StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics
https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
853 lines
21 KiB
853 lines
21 KiB
4 years ago
|
"use strict";
|
||
|
|
||
|
function _typeof(obj) { "@babel/helpers - typeof"; if (typeof Symbol === "function" && typeof Symbol.iterator === "symbol") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }; } return _typeof(obj); }
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.create = create;
|
||
|
exports.fromMat4 = fromMat4;
|
||
|
exports.clone = clone;
|
||
|
exports.copy = copy;
|
||
|
exports.fromValues = fromValues;
|
||
|
exports.set = set;
|
||
|
exports.identity = identity;
|
||
|
exports.transpose = transpose;
|
||
|
exports.invert = invert;
|
||
|
exports.adjoint = adjoint;
|
||
|
exports.determinant = determinant;
|
||
|
exports.multiply = multiply;
|
||
|
exports.translate = translate;
|
||
|
exports.rotate = rotate;
|
||
|
exports.scale = scale;
|
||
|
exports.fromTranslation = fromTranslation;
|
||
|
exports.fromRotation = fromRotation;
|
||
|
exports.fromScaling = fromScaling;
|
||
|
exports.fromMat2d = fromMat2d;
|
||
|
exports.fromQuat = fromQuat;
|
||
|
exports.normalFromMat4 = normalFromMat4;
|
||
|
exports.projection = projection;
|
||
|
exports.str = str;
|
||
|
exports.frob = frob;
|
||
|
exports.add = add;
|
||
|
exports.subtract = subtract;
|
||
|
exports.multiplyScalar = multiplyScalar;
|
||
|
exports.multiplyScalarAndAdd = multiplyScalarAndAdd;
|
||
|
exports.exactEquals = exactEquals;
|
||
|
exports.equals = equals;
|
||
|
exports.sub = exports.mul = void 0;
|
||
|
|
||
|
var glMatrix = _interopRequireWildcard(require("./common.js"));
|
||
|
|
||
|
function _getRequireWildcardCache() { if (typeof WeakMap !== "function") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }
|
||
|
|
||
|
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== "object" && typeof obj !== "function") { return { "default": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj["default"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }
|
||
|
|
||
|
/**
|
||
|
* 3x3 Matrix
|
||
|
* @module mat3
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* Creates a new identity mat3
|
||
|
*
|
||
|
* @returns {mat3} a new 3x3 matrix
|
||
|
*/
|
||
|
function create() {
|
||
|
var out = new glMatrix.ARRAY_TYPE(9);
|
||
|
|
||
|
if (glMatrix.ARRAY_TYPE != Float32Array) {
|
||
|
out[1] = 0;
|
||
|
out[2] = 0;
|
||
|
out[3] = 0;
|
||
|
out[5] = 0;
|
||
|
out[6] = 0;
|
||
|
out[7] = 0;
|
||
|
}
|
||
|
|
||
|
out[0] = 1;
|
||
|
out[4] = 1;
|
||
|
out[8] = 1;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Copies the upper-left 3x3 values into the given mat3.
