StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics
https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
2.3 KiB
69 lines
2.3 KiB
4 years ago
|
(function (global, factory) {
|
||
|
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('vega-dataflow'), require('vega-util'), require('d3-delaunay')) :
|
||
|
typeof define === 'function' && define.amd ? define(['exports', 'vega-dataflow', 'vega-util', 'd3-delaunay'], factory) :
|
||
|
(global = global || self, factory((global.vega = global.vega || {}, global.vega.transforms = {}), global.vega, global.vega, global.d3));
|
||
|
}(this, function (exports, vegaDataflow, vegaUtil, d3Delaunay) { 'use strict';
|
||
|
|
||
|
function Voronoi(params) {
|
||
|
vegaDataflow.Transform.call(this, null, params);
|
||
|
}
|
||
|
|
||
|
Voronoi.Definition = {
|
||
|
"type": "Voronoi",
|
||
|
"metadata": {"modifies": true},
|
||
|
"params": [
|
||
|
{ "name": "x", "type": "field", "required": true },
|
||
|
{ "name": "y", "type": "field", "required": true },
|
||
|
{ "name": "size", "type": "number", "array": true, "length": 2 },
|
||
|
{ "name": "extent", "type": "array", "array": true, "length": 2,
|
||
|
"default": [[-1e5, -1e5], [1e5, 1e5]],
|
||
|
"content": {"type": "number", "array": true, "length": 2} },
|
||
|
{ "name": "as", "type": "string", "default": "path" }
|
||
|
]
|
||
|
};
|
||
|
|
||
|
const prototype = vegaUtil.inherits(Voronoi, vegaDataflow.Transform);
|
||
|
|
||
|
const defaultExtent = [-1e5, -1e5, 1e5, 1e5];
|
||
|
|
||
|
prototype.transform = function(_, pulse) {
|
||
|
const as = _.as || 'path',
|
||
|
data = pulse.source;
|
||
|
|
||
|
// nothing to do if no data
|
||
|
if (!data || !data.length) return pulse;
|
||
|
|
||
|
// configure and construct voronoi diagram
|
||
|
let s = _.size;
|
||
|
s = s ? [0, 0, s[0], s[1]]
|
||
|
: (s = _.extent) ? [s[0][0], s[0][1], s[1][0], s[1][1]]
|
||
|
: defaultExtent;
|
||
|
|
||
|
const voronoi = this.value = d3Delaunay.Delaunay.from(data, _.x, _.y).voronoi(s);
|
||
|
|
||
|
// map polygons to paths
|
||
|
for (let i=0, n=data.length; i<n; ++i) {
|
||
|
const polygon = voronoi.cellPolygon(i);
|
||
|
data[i][as] = polygon ? toPathString(polygon) : null;
|
||
|
}
|
||
|
|
||
|
return pulse.reflow(_.modified()).modifies(as);
|
||
|
};
|
||
|
|
||
|
// suppress duplicated end point vertices
|
||
|
function toPathString(p) {
|
||
|
const x = p[0][0],
|
||
|
y = p[0][1];
|
||
|
|
||
|
let n = p.length - 1;
|
||
|
for (; p[n][0] === x && p[n][1] === y; --n);
|
||
|
|
||
|
return 'M' + p.slice(0, n + 1).join('L') + 'Z';
|
||
|
}
|
||
|
|
||
|
exports.voronoi = Voronoi;
|
||
|
|
||
|
Object.defineProperty(exports, '__esModule', { value: true });
|
||
|
|
||
|
}));
|