - x0, x0 = x1;
pj[1] = y1 - y0, y0 = y1;
}
}
if (j < 2) {
pj = arc[j++];
pj[0] = 0;
pj[1] = 0;
}
arc.length = j;
});
for (name in topology.objects) {
quantizeGeometry(topology.objects[name]);
}
topology.transform = {
scale: [kx, ky],
translate: [dx, dy]
};
return topology;
};
var untransform = function(topology) {
if ((transform = topology.transform) == null) return identity;
var transform,
x0,
y0,
kx = transform.scale[0],
ky = transform.scale[1],
dx = transform.translate[0],
dy = transform.translate[1];
return function(point, i) {
if (!i) x0 = y0 = 0;
var x1 = Math.round((point[0] - dx) / kx),
y1 = Math.round((point[1] - dy) / ky);
point[0] = x1 - x0, x0 = x1;
point[1] = y1 - y0, y0 = y1;
return point;
};
};
exports.bbox = bbox;
exports.feature = feature;
exports.mesh = mesh;
exports.meshArcs = meshArcs;
exports.merge = merge;
exports.mergeArcs = mergeArcs;
exports.neighbors = neighbors;
exports.quantize = quantize;
exports.transform = transform;
exports.untransform = untransform;
Object.defineProperty(exports, '__esModule', { value: true });
})));