|
||
|
*
|
||
|
* @param {mat3} out the receiving 3x3 matrix
|
||
|
* @param {mat4} a the source 4x4 matrix
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function fromMat4(out, a) {
|
||
|
out[0] = a[0];
|
||
|
out[1] = a[1];
|
||
|
out[2] = a[2];
|
||
|
out[3] = a[4];
|
||
|
out[4] = a[5];
|
||
|
out[5] = a[6];
|
||
|
out[6] = a[8];
|
||
|
out[7] = a[9];
|
||
|
out[8] = a[10];
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Creates a new mat3 initialized with values from an existing matrix
|
||
|
*
|
||
|
* @param {mat3} a matrix to clone
|
||
|
* @returns {mat3} a new 3x3 matrix
|
||
|
*/
|
||
|
|
||
|
|
||
|
function clone(a) {
|
||
|
var out = new glMatrix.ARRAY_TYPE(9);
|
||
|
out[0] = a[0];
|
||
|
out[1] = a[1];
|
||
|
out[2] = a[2];
|
||
|
out[3] = a[3];
|
||
|
out[4] = a[4];
|
||
|
out[5] = a[5];
|
||
|
out[6] = a[6];
|
||
|
out[7] = a[7];
|
||
|
out[8] = a[8];
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Copy the values from one mat3 to another
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat3} a the source matrix
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function copy(out, a) {
|
||
|
out[0] = a[0];
|
||
|
out[1] = a[1];
|
||
|
out[2] = a[2];
|
||
|
out[3] = a[3];
|
||
|
out[4] = a[4];
|
||
|
out[5] = a[5];
|
||
|
out[6] = a[6];
|
||
|
out[7] = a[7];
|
||
|
out[8] = a[8];
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Create a new mat3 with the given values
|
||
|
*
|
||
|
* @param {Number} m00 Component in column 0, row 0 position (index 0)
|
||
|
* @param {Number} m01 Component in column 0, row 1 position (index 1)
|
||
|
* @param {Number} m02 Component in column 0, row 2 position (index 2)
|
||
|
* @param {Number} m10 Component in column 1, row 0 position (index 3)
|
||
|
* @param {Number} m11 Component in column 1, row 1 position (index 4)
|
||
|
* @param {Number} m12 Component in column 1, row 2 position (index 5)
|
||
|
* @param {Number} m20 Component in column 2, row 0 position (index 6)
|
||
|
* @param {Number} m21 Component in column 2, row 1 position (index 7)
|
||
|
* @param {Number} m22 Component in column 2, row 2 position (index 8)
|
||
|
* @returns {mat3} A new mat3
|
||
|
*/
|
||
|
|
||
|
|
||
|
function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
|
||
|
var out = new glMatrix.ARRAY_TYPE(9);
|
||
|
out[0] = m00;
|
||
|
out[1] = m01;
|
||
|
out[2] = m02;
|
||
|
out[3] = m10;
|
||
|
out[4] = m11;
|
||
|
out[5] = m12;
|
||
|
out[6] = m20;
|
||
|
out[7] = m21;
|
||
|
out[8] = m22;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Set the components of a mat3 to the given values
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {Number} m00 Component in column 0, row 0 position (index 0)
|
||
|
* @param {Number} m01 Component in column 0, row 1 position (index 1)
|
||
|
* @param {Number} m02 Component in column 0, row 2 position (index 2)
|
||
|
* @param {Number} m10 Component in column 1, row 0 position (index 3)
|
||
|
* @param {Number} m11 Component in column 1, row 1 position (index 4)
|
||
|
* @param {Number} m12 Component in column 1, row 2 position (index 5)
|
||
|
* @param {Number} m20 Component in column 2, row 0 position (index 6)
|
||
|
* @param {Number} m21 Component in column 2, row 1 position (index 7)
|
||
|
* @param {Number} m22 Component in column 2, row 2 position (index 8)
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {
|
||
|
out[0] = m00;
|
||
|
out[1] = m01;
|
||
|
out[2] = m02;
|
||
|
out[3] = m10;
|
||
|
out[4] = m11;
|
||
|
out[5] = m12;
|
||
|
out[6] = m20;
|
||
|
out[7] = m21;
|
||
|
out[8] = m22;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Set a mat3 to the identity matrix
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function identity(out) {
|
||
|
out[0] = 1;
|
||
|
out[1] = 0;
|
||
|
out[2] = 0;
|
||
|
out[3] = 0;
|
||
|
out[4] = 1;
|
||
|
out[5] = 0;
|
||
|
out[6] = 0;
|
||
|
out[7] = 0;
|
||
|
out[8] = 1;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Transpose the values of a mat3
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat3} a the source matrix
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function transpose(out, a) {
|
||
|
// If we are transposing ourselves we can skip a few steps but have to cache some values
|
||
|
if (out === a) {
|
||
|
var a01 = a[1],
|
||
|
a02 = a[2],
|
||
|
a12 = a[5];
|
||
|
out[1] = a[3];
|
||
|
out[2] = a[6];
|
||
|
out[3] = a01;
|
||
|
out[5] = a[7];
|
||
|
out[6] = a02;
|
||
|
out[7] = a12;
|
||
|
} else {
|
||
|
out[0] = a[0];
|
||
|
out[1] = a[3];
|
||
|
out[2] = a[6];
|
||
|
out[3] = a[1];
|
||
|
out[4] = a[4];
|
||
|
out[5] = a[7];
|
||
|
out[6] = a[2];
|
||
|
out[7] = a[5];
|
||
|
out[8] = a[8];
|
||
|
}
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Inverts a mat3
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat3} a the source matrix
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function invert(out, a) {
|
||
|
var a00 = a[0],
|
||
|
a01 = a[1],
|
||
|
a02 = a[2];
|
||
|
var a10 = a[3],
|
||
|
a11 = a[4],
|
||
|
a12 = a[5];
|
||
|
var a20 = a[6],
|
||
|
a21 = a[7],
|
||
|
a22 = a[8];
|
||
|
var b01 = a22 * a11 - a12 * a21;
|
||
|
var b11 = -a22 * a10 + a12 * a20;
|
||
|
var b21 = a21 * a10 - a11 * a20; // Calculate the determinant
|
||
|
|
||
|
var det = a00 * b01 + a01 * b11 + a02 * b21;
|
||
|
|
||
|
if (!det) {
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
det = 1.0 / det;
|
||
|
out[0] = b01 * det;
|
||
|
out[1] = (-a22 * a01 + a02 * a21) * det;
|
||
|
out[2] = (a12 * a01 - a02 * a11) * det;
|
||
|
out[3] = b11 * det;
|
||
|
out[4] = (a22 * a00 - a02 * a20) * det;
|
||
|
out[5] = (-a12 * a00 + a02 * a10) * det;
|
||
|
out[6] = b21 * det;
|
||
|
out[7] = (-a21 * a00 + a01 * a20) * det;
|
||
|
out[8] = (a11 * a00 - a01 * a10) * det;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Calculates the adjugate of a mat3
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat3} a the source matrix
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function adjoint(out, a) {
|
||
|
var a00 = a[0],
|
||
|
a01 = a[1],
|
||
|
a02 = a[2];
|
||
|
var a10 = a[3],
|
||
|
a11 = a[4],
|
||
|
a12 = a[5];
|
||
|
var a20 = a[6],
|
||
|
a21 = a[7],
|
||
|
a22 = a[8];
|
||
|
out[0] = a11 * a22 - a12 * a21;
|
||
|
out[1] = a02 * a21 - a01 * a22;
|
||
|
out[2] = a01 * a12 - a02 * a11;
|
||
|
out[3] = a12 * a20 - a10 * a22;
|
||
|
out[4] = a00 * a22 - a02 * a20;
|
||
|
out[5] = a02 * a10 - a00 * a12;
|
||
|
out[6] = a10 * a21 - a11 * a20;
|
||
|
out[7] = a01 * a20 - a00 * a21;
|
||
|
out[8] = a00 * a11 - a01 * a10;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Calculates the determinant of a mat3
|
||
|
*
|
||
|
* @param {mat3} a the source matrix
|
||
|
* @returns {Number} determinant of a
|
||
|
*/
|
||
|
|
||
|
|
||
|
function determinant(a) {
|
||
|
var a00 = a[0],
|
||
|
a01 = a[1],
|
||
|
a02 = a[2];
|
||
|
var a10 = a[3],
|
||
|
a11 = a[4],
|
||
|
a12 = a[5];
|
||
|
var a20 = a[6],
|
||
|
a21 = a[7],
|
||
|
a22 = a[8];
|
||
|
return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
|
||
|
}
|
||
|
/**
|
||
|
* Multiplies two mat3's
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat3} a the first operand
|
||
|
* @param {mat3} b the second operand
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function multiply(out, a, b) {
|
||
|
var a00 = a[0],
|
||
|
a01 = a[1],
|
||
|
a02 = a[2];
|
||
|
var a10 = a[3],
|
||
|
a11 = a[4],
|
||
|
a12 = a[5];
|
||
|
var a20 = a[6],
|
||
|
a21 = a[7],
|
||
|
a22 = a[8];
|
||
|
var b00 = b[0],
|
||
|
b01 = b[1],
|
||
|
b02 = b[2];
|
||
|
var b10 = b[3],
|
||
|
b11 = b[4],
|
||
|
b12 = b[5];
|
||
|
var b20 = b[6],
|
||
|
b21 = b[7],
|
||
|
b22 = b[8];
|
||
|
out[0] = b00 * a00 + b01 * a10 + b02 * a20;
|
||
|
out[1] = b00 * a01 + b01 * a11 + b02 * a21;
|
||
|
out[2] = b00 * a02 + b01 * a12 + b02 * a22;
|
||
|
out[3] = b10 * a00 + b11 * a10 + b12 * a20;
|
||
|
out[4] = b10 * a01 + b11 * a11 + b12 * a21;
|
||
|
out[5] = b10 * a02 + b11 * a12 + b12 * a22;
|
||
|
out[6] = b20 * a00 + b21 * a10 + b22 * a20;
|
||
|
out[7] = b20 * a01 + b21 * a11 + b22 * a21;
|
||
|
out[8] = b20 * a02 + b21 * a12 + b22 * a22;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Translate a mat3 by the given vector
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat3} a the matrix to translate
|
||
|
* @param {vec2} v vector to translate by
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function translate(out, a, v) {
|
||
|
var a00 = a[0],
|
||
|
a01 = a[1],
|
||
|
a02 = a[2],
|
||
|
a10 = a[3],
|
||
|
a11 = a[4],
|
||
|
a12 = a[5],
|
||
|
a20 = a[6],
|
||
|
a21 = a[7],
|
||
|
a22 = a[8],
|
||
|
x = v[0],
|
||
|
y = v[1];
|
||
|
out[0] = a00;
|
||
|
out[1] = a01;
|
||
|
out[2] = a02;
|
||
|
out[3] = a10;
|
||
|
out[4] = a11;
|
||
|
out[5] = a12;
|
||
|
out[6] = x * a00 + y * a10 + a20;
|
||
|
out[7] = x * a01 + y * a11 + a21;
|
||
|
out[8] = x * a02 + y * a12 + a22;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Rotates a mat3 by the given angle
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat3} a the matrix to rotate
|
||
|
* @param {Number} rad the angle to rotate the matrix by
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function rotate(out, a, rad) {
|
||
|
var a00 = a[0],
|
||
|
a01 = a[1],
|
||
|
a02 = a[2],
|
||
|
a10 = a[3],
|
||
|
a11 = a[4],
|
||
|
a12 = a[5],
|
||
|
a20 = a[6],
|
||
|
a21 = a[7],
|
||
|
a22 = a[8],
|
||
|
s = Math.sin(rad),
|
||
|
c = Math.cos(rad);
|
||
|
out[0] = c * a00 + s * a10;
|
||
|
out[1] = c * a01 + s * a11;
|
||
|
out[2] = c * a02 + s * a12;
|
||
|
out[3] = c * a10 - s * a00;
|
||
|
out[4] = c * a11 - s * a01;
|
||
|
out[5] = c * a12 - s * a02;
|
||
|
out[6] = a20;
|
||
|
out[7] = a21;
|
||
|
out[8] = a22;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Scales the mat3 by the dimensions in the given vec2
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat3} a the matrix to rotate
|
||
|
* @param {vec2} v the vec2 to scale the matrix by
|
||
|
* @returns {mat3} out
|
||
|
**/
|
||
|
|
||
|
|
||
|
function scale(out, a, v) {
|
||
|
var x = v[0],
|
||
|
y = v[1];
|
||
|
out[0] = x * a[0];
|
||
|
out[1] = x * a[1];
|
||
|
out[2] = x * a[2];
|
||
|
out[3] = y * a[3];
|
||
|
out[4] = y * a[4];
|
||
|
out[5] = y * a[5];
|
||
|
out[6] = a[6];
|
||
|
out[7] = a[7];
|
||
|
out[8] = a[8];
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Creates a matrix from a vector translation
|
||
|
* This is equivalent to (but much faster than):
|
||
|
*
|
||
|
* mat3.identity(dest);
|
||
|
* mat3.translate(dest, dest, vec);
|
||
|
*
|
||
|
* @param {mat3} out mat3 receiving operation result
|
||
|
* @param {vec2} v Translation vector
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function fromTranslation(out, v) {
|
||
|
out[0] = 1;
|
||
|
out[1] = 0;
|
||
|
out[2] = 0;
|
||
|
out[3] = 0;
|
||
|
out[4] = 1;
|
||
|
out[5] = 0;
|
||
|
out[6] = v[0];
|
||
|
out[7] = v[1];
|
||
|
out[8] = 1;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Creates a matrix from a given angle
|
||
|
* This is equivalent to (but much faster than):
|
||
|
*
|
||
|
* mat3.identity(dest);
|
||
|
* mat3.rotate(dest, dest, rad);
|
||
|
*
|
||
|
* @param {mat3} out mat3 receiving operation result
|
||
|
* @param {Number} rad the angle to rotate the matrix by
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function fromRotation(out, rad) {
|
||
|
var s = Math.sin(rad),
|
||
|
c = Math.cos(rad);
|
||
|
out[0] = c;
|
||
|
out[1] = s;
|
||
|
out[2] = 0;
|
||
|
out[3] = -s;
|
||
|
out[4] = c;
|
||
|
out[5] = 0;
|
||
|
out[6] = 0;
|
||
|
out[7] = 0;
|
||
|
out[8] = 1;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Creates a matrix from a vector scaling
|
||
|
* This is equivalent to (but much faster than):
|
||
|
*
|
||
|
* mat3.identity(dest);
|
||
|
* mat3.scale(dest, dest, vec);
|
||
|
*
|
||
|
* @param {mat3} out mat3 receiving operation result
|
||
|
* @param {vec2} v Scaling vector
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function fromScaling(out, v) {
|
||
|
out[0] = v[0];
|
||
|
out[1] = 0;
|
||
|
out[2] = 0;
|
||
|
out[3] = 0;
|
||
|
out[4] = v[1];
|
||
|
out[5] = 0;
|
||
|
out[6] = 0;
|
||
|
out[7] = 0;
|
||
|
out[8] = 1;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Copies the values from a mat2d into a mat3
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat2d} a the matrix to copy
|
||
|
* @returns {mat3} out
|
||
|
**/
|
||
|
|
||
|
|
||
|
function fromMat2d(out, a) {
|
||
|
out[0] = a[0];
|
||
|
out[1] = a[1];
|
||
|
out[2] = 0;
|
||
|
out[3] = a[2];
|
||
|
out[4] = a[3];
|
||
|
out[5] = 0;
|
||
|
out[6] = a[4];
|
||
|
out[7] = a[5];
|
||
|
out[8] = 1;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Calculates a 3x3 matrix from the given quaternion
|
||
|
*
|
||
|
* @param {mat3} out mat3 receiving operation result
|
||
|
* @param {quat} q Quaternion to create matrix from
|
||
|
*
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function fromQuat(out, q) {
|
||
|
var x = q[0],
|
||
|
y = q[1],
|
||
|
z = q[2],
|
||
|
w = q[3];
|
||
|
var x2 = x + x;
|
||
|
var y2 = y + y;
|
||
|
var z2 = z + z;
|
||
|
var xx = x * x2;
|
||
|
var yx = y * x2;
|
||
|
var yy = y * y2;
|
||
|
var zx = z * x2;
|
||
|
var zy = z * y2;
|
||
|
var zz = z * z2;
|
||
|
var wx = w * x2;
|
||
|
var wy = w * y2;
|
||
|
var wz = w * z2;
|
||
|
out[0] = 1 - yy - zz;
|
||
|
out[3] = yx - wz;
|
||
|
out[6] = zx + wy;
|
||
|
out[1] = yx + wz;
|
||
|
out[4] = 1 - xx - zz;
|
||
|
out[7] = zy - wx;
|
||
|
out[2] = zx - wy;
|
||
|
out[5] = zy + wx;
|
||
|
out[8] = 1 - xx - yy;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
|
||
|
*
|
||
|
* @param {mat3} out mat3 receiving operation result
|
||
|
* @param {mat4} a Mat4 to derive the normal matrix from
|
||
|
*
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function normalFromMat4(out, a) {
|
||
|
var a00 = a[0],
|
||
|
a01 = a[1],
|
||
|
a02 = a[2],
|
||
|
a03 = a[3];
|
||
|
var a10 = a[4],
|
||
|
a11 = a[5],
|
||
|
a12 = a[6],
|
||
|
a13 = a[7];
|
||
|
var a20 = a[8],
|
||
|
a21 = a[9],
|
||
|
a22 = a[10],
|
||
|
a23 = a[11];
|
||
|
var a30 = a[12],
|
||
|
a31 = a[13],
|
||
|
a32 = a[14],
|
||
|
a33 = a[15];
|
||
|
var b00 = a00 * a11 - a01 * a10;
|
||
|
var b01 = a00 * a12 - a02 * a10;
|
||
|
var b02 = a00 * a13 - a03 * a10;
|
||
|
var b03 = a01 * a12 - a02 * a11;
|
||
|
var b04 = a01 * a13 - a03 * a11;
|
||
|
var b05 = a02 * a13 - a03 * a12;
|
||
|
var b06 = a20 * a31 - a21 * a30;
|
||
|
var b07 = a20 * a32 - a22 * a30;
|
||
|
var b08 = a20 * a33 - a23 * a30;
|
||
|
var b09 = a21 * a32 - a22 * a31;
|
||
|
var b10 = a21 * a33 - a23 * a31;
|
||
|
var b11 = a22 * a33 - a23 * a32; // Calculate the determinant
|
||
|
|
||
|
var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
|
||
|
|
||
|
if (!det) {
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
det = 1.0 / det;
|
||
|
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
|
||
|
out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
|
||
|
out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
|
||
|
out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
|
||
|
out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
|
||
|
out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
|
||
|
out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
|
||
|
out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
|
||
|
out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Generates a 2D projection matrix with the given bounds
|
||
|
*
|
||
|
* @param {mat3} out mat3 frustum matrix will be written into
|
||
|
* @param {number} width Width of your gl context
|
||
|
* @param {number} height Height of gl context
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function projection(out, width, height) {
|
||
|
out[0] = 2 / width;
|
||
|
out[1] = 0;
|
||
|
out[2] = 0;
|
||
|
out[3] = 0;
|
||
|
out[4] = -2 / height;
|
||
|
out[5] = 0;
|
||
|
out[6] = -1;
|
||
|
out[7] = 1;
|
||
|
out[8] = 1;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Returns a string representation of a mat3
|
||
|
*
|
||
|
* @param {mat3} a matrix to represent as a string
|
||
|
* @returns {String} string representation of the matrix
|
||
|
*/
|
||
|
|
||
|
|
||
|
function str(a) {
|
||
|
return "mat3(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ", " + a[4] + ", " + a[5] + ", " + a[6] + ", " + a[7] + ", " + a[8] + ")";
|
||
|
}
|
||
|
/**
|
||
|
* Returns Frobenius norm of a mat3
|
||
|
*
|
||
|
* @param {mat3} a the matrix to calculate Frobenius norm of
|
||
|
* @returns {Number} Frobenius norm
|
||
|
*/
|
||
|
|
||
|
|
||
|
function frob(a) {
|
||
|
return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]);
|
||
|
}
|
||
|
/**
|
||
|
* Adds two mat3's
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat3} a the first operand
|
||
|
* @param {mat3} b the second operand
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function add(out, a, b) {
|
||
|
out[0] = a[0] + b[0];
|
||
|
out[1] = a[1] + b[1];
|
||
|
out[2] = a[2] + b[2];
|
||
|
out[3] = a[3] + b[3];
|
||
|
out[4] = a[4] + b[4];
|
||
|
out[5] = a[5] + b[5];
|
||
|
out[6] = a[6] + b[6];
|
||
|
out[7] = a[7] + b[7];
|
||
|
out[8] = a[8] + b[8];
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Subtracts matrix b from matrix a
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat3} a the first operand
|
||
|
* @param {mat3} b the second operand
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function subtract(out, a, b) {
|
||
|
out[0] = a[0] - b[0];
|
||
|
out[1] = a[1] - b[1];
|
||
|
out[2] = a[2] - b[2];
|
||
|
out[3] = a[3] - b[3];
|
||
|
out[4] = a[4] - b[4];
|
||
|
out[5] = a[5] - b[5];
|
||
|
out[6] = a[6] - b[6];
|
||
|
out[7] = a[7] - b[7];
|
||
|
out[8] = a[8] - b[8];
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Multiply each element of the matrix by a scalar.
|
||
|
*
|
||
|
* @param {mat3} out the receiving matrix
|
||
|
* @param {mat3} a the matrix to scale
|
||
|
* @param {Number} b amount to scale the matrix's elements by
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function multiplyScalar(out, a, b) {
|
||
|
out[0] = a[0] * b;
|
||
|
out[1] = a[1] * b;
|
||
|
out[2] = a[2] * b;
|
||
|
out[3] = a[3] * b;
|
||
|
out[4] = a[4] * b;
|
||
|
out[5] = a[5] * b;
|
||
|
out[6] = a[6] * b;
|
||
|
out[7] = a[7] * b;
|
||
|
out[8] = a[8] * b;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Adds two mat3's after multiplying each element of the second operand by a scalar value.
|
||
|
*
|
||
|
* @param {mat3} out the receiving vector
|
||
|
* @param {mat3} a the first operand
|
||
|
* @param {mat3} b the second operand
|
||
|
* @param {Number} scale the amount to scale b's elements by before adding
|
||
|
* @returns {mat3} out
|
||
|
*/
|
||
|
|
||
|
|
||
|
function multiplyScalarAndAdd(out, a, b, scale) {
|
||
|
out[0] = a[0] + b[0] * scale;
|
||
|
out[1] = a[1] + b[1] * scale;
|
||
|
out[2] = a[2] + b[2] * scale;
|
||
|
out[3] = a[3] + b[3] * scale;
|
||
|
out[4] = a[4] + b[4] * scale;
|
||
|
out[5] = a[5] + b[5] * scale;
|
||
|
out[6] = a[6] + b[6] * scale;
|
||
|
out[7] = a[7] + b[7] * scale;
|
||
|
out[8] = a[8] + b[8] * scale;
|
||
|
return out;
|
||
|
}
|
||
|
/**
|
||
|
* Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
|
||
|
*
|
||
|
* @param {mat3} a The first matrix.
|
||
|
* @param {mat3} b The second matrix.
|
||
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
||
|
*/
|
||
|
|
||
|
|
||
|
function exactEquals(a, b) {
|
||
|
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8];
|
||
|
}
|
||
|
/**
|
||
|
* Returns whether or not the matrices have approximately the same elements in the same position.
|
||
|
*
|
||
|
* @param {mat3} a The first matrix.
|
||
|
* @param {mat3} b The second matrix.
|
||
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
||
|
*/
|
||
|
|
||
|
|
||
|
function equals(a, b) {
|
||
|
var a0 = a[0],
|
||
|
a1 = a[1],
|
||
|
a2 = a[2],
|
||
|
a3 = a[3],
|
||
|
a4 = a[4],
|
||
|
a5 = a[5],
|
||
|
a6 = a[6],
|
||
|
a7 = a[7],
|
||
|
a8 = a[8];
|
||
|
var b0 = b[0],
|
||
|
b1 = b[1],
|
||
|
b2 = b[2],
|
||
|
b3 = b[3],
|
||
|
b4 = b[4],
|
||
|
b5 = b[5],
|
||
|
b6 = b[6],
|
||
|
b7 = b[7],
|
||
|
b8 = b[8];
|
||
|
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8));
|
||
|
}
|
||
|
/**
|
||
|
* Alias for {@link mat3.multiply}
|
||
|
* @function
|
||
|
*/
|
||
|
|
||
|
|
||
|
var mul = multiply;
|
||
|
/**
|
||
|
* Alias for {@link mat3.subtract}
|
||
|
* @function
|
||
|
*/
|
||
|
|
||
|
exports.mul = mul;
|
||
|
var sub = subtract;
|
||
|
exports.sub = sub;
|